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Arterial spin labelling reveals an abnormal cerebral
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There is a need for objective imaging markers of Parkinson’s disease status and progression. Positron emission tomography and

single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson’s

disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived

perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure

cerebral grey matter perfusion in 61 subjects with Parkinson’s disease with a range of motor and cognitive impairment,

including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a

Parkinson’s disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values

revealed that the Parkinson’s disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex,

precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus,

putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to

network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily

accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson’s disease.
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Introduction
Abnormal metabolic and perfusion patterns show potential as

Parkinson’s disease biomarkers, to assess disease progression,

modification and treatment response. Radiotracer studies (positron

emission tomography, PET; single photon emission computed tom-

ography, SPECT) have identified decreased cortical metabolism

and perfusion in Parkinson’s disease (Vander Borght et al., 1997;

Hosokai et al., 2009; Liepelt et al., 2009; Nobili et al., 2009).

Some of these studies have described independent Parkinson’s

disease motor- and cognitive-related patterns of abnormal metab-

olism/perfusion, reporting both cortical deficits and what have

been interpreted as subcortical increases (Ma et al., 2007; Hsu

et al., 2007; Huang et al., 2007a; Eidelberg, 2009).

Arterial spin labelling is a non-invasive MRI perfusion method

that quantitatively measures cerebral blood flow per unit tissue

mass (Detre et al., 1992). Arterial spin labelling eliminates expen-

sive, potentially harmful radioactive materials, long preparation

times and requires shorter scan times than radiotracer methods.

It is an easily repeatable addition to routine MRI scanning that

produces absolute perfusion images. Arterial spin labelling-derived

biomarkers could thus provide an effective and safe alternative to

radionuclide-based imaging assessments of Parkinson’s disease

status and progress.

We examined 61 patients with Parkinson’s disease, representing

a broad disease spectrum that included early, recently diagnosed

individuals through to subjects showing dementia and severe

motor impairment. Arterial spin labelling perfusion images from

these patients with Parkinson’s disease and 29 controls were

entered into a principal component analysis to identify

Parkinson’s disease-related patterns of cerebral perfusion. Only

one previous study has used arterial spin labelling to evaluate per-

fusion in Parkinson’s disease, but their analysis included only nine

patients with Parkinson’s disease and was restricted to a

pre-existing motor-related network that had previously been

derived from PET data (Ma et al., 2010). The quantitative

nature of arterial spin labelling enabled us to clarify questions con-

cerning the interpretation of relative blood flow changes in

Parkinson’s disease that have been described using PET and

SPECT (Borghammer et al., 2009a, b, 2010).

Materials and methods

Subjects
Seventy-three participants meeting the UK Parkinson’s Disease

Society’s criteria for idiopathic Parkinson’s disease (Hughes et al.,

1992) were recruited from the Movement Disorders Clinic at the

Van der Veer Institute for Parkinson’s and Brain Research,

Christchurch, New Zealand. This convenience sample was selected to

form a group reflecting the entire cognitive spectrum in Parkinson’s

disease, including those with little or no impairment through to those

with dementia. A neurologist specializing in movement disorders

(T.J.A.) confirmed clinical diagnosis. The control group comprised 32

volunteers, matched for mean age, years of education and sex ratio;

three volunteers were excluded due to abnormally low cognitive

scores. Exclusion criteria included atypical parkinsonian disorder, pre-

vious history of other neurological conditions including moderate–

severe head injury, stroke, learning disability, vascular dementia

(Roman et al., 1993), other central nervous system disorder and

major medical illness in the previous 6 months. Screening by a neuror-

adiologist (R.K.) excluded five subjects with Parkinson’s disease and

two control subjects due to moderate–severe white matter disease

(one control, four Parkinson’s disease), marked cerebral atrophy (one

Parkinson’s disease) and cerebellar infarcts (one control). Four subjects

with Parkinson’s disease were excluded due to motion-corrupted mag-

netic resonance images. A further four subjects (one control, three

Parkinson’s disease) were excluded due to unfavourable head position

in the scanner, leading to signal loss in the occipital lobes of the per-

fusion images. Subsequent analyses were conducted on the remaining

61 subjects with Parkinson’s disease and 29 control subjects. All sub-

jects gave written consent with additional consent from a significant

other when appropriate. The study was approved by the Upper South

A Ethics Committee of the New Zealand Ministry of Health.

Diagnostic criteria and assessment
At the time of assessment, 26 subjects with Parkinson’s disease had

not yet received anti-parkinsonian medication, i.e. were drug naı̈ve.

The remaining 35 participants with Parkinson’s disease were assessed

and imaged after they had taken their usual medications. Disease se-

verity was measured using the Unified Parkinson’s Disease Rating Scale

(UPDRS part III for motor examination; Fahn and Elton, 1987). On the

basis of comprehensive neuropsychological testing, patients with

Parkinson’s disease were classified as cognitively normal (n = 34)

with mild cognitive impairment (n = 16) or with dementia (n = 11,

Dalrymple-Alford et al., 2010). Dementia classification was based on

the Movement Disorders Society Task Force criteria (Dubois et al.,

2007). Mild cognitive impairment cases were defined as having

intact functional activities of daily living but scored 1.5 SDs or more

below normative data on at least two measures in at least one of the

four Movement Disorders Society cognitive domains (executive func-

tion; attention, working memory and speed of processing; memory

and visuospatial/visuoperceptual function). Global cognitive status

was measured with Mini Mental State Examination (Molloy and

Standish, 1997) and the Montreal Cognitive Assessment (MoCA;

Nasreddine et al., 2005). Demographical details are presented in

Table 1.

Magnetic resonance imaging
acquisition
All subjects were imaged using a 3 T General Electric HDx scanner

with an eight channel head coil. The protocol included a T1-weighted,

3D spoiled gradient recalled acquisition (echo time = 2.8 ms, repetition

time = 6.6 ms, inversion time = 400 ms, flip angle = 15�, acquisition

matrix = 256 � 256 � 170, field of view = 250 mm, slice thick-

ness = 1 mm, voxel size = 0.98 � 0.98 � 1.0 mm3). A stack of spiral,

fast spin echo acquired images were prepared with pseudo-continuous

arterial spin labelling and background suppression to measure whole

brain perfusion quantitatively (Dai et al., 2008; repetition time = 6 s,

echo spacing 9.2 ms, post-labelling delay = 1.5 s, labelling dur-

ation = 1.5 s, eight interleaved spiral arms with 512 samples at

62.5 kHz bandwidth and 30 phase encoded 5 mm thick slices,

NEX = 5, total scan time = 8 min 11 s, units: ml/100 g/min). Subjects

were instructed to close their eyes and remain as still as possible during

scanning.
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Magnetic resonance imaging data
preprocessing
All images were preprocessed with SPM5 (Wellcome Department of

Cognitive Neurology, University College London, UK) and custom

scripts in MATLAB (Matlab 7.6.0, R2008a, Mathworks, MA, USA).

Image preprocessing proceeded as follows: (i) each subject’s arterial

spin labelling-derived perfusion map was coregistered to the spoiled

gradient recalled image; (ii) the spoiled gradient recalled image was

segmented (Ashburner and Friston, 2005) using tissue priors from a

probabilistic elderly brain template (Lemaı̂tre et al., 2005). Grey matter

images were concurrently normalized and modulated; (iii) normaliza-

tion parameters produced during segmentation were then used to

warp the perfusion images into the standardized space of the elderly

template; (iv) normalized (unmodulated) perfusion images were

resliced to 2 � 2 � 2 mm3 and smoothed using a 10 mm isotropic

Gaussian kernel and (v) image slices inferior to the mid-cerebellum

contained spiral artefacts and values in this region were set to zero.

A study-specific grey matter mask, used to exclude non-grey matter

contributions in subsequent analyses, was created by averaging the

modulated, normalized grey matter images from 30 Parkinson’s dis-

ease (10 normal, 10 mild cognitive impairment and 10 dementia) and

29 control subjects. Approximately equal numbers were used to

reduce potential bias. Global grey matter perfusion was examined

prior to network analysis using ANOVA.

Principal component analysis
We employed a voxel-based principal component analysis to identify

sources of grey matter perfusion variation in our sample, blinded to

patient status. Principal component analysis is a data-driven technique

that enables the unbiased detection of spatial covariance patterns

(Turk and Pentland, 1991) and has been used widely in imaging stu-

dies of neurological diseases (Ma et al., 2007; Asllani et al., 2007;

Huang et al., 2007b). The in-house principal component analysis

was implemented following a method described by Spetsieris et al.

(2009): (i) the study-specific grey matter mask was applied to all per-

fusion images; voxels with 510% chance of being grey matter were

excluded. Image data were log transformed, de-meaned twice (indi-

vidual subject mean and group voxel-by-voxel mean were subtracted)

and entered into a single principal component analysis; (ii) the

eigenvectors and eigenvalues of the input data covariance matrix

were calculated via principal component analysis. Statistically inde-

pendent, spatially static principal component images were calculated

using scaled eigenvectors, where each eigenvector was divided by the

square root of its associated eigenvalue, yielding components with unit

variance. The inverse scaled eigenvectors indicate the expression or

score of each component in each individual. The relative size of

each eigenvalue quantifies the total variance captured by that compo-

nent, with the first principal component accounting for the most vari-

ance, and each subsequent component, progressively less. A higher

score on a particular principal component indicates a greater expres-

sion of that spatially fixed component. Voxel values comprising each

principal component are referred to as ‘loadings’ and can be either

positive or negative and (iii) the number of components selected for

further analysis was based on the position of the first discontinuity in

the scree plot of the eigenvalues (Alexander and Moeller, 1994).

Characteristic Parkinson’s
disease-related perfusion network
identification and validation
We performed backward stepwise binomial logistic regression with

group (Parkinson’s disease/control) as the dependent variable and

the expression of the retained components as independent variables.

We selected the model resulting in the smallest Akaike Information

Criterion, which optimally distinguished the groups (Hastie et al.,

2009). Principal components remaining in the model were considered

disease-related and used in linear combination (applying the coeffi-

cients from the logistic regression) to create a combined Parkinson’s

disease-related perfusion network, which was then z-scored. The ex-

pression of the pattern in each individual (that person’s network score)

was quantified by applying the same linear combination of model

parameters to the disease-related principal component scores. This

measure was standardized by subtracting the global mean and dividing

by the SD, and then subtracting the standardized control mean from

all scores; this set the baseline expression (control mean) to zero

(Spetsieris et al., 2009). Leave-one-out cross-validation was performed

to assess the ability of the network score to discriminate Parkinson’s

disease subjects from controls (Hastie et al., 2009). In the Parkinson’s

disease group, measures of disease severity (UPDRS-III), disease dur-

ation, age, sex and global cognitive score (MoCA) were entered into

Table 1 Demographics, mental status and clinical assessments of study participants

Controls Parkinson’s
disease with
normal
cognition

Parkinson’s
disease with
mild cognitive
impairment

Parkinson’s
disease
with dementia

n 29 34 16 11

Female:male 9:20 12:22 5:11 2:9

Age, years� 68.7 (9.4); 45–79 64.7 (8.6); 21–30 69.8 (9.1); 48–80 75.1 (6.7); 59–84

Education, years 13.5 (2.8); 10–18 14.2 (3.2); 10–19 12.6 (3.2); 8–19 13.5 (2.6); 10–17

MoCA�� 27.1 (2.0); 23–30 26.4 (2.5); 21–30 22.4 (2.4); 18–26 16.1 (3.3); 11–20

MMSE�� 29.1 (1.0); 27–30 28.8 (1.4); 25–30 27.6 (1.7); 24–30 23.9 (3.0); 18–27

Disease duration, years��� – 3.3 (2.8); 1–14 8.8 (7.5); 1–29 12.2 (8.9); 1–30

UPDRS-III��� – 23.7 (13.6); 3–62 38.6 (19.2); 13–74 50.2 (17.8); 18–81

Hoehn and Yahr – median 1.5; 1–3 2.5; 1.5–4 4; 2–4

Values are mean (SD); range. Significant ANOVA across all groups *P5 0.01, **P50.001; significant ANOVA across Parkinson’s disease groups ���P50.001.
MMSE = Mini Mental State Examination.
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multiple linear regression with the network score as the dependent

variable. Variables with P5 0.05 were considered to be related to

network score.

Network reliability

A bootstrap estimation procedure (Efron and Tibshirani, 1993) was

used to assess the reliability of the spatial extent of the characteristic

Parkinson’s disease-related network. Principal component analysis of

resampled data produced one bootstrapped Parkinson’s disease-related

network for each of the 500 resamplings. Voxel loadings of the boot-

strapped networks were used to approximate the SD of the resampled

population, sboot. We calculated a z-score (Asllani et al., 2007) for

each voxel using z = v/sboot, where v is the voxel value from the ori-

ginal Parkinson’s disease perfusion network. A threshold of |z|4 1.96,

corresponding to a two-tailed P5 0.05, was used to identify voxels

that significantly contributed to the Parkinson’s disease-related

network.

Region of interest analysis
Region of interest analysis was performed in order to describe the

characteristic Parkinson’s disease-related pattern in terms of absolute

perfusion. Non-smoothed, absolute perfusion values were extracted

from regions comprising the network in which one region contained

voxels with significant positive loadings (z5 1.96) and a second con-

tained significant negative loadings (z4 �1.96). The absolute perfu-

sion values of the remaining voxels (small loadings not meeting the

statistical threshold used to create the network; � 1.965 z5 1.96)

were also examined. Mean absolute perfusion difference between

Parkinson’s disease and control groups in each of the three regions

was assessed using 95% confidence intervals (95% CIs) of the differ-

ence between means. Absolute perfusion from each of the three re-

gions was investigated using multiple linear regression with age, sex,

disease duration, MoCA and UPDRS-III.

Classification
We used area under the curve from receiver operating characteristic

analysis to assess how well the characteristic Parkinson’s disease

network, the individual principal components and global grey matter

perfusion distinguished between the different Parkinson’s disease

cognitive groups.

Results

Global grey matter perfusion
A two-way ANOVA (Group � sex) revealed a significant differ-

ence in global grey matter perfusion between groups

(F = 5.64, P = 0.02). The Parkinson’s disease group exhibited

reduced perfusion with 39.2 (SD 7.46) compared with 43.3

(7.50) ml/100 g/min in controls [effect size = 0.55; 95% CI of

the difference: 4.09 (95% CI 0.69–7.50) ml/100 g/min].

Receiver operating characteristic analysis of Parkinson’s disease

versus controls revealed an area under the curve of 0.66. There

was no evidence of a main effect of sex (P = 0.21) or interaction

between group and sex (P = 0.73). Neither age [r = 0.084,

P = 0.43, 95% CI ( � 0.11 to 0.24)] nor global cognitive status

[MoCA, r = 0.19, P = 0.08, 95% CI (�0.04 to 0.70)] correlated

with global grey matter perfusion. Multiple linear regression

including age, sex, disease duration, MoCA and UPDRS-III

showed no significant prediction of grey matter perfusion in the

Parkinson’s disease group (R2 = 0.04, P = 0.8). Cognition as mea-

sured by MoCA significantly correlated with motor impairment

(UPDRS-III; r = 0.46, P5 0.001, 95% CI 0.9–2.8).

Principal components
The first six principal components were selected for further inves-

tigation. Principal components 1, 4, 5 and 6, explaining 21.0, 4.4,

4.0 and 3.2% of the variance, respectively, remained significant

predictors of group (Parkinson’s disease versus controls; Fig.

1A–D). Components 2 and 3, explaining 11.4 and 5.8%, were

not related to group status. Separate multiple linear regressions

using age, sex, disease duration, MoCA and UPDRS-III revealed

the following significant predictors (P50.05) for each of the

individual disease-related components in Parkinson’s disease:

principal component 1, MoCA and age (adjusted R2 = 0.22,

bMoCA = 0.29, bage = �0.29); principal component 4, no signifi-

cant predictors; principle component 5, UPDRS-III (adjusted

R2 = 0.13, bUPDRS = 0.38); and principle component 6, UPDRS-III,

MoCA and age (adjusted R2 = 0.21, bUPDRS = �0.40,

bMoCA = 0.27, bage = 0.22). Continuous variables failed to predict

principle component 4, but it did capture disease-related informa-

tion in that it significantly contributed to the discrimination of

Parkinson’s disease and controls via logistic regression. The first

component (Fig. 1A) was characterized by decreased perfusion

in Parkinson’s disease relative to controls in posterior

parieto-occipital regions, middle and superior frontal gyri

(Brodmann areas 6 and 8), dorsolateral prefrontal cortex and

pre- and post-central gyri, and preserved perfusion in anterior

cingulate. Principle component 4 (Fig. 1B) exhibited decreased

perfusion in the lingual gyrus, caudate, thalamus and anterior

septal region, with preserved perfusion in anterior cingulate and

pre- and post-central gyri. Principle component 5 (Fig. 1C)

showed decreased perfusion in left precuneus, cuneus, middle

and inferior frontal gyri and supramarginal gyri, with associated

preservation in right post-central gyrus, and subcortically including

brainstem, caudate and putamen. Principle component 6 (Fig. 1D)

revealed decreased perfusion in right posterior parietal regions

with preserved perfusion in left pre- and post-central gyri.

Characteristic Parkinson’s disease-
related network
A linear combination of disease-related components (1, 4, 5 and 6;

b = �2.67, 1.38, 1.80, �2.35), was used to form the character-

istic Parkinson’s disease-related perfusion network. The sign of the

characteristic Parkinson’s disease-related perfusion network was

defined such that subjects with Parkinson’s disease showed

increased mean expression compared with controls. This network

(Fig. 2A) was characterized by positive loadings in Parkinson’s

disease in comparison to controls in bilateral globus pallidus and

putamen, anterior cingulate and post- and pre-central gyri (ex-

tending from primary somatosensory cortex to primary and sup-

plementary motor cortices). Significant negative loadings occurred
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in posterior parieto-occipital cortex, posterior medial cortex (pre-

cuneus and cuneus) and middle frontal gyri (dorsolateral prefrontal

cortex, Brodmann areas 8 and 9). Receiver operating characteristic

analysis of the raw network score produced an area under the

curve of 0.82. Leave-one-out cross validation showed a

Parkinson’s disease versus control classification accuracy of

66.7% (cross-validated area under the curve = 0.72; Parkinson’s

disease prediction: 40/61, control prediction: 20/29). Multiple

linear regression with age, sex, disease duration, MoCA and

UPDRS-III [adjusted R2 = 0.41, F (5, 55) = 9.31, P50.001]

identified MoCA (P = 0.001, b = �0.47) and UPDRS-III

(P50.05, b = 0.26) as significant factors related to network

score (Fig. 3A–C).

Classification
Table 2 presents the area under the curve from receiver operating

characteristic analysis of the characteristic Parkinson’s

disease-related pattern scores, the individual principal component

scores and global grey matter perfusion. The characteristic

Parkinson’s disease network produced the largest (or equal) area

under the curve compared with all individual components and

global perfusion, therefore exhibiting superior discrimination be-

tween the various groups. Area under the curve values from the

characteristic network were as follows: Control:Parkinson’s disease

with normal cognition (0.71), Control:Parkinson’s disease mild

cognitive impairment (0.94), Control:Parkinson’s disease dementia

Figure 1 Parkinson’s disease-related principal components, displayed on the study-specific average grey matter image. Black regions

represent masked white matter and CSF. (A) Principal component 1 showed decreased perfusion (blue) in subjects with Parkinson’s disease

relative to controls in posterior parieto-occipital regions, middle and superior frontal gyri (Broadmann areas 6 and 8), and post-central gyri,

and preserved perfusion in anterior cingulate (red). Component 1 was significantly related to cognition (MoCA) and age. (B) Principal

component 4 exhibited decreased perfusion primarily in the caudate and thalamus, with preferentially preserved perfusion in anterior

cingulate, pre- and post-central gyri, lateral temporal and inferior occipital regions. (C) Principal component 5 showed decreased perfusion

in left precuneus, cuneus, middle and inferior frontal gyri, frontal pole and operculum, and supramarginal gyri, with associated preser-

vation in right post-central gyrus and subcortically including brainstem, caudate and putamen. Component 5 was significantly related to

motor impairment (UPDRS-III). (D) Principal component 6 revealed large decreases in posterior parietal regions, precuneus, lateral occipital

regions and middle frontal gyrus, with preserved perfusion in pre- and post-central gyri. Component 6 was significantly related to both

motor and cognitive status. Components 2 and 3 were not related to Parkinson’s disease.
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(0.99), Parkinson’s disease with normal cognition:Parkinson’s

disease mild cognitive impairment (0.82), Parkinson’s disease mild

cognitive impairment:Parkinson’s disease dementia (0.86),

Parkinson’s disease with normal cognition:Parkinson’s disease

dementia (0.96).

Region of interest analysis
Figure 2B shows the difference in mean absolute perfusion between

the Parkinson’s disease and control groups in the three investigated

regions (Fig. 2A). Subjects with Parkinson’s disease showed no evi-

dence of altered absolute perfusion compared with controls in re-

gions of positive loadings, i.e. perfusion was unchanged or preserved

[effect size d = 0.15, 95% CI of the difference between means: 1.1

(95% CI �2.0 to 4.2) ml/100 g/min]. Perfusion values from the

region of small loadings not meeting the statistical threshold for net-

work inclusion indicated significantly decreased absolute perfusion in

the Parkinson’s disease group [d = 0.55, �4.1 (95% CI �7.5

�0.7) ml/100 g/min], while in regions of significant negative load-

ings there was an even greater decrease [d = 0.89, �8.7 (95%

CI �13.1 to �4.4) ml/100 g/min]. Multiple linear regression with

age, sex, disease duration, MoCA and UPDRS-III revealed no signifi-

cant relation to absolute perfusion in areas of positive network load-

ings or small loadings not meeting the statistical threshold. Absolute

perfusion in regions of negative network loadings was related to

MoCA (adjusted R2 = 0.16, P = 0.001, b = 0.41), but no other

variables.

Discussion
This study has established a characteristic Parkinson’s disease-

related perfusion network derived via arterial spin labelling MRI

and principal component analysis. This characteristic pattern opti-

mally described our heterogeneous Parkinson’s population. Region

of interest analysis of absolute perfusion revealed large decreases

in parieto-occipital cortex, cuneus, precuneus and middle frontal

gyri (dorsolateral prefrontal cortex, Brodmann areas 8 and 9), with

smaller decreases in further cortical regions (parieto-occipital,

frontal, temporal) and subcortically (thalamus, caudate).

Preserved perfusion was found in bilateral globus pallidus, puta-

men, anterior cingulate and pre- and post-central gyri (primary

sensorimotor and supplementary motor cortices).

Global grey matter perfusion was significantly reduced in the

Parkinson’s disease group, but performed less well as a classifier

(smaller area under the curve) than the cross-validated Parkinson’s

disease network, and showed no significant relationship to cogni-

tive or motor status in Parkinson’s disease. Multiple linear regres-

sion identified only cognition as a significant predictor of absolute

perfusion in regions of significant negative loadings; clinical and

demographical variables did not predict absolute perfusion in any

other region. Conversely, cognitively impaired patients and those

with greater motor disability had increased network scores (i.e.

they expressed the spatial unified Parkinson’s disease network

more strongly), highlighting its potential use as a global marker

Figure 2 Parkinson’s disease-related perfusion network and associated absolute values. (A) Parkinson’s disease-related perfusion network

as identified by principal component analysis of arterial spin labelling MRI. The spatial covariance network was identified from 61 subjects

with Parkinson’s disease and 29 controls and represents regions shown to be robust through bootstrap resampling (|z|41.96; P5 0.05).

Decreased perfusion (blue, significant negative loadings) was most prominent in parieto-occipital cortex, cuneus, precuneus and middle

frontal gyri (Brodmann areas 8 and 9). Unchanged perfusion (red, significant positive loadings) was present in bilateral globus pallidus,

putamen, anterior cingulate, primary sensorimotor and supplementary motor areas. The remaining regions (grey) showed widespread,

slight perfusion deficits. (B) The difference in mean absolute perfusion between Parkinson’s disease and control groups in the three

coloured regions of Fig. 1A (with 95% CI). Red corresponds to regions of positive loadings in the Parkinson’s disease-related perfusion

network, showing no absolute difference between groups (i.e. the 95% CI includes zero). Grey regions of the pattern with small loadings

revealed significant absolute decreases in the Parkinson’s disease group. Blue represents voxels with significant negative loadings, asso-

ciated with the strongest levels of decreased perfusion.
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of overall impairment and the advantage of a network approach in

Parkinson’s disease.

Network interpretation
Detection of networks using principal component analysis

(Eidelberg, 2009) involves subtracting each subject’s global mean

perfusion value and the overall group mean (voxel-by-voxel) from

the original images to produce data centred on a mean of zero. If

the global perfusion mean is systematically reduced in a particular

group, the subtraction can lead to areas of unchanged perfusion

being represented by positive loadings, which may then be inter-

preted incorrectly as regions of increased perfusion relative to

another group (Borghammer et al., 2008, 2009a, b). This phe-

nomenon was present in our sample, where there was reduced

absolute grey matter perfusion in the Parkinson’s disease group.

Borghammer et al. (2009b) have described how so-called in-

creases can arise from a shift of baseline, where regions with

preserved perfusion are interpreted as increased perfusion, regions

with slightly reduced perfusion are interpreted as unchanged and

strongly decreased perfusion is interpreted as only slightly reduced.

Using arterial spin labelling-derived absolute perfusion values,

we could circumvent this interpretation problem by directly inves-

tigating the physiological meaning of the identified network. Areas

of significant positive network loadings (red regions in Fig. 2A)

showed no evidence of absolute perfusion difference (Fig. 2B),

while regions of significant negative network loadings (blue) ex-

hibited large perfusion deficits. Voxels with small loadings, not

meeting the statistical threshold for network inclusion (grey

areas) also exhibited significantly reduced perfusion in

Parkinson’s disease. To date, studies employing network analysis

and PET or SPECT (Ma et al., 2007; Huang et al., 2007b; Poston

and Eidelberg, 2009) have not investigated the resultant patterns

with absolute, quantitative values. In our study, areas of significant

positive network loadings (that would previously have been

interpreted by others as increases) actually indicated unchanged

perfusion. Hence, cerebral perfusion changes in Parkinson’s dis-

ease are most aptly interpreted as an overall decrease in grey

matter perfusion, with regions of particularly intense hypoperfu-

sion (blue areas in Fig. 2A) and regions of spared/preserved per-

fusion in the lentiform nucleus, anterior cingulate, primary

sensorimotor and supplementary motor areas (red regions). This

is displayed in Table 3. Based on absolute perfusion, our findings

of widespread cortical hypoperfusion with no areas of increase are

consistent with metabolic/perfusion studies employing quantitative

radiotracer imaging modalities (Hu et al., 2000; Berding et al.,

2001; Mito et al., 2005), as well as those employing relative

PET and SPECT normalized to the cerebellum or pons, rather

than the global mean (Vander Borght et al., 1997; Firbank

et al., 2003; Hosokai et al., 2009; Liepelt et al., 2009).

Although systematic group differences can introduce bias

(Scarmeas et al., 2004; Borghammer et al., 2009a), network ana-

lysis remains a powerful tool for the investigation of neurodegen-

erative diseases like Parkinson’s disease (Alexander and Moeller,

1994; Moeller and Habeck, 2006) if absolute perfusion is assessed.

Single versus multiple patterns
Prior to this study, Parkinson’s disease network investigations have

utilized PET and SPECT radiotracer methods to identify separate

motor and cognitive patterns (Poston and Eidelberg, 2009). It

might be expected then that MRI perfusion imaging, as employed

in the present study, should reveal similar patterns. We did not

identify one component relating to motor impairment and one

Figure 3 Network score in relation to cognition and motor im-

pairment. (A) Network score by cognitive group, with 95% CI of

the mean. Filled circles represent Parkinson’s disease with de-

mentia (PD-D); grey triangles, Parkinson’s disease with mild

cognitive impairment (PD-MCI); open squares, Parkinson’s dis-

ease with normal cognition (PD-N); and crosses, controls. Score

increased monotonically from controls through subjects with

Parkinson’s disease with normal cognition and Parkinson’s disease

with mild cognitive impairment, with Parkinson’s disease with

dementia exhibiting the highest value. Mean of the controls was

set to zero. (B) Network score versus MoCA in Parkinson’s disease

(r = �0.61, P50.001, slope = �0.135 network score/MoCA

point) showing increased network score with decreasing global

cognitive status. (C) Network score versus UPDRS-III (motor

score) in Parkinson’s disease (r = 0.49, P50.001, slope = 0.027

network score/UPDRS-III point) depicting increased network

score with more severe motor impairment.
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component relating exclusively to cognition. Rather, we identified

one ‘motor’ component, one ‘cognitive and age’ component and a

combined ‘motor and cognitive’ component. Consequently, we

did not endeavour to identify independent and distinct motor

and cognitive patterns. Instead, all disease-related components

were used to create a single characteristic Parkinson’s

disease-related network to describe overall grey matter perfusion

in Parkinson’s disease. We specifically included participants across

the full range of cognitive impairments associated with Parkinson’s

disease (including those with dementia), in order to accurately

portray the full spectrum of impairment. Those with greater

motor disability tended to experience greater cognitive impair-

ment, as might be expected (Verbaan et al., 2007; Aarsland

et al., 2010). This may explain why we did not identify independ-

ent motor and cognitive patterns, but when we excluded the

Parkinson’s disease dementia group and reran the principal com-

ponent analysis in an attempt to identify separate patterns, we

identified one component related to both motor and sex. In this

post hoc analysis, we failed to identify a component in which

cognition was a significant predictor despite the presence of indi-

viduals with mild cognitive impairment. Therefore the inclusion of

those with dementia had a potentially large influence on the

results. The present findings are at odds with network analysis

literature employing radiotracer methods (Eidelberg, 2009). The

characteristic network, derived from combining multiple principal

components, explained more disease-related variance than a single

component. Although unable to reflect motor and cognitive de-

terioration independently, the characteristic network correlated

with both motor and cognitive status and provided superior

group classification compared with individual components.

The first component in principal component analysis captures

the most variance within the dataset, and each subsequent com-

ponent, progressively less. A linear combination of Components 1,

4, 5 and 6 predicted disease status and collectively explained

32.6% of the variance in the data. Ma et al. (2007) employed

network analysis of radiotracer data to identify a Parkinson’s

disease-related motor pattern. The first component (capturing

21% of subject � voxel variance) correlated with motor impair-

ment and was therefore called the motor-related pattern. In con-

trast, our characteristic Parkinson’s disease-related pattern was

formed as a linear combination of four components and although

Components 4, 5 and 6 explained less variance than component 1,

they still contributed important disease-related information. Our

first component (which also explained 21% of the variance) was

related to both cognition and age in both Parkinson’s disease and

the entire sample, but not to motor disability in the Parkinson’s

disease group. The relationship between the first component and

cognition and age was not significant in the control group, indi-

cating that the Parkinson’s disease group may be driving this as-

sociation or may reflect the restricted range of control participant

Table 2 Area under the curve for the different group classifications

Pattern Control vs
Parkinson’s
with normal
cognition

Control vs
Parkinson’s
disease
with mild
cognitive
impairment

Control vs
Parkinson’s
disease with
dementia

Parkinson’s
disease with
normal cognition vs
Parkinson’s disease
with mild
cognitive
impairment

Parkinson’s
disease with
normal cognition vs
Parkinson’s
disease with
dementia

Parkinson’s
disease with
mild cognitive
impairment vs
Parkinson’s
disease
with dementia

Unified Parkinson’s disease 0.71a 0.94a 0.99a 0.82a 0.96a 0.86a

Principle component 1 0.60 0.77a 0.90a 0.70a 0.89a 0.72a

Principle component 2 0.60 0.54 0.53 0.57 0.59 0.50

Principle component 3 0.60 0.56 0.50 0.46 0.56 0.54

Principle component 4 0.59 0.74a 0.70a 0.73a 0.60 0.58

Principle component 5 0.56 0.59 0.82a 0.48 0.78a 0.77a

Principle component 6 0.59 0.69a 0.81a 0.61 0.75a 0.65

Grey matter mean 0.60 0.72a 0.78a 0.67a 0.74a 0.51

Comparisons are based on the scores from the single network, individual components and global grey matter mean perfusion. The unified Parkinson’s disease network
provided superior differentiation between all groups.
aIndicates statistically greater than chance (area under curve = 0.05).

Table 3 Interpretation of the characteristic Parkinson’s disease-related perfusion network

Blood flow Absolute region of interest analysis Network analysis

Preserved perfusion No significant change Significant positive loadings

Slight reduction Significant decrease (medium effect size) Small loadings, not reaching statistical threshold

Large reduction Significant decrease (large effect size) Significant negative loadings

The table describes blood flow in Parkinson’s disease based on absolute, arterial spin labelling-derived perfusion and network analysis. The first column describes blood flow
status in Parkinson’s disease in the red, grey and blue regions of Fig. 2A. The absolute region of interest analysis column describes the state of perfusion when tested using
absolute arterial spin labelling-derived perfusion, while the third column describes these three regions relatively, in terms of loadings derived from network analysis. Our
interpretation of the identified characteristic Parkinson’s disease-related pattern is informed by these absolute perfusion values.
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cognitive scores. Cerebral blood flow decreases with age (Buijs

et al., 1998), so it is unsurprising that this first component also

correlated with age. Perfusion reductions in posterior parietal and

frontal regions (Firbank et al., 2003; Kasama et al., 2005) have

been associated with cognitive decline in Parkinson’s disease, and

are also evident in the first component (Fig. 1A). In this

Parkinson’s disease sample, a larger portion of the variation was

related to cognition and age than motor impairment, emphasizing

the relationship between blood flow and cognitive decline in

Parkinson’s disease.

Component 4, with decreased flow in caudate and thalamus,

showed no relation to the clinical or neuropsychological measures

tested in the Parkinson’s disease group or the entire sample, but

did contribute to the group discrimination. Motor disability

(UPDRS-III) was the only significant predictor of principle compo-

nent 5, and it could therefore be considered in itself a

motor-related pattern. This single component was not, however,

the only one related to motor disability, as principle component 6

was also related. The asymmetries present in principle component

5 (mildly decreased on left, preserved on right) did not correspond

to side most affected by Parkinson’s disease symptoms. Precuneus

hypoperfusion and positive loadings in the globus pallidus and

putamen observed in our motor-related principle component 5

have been identified in previous radiotracer motor patterns, but

our principle component 5 lacked involvement of the typical motor

cortex involvement identified by Ma et al. (2007). Principle com-

ponent 6 showed evidence of abnormal perfusion in areas asso-

ciated with both cognitive and motor impairment. The decreased

perfusion in posterior parietal and occipital regions in principle

component 6 is consistent with regions previously related to cog-

nition, but this component lacked medial frontal decreases shown

to be involved in cognition (Firbank et al., 2003; Osaki et al.,

2005; Nobili et al., 2009) and dentate increases reported in pre-

viously defined cognitive patterns (Huang et al., 2007a).

Unchanged (that would previously have been interpreted by

others as increased) perfusion in primary and supplementary

motor areas is also consistent with areas comprising a previously

identified motor pattern (Eckert et al., 2007).

The characteristic Parkinson’s
disease-related network score as a
putative biomarker
Multiple regression confirmed MoCA and UPDRS-III to be signifi-

cant predictors of network score. This is not unexpected since

both correlate during Parkinson’s disease progression (Verbaan

et al., 2007; Aarsland et al., 2010) and disease-related compo-

nents sensitive to both measures were used to create the network.

Posterior cortical dysfunction has been cited as the most promin-

ent metabolic imaging abnormality associated with cognitive de-

terioration in Parkinson’s disease (Mentis et al., 2002; Firbank

et al., 2003; Nobili et al., 2009). The association between cogni-

tive status and decreased perfusion in posterior cortical areas of

the network is consistent with the observations of hypoperfusion

in these regions by others (Firbank et al., 2003; Liepelt et al.,

2009). Motor disability, in the present study, was also associated

with the Parkinson’s disease network, albeit to a lesser extent than

cognitive impairment. Both frontal and posterior deficits contribut-

ing to the network have previously been identified in motor-

related radiotracer patterns (Eidelberg, 2009).

The characteristic Parkinson’s disease network provided superior

discrimination between the cognitive groups, as measured by area

under the curve, than individual disease-related components and

global grey matter perfusion (Table 2). This network exhibited

robust sensitivity in distinguishing even those with the mildest

symptoms (Parkinson’s disease with normal cognition) from

healthy individuals (area under the curve = 0.72). Network score

was also better at differentiating between those with normal

cognition and those with mild cognitive impairment (area under

the curve = 0.81). This is potentially a very pertinent comparison,

as the Parkinson’s disease mild cognitive impairment group repre-

sents those at risk for dementia and likely to benefit most

from any emergent disease-modifying therapies (Caviness et al.,

2007).

The direct effect of anti-parkinsonian medication on cerebral

perfusion and the characteristic pattern in this study is unknown

because all medicated patients were assessed and imaged with no

disruption to their normal drug regimen and the 26 drug naı̈ve

subjects were assessed and imaged before commencing anti-

parkinsonian drug therapy. Although global cerebral blood flow

does not change as a result of anti-parkinsonian medication

(Melamed et al., 1986; Jenkins et al., 1992; Hershey et al.,

2003; Hirano et al., 2008), focal blood flow increases have been

identified in putamen, globus pallidus, thalamus, pons, midbrain,

subthalamic nucleus and anterior cingulate (Kobari et al., 1995;

Hershey et al., 2003; Hirano et al., 2008). In the context of

PET-derived network analysis, Hirano et al. (2008) identified an

increase in the expression of a perfusion Parkinson’s disease-

related motor pattern after intravenous levodopa administration.

Conversely, Hershey et al. (2003) described a difference between

levodopa-naı̈ve Parkinson’s disease and those with chronic levo-

dopa use. Those naı̈ve to levodopa exhibited no change in cerebral

blood flow post administration, while those with a history of levo-

dopa exposure showed decreased blood flow in sensorimotor

and ventrolateral prefrontal cortices. These characteristic

levodopa-induced changes in cerebral blood flow may have had

an influence on our identified network, but in those areas

previously reported to exhibit drug-related increases we identified

unchanged rather than increased perfusion in Parkinson’s disease.

Furthermore, in a post hoc comparison between drug naı̈ve

Parkinson’s disease with normal cognition (n = 23) and

Parkinson’s disease with normal cognition on medication (n = 11)

from areas with positive loadings (i.e. preserved perfusion, red

region in Fig. 2A; including putamen and globus pallidus), we

identified no significant difference between the two groups

[t = 1.0, P = 0.3; d = 0.35, 95% CI 2.54 (�8.2 to 3.1) ml/100 g/

min]. There was no significant difference between drug-naı̈ve and

medicated Parkinson’s disease with normal cognition in terms of

network score [t = 1.15, P = 0.26; d = 0.40; 95% CI 0.2 (�0.26 to

0.8)]. Hershey et al. (2003) reported a 3% and 1.8% blood flow

reduction due to levodopa in sensorimotor and ventrolateral

prefrontal cortex, respectively, whereas in the present study

Parkinson’s disease subjects exhibited a much greater 19%
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average reduction in cerebral perfusion in the blue pattern region

compared with controls. Thus, it seems unlikely that the mainten-

ance of anti-parkinsonian therapy on the day of imaging in our

patients had a significant influence on the Parkinson’s disease per-

fusion network.

Arterial spin labelling networks
This is the first sizeable study to derive a Parkinson’s disease-

related pattern using arterial spin labelling MRI. Ma et al.

(2010) collected arterial spin labelling perfusion in nine

Parkinson’s disease subjects, but only utilized a pattern previously

derived from PET data. Validation of our characteristic Parkinson’s

disease perfusion network in other cohorts collected independently

with arterial spin labelling perfusion MRI would be beneficial. This

would help to clarify whether a single, inclusive pattern provides

the best biomarker across the full spectrum of Parkinson’s disease

or whether truly independent motor and cognitive patterns arise

from arterial spin labelling-acquired perfusion images. The present

investigation was cross-sectional and a longitudinal study is now

needed to validate the characteristic Parkinson’s disease perfusion

network as a suitable marker of disease progression.

In summary, we established a characteristic Parkinson’s disease-

related perfusion network via arterial spin labelling. This network

was characterized by decreased cortical and preserved subcortical

and sensorimotor cortical perfusion. This non-invasive, arterial spin

labelling-derived network may provide clinicians and researchers

with an attractive alternative to radiotracer methods in terms of

safety, availability, repeatability, cost and effectiveness without

sacrificing quality of results, while also providing absolute perfu-

sion values. Arterial spin labelling acquisition is preferable on a 3 T

MRI scanner because of higher signal to noise, but implementation

on 1.5 T machines is certainly feasible (Alsop et al., 2000). Though

the deployment of 3 T MRI scanners is becoming commonplace

worldwide, the implementation of arterial spin labelling on 1.5 T

machines would permit more widespread application of this useful

technique and utilization of Parkinson’s disease perfusion networks

if the present findings can be replicated. This characteristic net-

work offers an easily applicable biomarker that may prove useful

for future longitudinal investigations and assessment of

Parkinson’s disease progression, but as we have shown, physio-

logical understanding requires careful interpretation informed by

absolute perfusion data.
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