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Generalization of Youden index for
multiple-class classification problems
applied to the assessment of externally
validated cognition in Parkinson
disease screening
Christos T. Nakas,a*† John C. Dalrymple-Alford,b,c,d

Tim J. Andersonb,d,e and Todd A. Alonzof

Routine cognitive screening in Parkinson disease (PD) has become essential for management, to track progres-
sion and to assess clinical status in therapeutic trials. Patients with mild cognitive impairment (PD-MCI) are
more likely to progress to dementia and therefore need to be distinguished from patients with normal cognition
and those with dementia. A three-class Youden index has been recently proposed to select cut-off points in three-
class classification problems. In this article, we examine properties of a modification of the three-class Youden
index and propose a generalization to k-class classification problems. Geometric and theoretical properties of
the modified index Jk are examined. It is shown that Jk is equivalent to the sum of the k � 1 two-class Youden
indices for the adjacent classes of the ordered alternative problem given that the ordering holds. Methods are
applied in the assessment of the Montreal Cognitive Assessment test when screening cognition in PD. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. Introduction

New evidence of the frequency of cognitive impairment in Parkinson disease (PD) has made it a focus
of intense investigation and stressed the need for appropriate therapeutic strategies [1, 2]. Decline to
dementia (PD-D) and related nonmotor complications drive PD patients into institutional care and con-
tribute most to caregiver burden [3, 4]. The cumulative prevalence of PD-D is about 80%, but there
is wide individual variation in the duration between PD onset and dementia [5]. Routine cognitive
screening has therefore become essential for management, to track progression and to assess clinical
status in therapeutic trials. It is important to identify patients with mild cognitive impairment (PD-MCI)
because they are more likely to progress to dementia [5]. The Montreal Cognitive Assessment (MoCA)
has been recommended as a suitable brief screen for this purpose because it samples a broad range of
cognitive domains and has better sensitivity for PD-MCI, unlike the commonly used Mini-Mental State
Examination [6].
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The traditional approach to diagnostic classification, two-class ROC analysis, either combines the
PD-D and PD-MCI groups into one impaired group to compare these patients with those showing nor-
mal levels of cognition (PD-N) or compares the PD-D group with a combination of all non-dementia
patients (e.g., [7, 8]). Combining the PD-MCI group with either PD-D or PD-N patients is less than sat-
isfactory when one wants to target disease modifying therapy to minimize progression to dementia. Thus,
the simultaneous comparison of the three PD classes, that is, PD-N, PD-MCI, and PD-D, is ideal because
many patients during the early phases of cognitive impairment and even early dementia are not easily dis-
criminated on the basis of clinical judgment alone. ROC surfaces provide a new strategy to evaluate the
diagnostic accuracy in such ordered three-class classification problems as a direct generalization of the
two-class ROC curve [9]. [7] employed ROC surface methodology to assess the simultaneous discrimi-
nation of the three cognitive classes in PD on the basis of the order PD-N > PD-MCI > PD-D in terms
of scores expected on a cognitive screening measure. By using externally validated cognitive status, the
study by [7] provided clear evidence that the MoCA was significantly superior to the Mini-Mental State
Examination when making this simultaneous classification and was nonsignificantly superior to a longer
PD-focused test, the Scales for Outcomes in PD-Cognition [10]. While it is important to have a screen
that examines all three PD classifications (PD-N, PD-MCI, and PD-D), it is also of interest to know how
these groups and especially PD-N compare with healthy controls (i.e., the k-class problem when k D 4).

From a practical perspective, the selection of an optimal cut-off point is needed for diagnostic pur-
poses. Use of the Youden index has intuitive appeal because the optimal cut-off point is the one that
maximizes the sum of sensitivity and specificity. [7] employed the Youden index approach for pairwise
classification. A generalization of the Youden index has been recently proposed for the assessment of
accuracy and simultaneous cut-off point selection in three-class classification [11]. In this article, we
modify this index and study its properties. This modification results in a unification of the three-class
and the two-class approaches and in a natural generalization to k-class classification. We highlight the
equivalence of the simultaneous selection of cut-off points by using the three-class, or k-class, approach
with the cut-off point selection based on the two-class approach applied twice, or k � 1 times, for the
adjacent classes, given that the anticipated ordering holds.

In the next section, we describe the Youden index in the framework of two-class classification
problems. We provide a generalization in three-class classification problems along with the unifica-
tion of two-class and three-class approaches in the three-class setting. In Section 3, we extend methods
for the general k-class setting. In Section 4, we apply methods in the assessment of the MoCA test as
a tool to screen externally validated cognition in PD. We end with a discussion on the utility of the
methodological results.

2. Two-class and three-class ROC analysis

2.1. Two-class analysis

The goal in a two-class classification problem is to assess the ability of a test to accurately discrimi-
nate between two disease classes (1 and 2). Suppose that measurements from class 1, denoted by X1,
follow a distribution function F1 and measurements from class 2, denoted by X2, follow a distribu-
tion function F2. If the ordering X1 < X2 is of interest, using cut-off point c to decide for class 1
when a measurement is less than c and for class 2 otherwise, the ROC curve is constructed by plot-
ting the points .FCF12.c/; TCF2.c//; c 2 .�1;1/ in the unit square, where the false-class fraction is
FCF12.c/ D P ŒX1 > c� and the true-class fraction is TCF2.c/ D P ŒX2 > c�, in the strictly continuous
case. If class 1 corresponds to healthy subjects and class 2 corresponds to diseased subjects, then FCF12
is equal to 1-specificity (FPF) and TCF2 is equal to the sensitivity (TPF) of the test. We refer to false-
class and true-class fractions in the sequel instead of false positive/negative and true positive/negative to
generalize naturally to three-class and to k-class problems, where the notions of positive and negative
are not meaningful.

An equivalent construction of the ROC curve is produced by plotting .TCF1.c/; TCF2.c//; c 2
.�1;1/ in the unit square, where TCF1.c/ D P ŒX1 < c�. Given respective samples from the two
classes under study, the empirical estimate of the ROC curve is constructed on the basis of the empirical
estimates of TCF1.c/ or FCF12.c/, and TCF2.c/. The area under the ROC curve (AUC) is widely used
for the assessment of the diagnostic accuracy of the test under study, and it is equal to P ŒX1 <X2� ([12],
p.78). The empirical AUC is equivalent to the Wilcoxon–Mann–Whitney statistic. AUCD 0:5 when the
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two distributions completely overlap, and AUCD 1 when there is perfect discrimination with X1 always
less than X2.

Once the diagnostic accuracy of a test is established, the selection of an optimal cut-off point is
needed for practical discrimination. Use of the Youden index for optimal cut-off point selection has been
supported in a number of articles (e.g., [13]). The Youden index is defined as

J2 DmaxcfTCF1.c/C TCF2.c/� 1g DmaxcfF1.c/�F2.c/g: (1)

It can be estimated parametrically on the basis of distributional assumptions [13] or nonparametrically
by OJ2 D maxcfF1n1.c/ � F2n2.c/g, where F1n1 , F2n2 are the empirical distribution functions of F1,
F2 for sample sizes equal to n1 and n2, respectively. Specifically, F1n1.c/ D

1
n1

Pn1
iD1 I.X1 < c/, and

F2n2.c/ D
1
n2

Pn2
jD1 I.X2 < c/, where the indicator function I.�/ equals one if the expression is true

and equals zero otherwise. The relative importance of the TCF proportions for any given problem is
reflected in the choice of the optimal cut-off point by introducing weights, � and �, in the definition of
J2 as follows: JC2 D maxcf� � TCF1.c/C � � TCF2.c/ � 1g. Properties of the weighted Youden index
have been studied in [14]. By its definition, the Youden index is the maximum vertical distance from the
ROC curve to the main diagonal (TCF2 D 1� TCF1), and in practice, it is equivalent to the two-class
Kolmogorov–Smirnov statistic, OD D supc jF1n1.c/�F2n2.c/j.

2.2. Three-class analysis

ROC surfaces have been proposed for the evaluation of the diagnostic accuracy in ordered three-class
classification problems as a direct generalization of the ROC curve (see, e.g., [15, 16]). Generalizations
for the nominal three-class case have also been proposed [17, 18]. For the three-class case, suppose that
measurements from class 1, denoted by X1, follow a distribution with d.f. F1 (i.e., X1 � F1); similarly,
X2 � F2, and X3 � F3. A decision rule that classifies subjects in one of these classes can be defined
using two ordered threshold points c1 < c2 (in the strictly continuous case). Specifically, suppose that
the ordering of interest is X1 < X2 < X3. Decide for class 1 when a measurement is less than c1, for
class 2 when it is between c1 and c2, and for class 3 otherwise. This decision rule will result in three
TCFs and six FCFs. Then, TCF1 D P ŒX1 < c1�; TCF2 D P Œc1 < X2 < c2�, and TCF3 D P ŒX3 > c2�.
Also, FCF12 D P Œc1 < X1 < c2�, and the remaining five possible FCFij , i; j D 1; 2; 3 , i ¤ j , are
defined accordingly.

By varying c1, c2 in the union of the supports of F1, F2, and F3, all the TCFs can be plotted in three
dimensions to produce the ROC surface in the unit cube. The true-class fractions take values in Œ0; 1�
with corner coordinates f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g. Thus, the ROC surface is the three-dimensional
plot in the unit cube depicting .F1.c1/; F2.c2/�F2.c1/; 1�F3.c2//, for all cut-off points .c1; c2/, with
c1 < c2. The functional form of the ROC surface [9] is ROCs.TCF1;TCF3/ D F2.F �13 .1 � TCF3// �
F2.F

�1
1 .TCF1//. It can be seen that this is a generalization of the ROC curve in three dimensions because

projecting the ROC surface to the plane defined by TCF2 versus TCF1, that is, setting TCF3 D 0,
the ROC curve between classes 1 and 2 is produced, that is, ROC.TCF1/ D 1 � F2.F

�1
1 .TCF1//.

The latter is the equivalent construction of the ROC curve depicting .TCF1.c1/;TCF2.c1// instead of
.FCF12.c1/;TCF2.c1//. Similarly, the projection of the ROC surface to the plane defined by the axes
TCF2, TCF3, yields the ROC curve between classes 2 and 3, that is, ROC.TCF3/D F2.F �13 .1�TCF3//,
the latter being the functional form of TCF2 versus TCF3 analogous to specificity versus sensitivity rather
than the other way around.

The Volume Under the ROC Surface (VUS) is equal to P ŒX1 < X2 < X3�. An unbiased non-
parametric estimator of VUS is given by OVUS D 1

n1n2n3

Pn1
iD1

Pn2
jD1

Pn3
kD1

I.X1i ; X2j ; X3k/, where
I.X1; X2; X3/ equals one if X1; X2; X3 are in the correct order and zero otherwise [9]. The definition of
I.X1; X2; X3/ can be adapted to adjust for the presence of ties. Parametric approaches for the estimation
of VUS have been discussed in [19]. VUS takes the value 1

3Š
D 1

6
when the three distributions completely

overlap and the value one when the three classes are perfectly discriminated in the correct order.
A three-class Youden index has been recently proposed for the assessment of accuracy and cut-off

point selection in the three-class setting [11]. Given that X1 < X2 < X3, a modification of this index is
defined here as follows:

J3I.1;2;3/ Dmaxc1;c2Ic1<c2 fTCF1C TCF2C TCF3 � 1g

Dmaxc1;c2Ic1<c2 fF1.c1/CF2.c2/�F2.c1/�F3.c2/g : (2)
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This is a constrained optimization problem with c1 < c2. J3 can be estimated nonparametrically by using
the empirical distribution functions in the definition earlier, that is, OJ3 D maxc1;c2Ic1<c2fF1n1.c1/ C
F2n2.c2/ � F2n2.c1/ � F3n3.c2/g, or parametrically on the basis of distributional assumptions for the
data as in [11]. The pair of cut-off points c1; c2 that corresponds to J3 is considered optimal and can be
used in practice for screening purposes. As in the two-class setting, weights can be added to the defini-
tion of J3 to reflect the relative importance of the three TCFs. Then, JC3 D maxc1;c2Ic1<c2f� � TCF1 C
� �TCF2C� �TCF3�1g. Weights �, �, and � will reflect prior probabilities of class assignments and/or
classification costs. Variance estimates for J3 and CIs can be constructed using resampling techniques,
such as the bootstrap or permutation methods as described in [11] because in the three-class case, J3 is
a linear transformation of the index proposed in [11].

2.3. Unification of two-class and three-class analysis approaches in a three-class setting

The modified index lends itself to a natural unification of the two-class and three-class analysis
approaches. Denote by J3I.1;2;3/ the J3 index corresponding to the ordering X1 < X2 < X3 and by
J2I.i;j / the J2 index corresponding to the ordering Xi < Xj , i; j D 1; 2; 3. Then, by the definitions of
J2 and J3 earlier, it follows that

J3I.1;2;3/ Dmaxc1;c2Ic1<c2fF1.c1/�F2.c1/CF2.c2/�F3.c2/g
Œc1<c2�

Dmaxc1fF1.c1/�F2.c1/g Cmaxc2fF2.c2/�F3.c2/g

D J2I.1;2/C J2I.2;3/:

Thus, J3 is the sum of the Youden index for the two-class analysis of classes 1 and 2 and the Youden
index for the two-class analysis of classes 2 and 3, when c1 < c2. This result holds if weights are intro-
duced because � can be set to one and �� D �

�
, �� D �

�
can be used instead of �, � in the definition of

JC3 . Then, JC
3I.1;2;3/

D maxc1;c2Ic1<c2 f�
� � TCF1C�� � TCF2C TCF3 � 1g D J

C
2I.1;2/

C JC
2I.2;3/

. This
result holds whenever the ordering X1 < X2 < X3 is true and c1 < c2. Counterexamples can easily
be constructed.

Another useful result from the definition of J3 in Section 2.2 is that J3 is the maximum vertical
distance from the ROC surface to the plane defined by the equation TCF1 C TCF2 C TCF3 D 1.
Figure 1 illustrates this fact. It appears that J3 generalizes the Kolmogorov–Smirnov statistic in three-
class discrimination problems. J3 is defined in Œ0; 2�, being zero in the uninformative case when
F1 D F2 D F3 and two when there is no overlap in the three distributions and the ROC surface
passes through the point .1; 1; 1/ of the unit cube. In the latter case, the maximum vertical distance
to the plane TCF1 C TCF2 C TCF3 D 1 equals 2. As a consequence, the cut-off points derived
using the three-class approach are the same as those derived by using the two-class approach twice
for adjacent classes (1 vs 2) and (2 vs 3), given that c1 < c2 for the separate analyses of the
adjacent classes.

3. The k-class classification problem

Generalizing in k-class classification, suppose that X1 � F1; : : : ; Xk � Fk and that the ordering of
interest is X1 < � � � < Xk . A k-dimensional ROC manifold can be defined, but cannot be visualized,
using k � 1 ordered cut-off points c1 < � � � < ck�1 and a decision rule analogous to the three-
class case. By varying the k � 1 cut-off points in the union of the supports of F1; : : : ; Fk , points
.TCF1.c1; : : : ; ck�1/; : : : ;TCFk.c1; : : : ; ck�1// are defined that produce the manifold. The hypervol-
ume under the k-dimensional ROC manifold (HUM) is equal to P ŒX1 < � � � < Xk�, and it varies from
1
kŠ

, when F1 D � � � D Fk , to 1 when the class distributions are perfectly discriminated in the anticipated
ordering [9].
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Figure 1. Panel (a) illustrates J2, which is the maximum vertical distance from the ROC curve to the line
TCF1 C TCF2 D 1. Panels (b), (c), and (d) illustrate J3 from different viewpoints. J3 is the maximum verti-
cal distance from the ROC surface to the plane TCF1 C TCF2 C TCF3 D 1. A cube of dimensions 1 � 1 � 2
divided in two by the plane ´D 0 is shown. The upper half includes the ROC surface. The lower half is shown to

fully illustrate J3.

Given that the ordering of interest is X1 < � � � < Xk , we introduce the k-class Youden index
as follows:

JkI.1;2;:::;k�1/ Dmaxc1;:::;ck�1Ic1<���<ck�1fTCF1C � � � C TCFk � 1g

Dmaxc1;:::;ck�1Ic1<���<ck�1 fF1.c1/�F2.c1/CF2.c2/�F3.c2/

CF3.c3/�F4.c3/C � � � CFk�1.ck�1/�Fk.ck�1/g

Œc1<���<ck�1� Dmaxc1fF1.c1/�F2.c1/g Cmaxc2fF2.c2/�F3.c2/g

C � � � Cmaxck�1fFk�1.ck�1/�Fk.ck�1/g

D J2I.1;2/C J2I.2;3/C � � � C J2I.k�1;k/:

Thus,

JkI.1;2;:::;k�1/ D

k�1X

iD1

J2I.i;iC1/ D Jk�1I.1;2;:::;k�2/C J2I.k�1;k/: (3)

That is, Jk is the sum of the Youden indices for the adjacent classes, when c1 < � � � < ck�1. It is
also the maximum vertical distance from the k-dimensional ROC manifold to the hyperplane defined
by TCF1 C � � � C TCFk D 1. Jk varies from zero when F1 D � � � D Fk because all pairwise Youden
indices are zero in that case to k�1when the class distributions are perfectly discriminated in the correct
order because all pairwise Youden indices will then be equal to one. As in the three-class case, Jk can be
estimated nonparametrically by using the empirical distribution functions or parametrically on the basis
of distributional assumptions for the data.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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The bootstrap or permutation methods are an easy approach, however computationally intensive,
to calculate the variance of Jk or construct CIs. Weights can be introduced in the definition of Jk to
reflect the relative importance of the different true-class fractions. Although not described in detail here,
weightings are a crucial consideration when classes have very different prevalences.

4. Parkinson disease screening

Our consecutive convenience sample of volunteers at the central Movement disorders clinic for a region
of 400,000 people (Christchurch, NZ) comprised of 24 PD-D patients, 36 PD-MCI patients, and 80 PD-N
patients. The MoCA scores of a control group of 50 age-matched healthy volunteers were also available.
A subset of these data has been examined in [7]. External validation of cognitive status was made using
20 measures across four domains (executive function, attention and working memory, learning and mem-
ory, and visuoperception) and assessment of everyday cognitive function [2,20]. Descriptive statistics for
the MoCA scores of the four classes are given in Table I. Figure 2 shows boxplots of the MoCA scores
for each class. Nonparametric estimates of all quantities of interest were based on the corresponding
empirical distribution functions [9, 11, 18]. Standard percentile bootstrap methodology was used for the
construction of 95% CIs by using b D 1000 replicates, following the suggestions in [21]. The percentile
bootstrap uses the percentiles of the bootstrap distribution of an estimate for the construction of CIs
(see, e.g., [22], p.202). As the first step, diagnostic accuracy for the discrimination of the four classes
using the MoCA was assessed via four class ROC methodology [9]. A nonparametric approach was
adopted for the application. The hypervolume under the ROC manifold was estimated to be equal to
0:299 (95% CI: 0:220, 0:389) showing significant discrimination of the four classes under study com-
pared with the uninformative case where HUM D 1

24
. The respective J4 index was also calculated

(J4 D 1:204; 95% CI: 1:106, 1:477). However, the healthy controls and the PD-N patients were virtu-
ally indistinguishable (AUCD 0:535; 95% CI: 0:438,0:631, whereas J2I.PD-N, Controls/ D 0:093; 95% CI:
0:025, 0:273). Illustration of the k-class classification problem was therefore restricted to the three PD
groups, which is the primary question in a clinical setting.

ROC surface methodology was applied to the discrimination between PD-D, PD-MCI, PD-N groups
by using the MoCA. Figure 3 depicts the ROC curves that are used to assess the discrimination of
adjacent classes and the ROC surface corresponding to the PD-D < PD-MCI < PD-N ordering.

Panels (c) and (d) of Figure 3 provide the ROC surface illustrating the ability of MoCA to accurately
discriminate the three groups of PD patients in the ordering PD-D < PD-MCI < PD-N. The correspond-
ing VUS is 0:717 (95% CI: 0:625, 0:807). By using Equation 2, J3 D 1:111 (95% CI: 0:993, 1:367),
with screening cut-off points c1 D 21 (95% CI: 17, 23) and c2 D 25 (95% CI: 24, 25). That is, patients
whose MoCA score is less than or equal to 21 will be considered as PD-D, whereas patients with scores
greater than 21 but less than or equal to 25 will be considered as PD-MCI, and the remaining will be
classified as PD-N. These choices result in TCFPD-D D 0:833, TCFPD-MCI D 0:528, TCFPD-N D 0:750.
Estimated cut-off points do not differ from those proposed by [7], where the Youden index of pairwise
analyses was used for a subset of the current dataset.

Two-class methodology, that is, pairwise analyses, produced equivalent results: for classes PD-D
and PD-MCI, denote by TCF0 the resulting true-class fractions. From Equation 1, we estimate
J2I.PD-D, PD-MCI/ D 0:583 (95% CI: 0:486,0:792), c1 D 21 (95% CI: 17, 23), AUC D 0:900 (95% CI:
0:827,0:959), resulting in TCF0PD-D D 0:833, TCF 0PD-MCI D 0:750. The corresponding ROC curve is
shown in Panel (a) of Figure 3. Similarly for classes PD-MCI and PD-N, denote by TCF� the resulting
true-class fractions. Then, J2I.PD-MCI, PD-N/ D 0:528 (95% CI: 0:379,0:694), c2 D 25 (95% CI: 24,

Table I. Descriptive statistics for the MoCA scores of the PD-D,
PD-MCI, and PD-N classes.

PD-D PD-MCI PD-N Controls

Mean 17.33 23.58 26.79 27.08
SD 4.20 2.80 2.07 1.98
Median 18 24 27 27
Min 10 18 22 23
Max 23 29 30 30
N 24 36 80 50

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Figure 2. Boxplots of MoCA scores for the four classes.
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Figure 3. (a) ROC curve for PD-D, PD-MCI discrimination. (b) ROC curve for PD-MCI, PD-N discrimination.
(c) and (d) Two viewpoints of the ROC surface depicting the 1: PD-D < 2: PD-MCI < 3: PD-N ordering for the

MoCA test. J2 is shown as the vertical lines on Panels (a) and (b); J3 is shown across Panels (c) and (d).

25), AUC D 0:817 (95% CI: 0:723,0:898), resulting in TCF�PD-MCI D 0:778, TCF�PD-D D 0:750. The
corresponding ROC curve is shown in Panel (b) of Figure 3.

An important contribution of this analysis is, comparing two-class and three-class problems, to
verify that

J3 D J2I.PD-D, PD-MCI/C J2I.PD-MCI, PD-N/ D 0:583C 0:528D 1:111;

and the same cut-off points are produced. Also, TCFPD-D D TCF0PD-D, TCFPD-N D TCF�PD-N, and
TCFPD-MCI D 1� .1� TCF0PD-MCI/� .1� TCF�PD-MCI/. In addition, J3 D J4 � J2I.PD-N, Controls/.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Interestingly, by discarding the PD-N group and analyzing the data for the ordering PD-D < PD-MCI
< Controls, equivalent results are produced with c1 D 21 and c2 D 25, whereas TCFPD-D D 0:833,
TCFPD-MCI D 0:528, TCFControls D 0:760, and VUS D 0:741, J3 D 1:121. Also, c3 in the four-class
analysis is the same as the optimal cut-off point based on J2I.PD-N, Controls/, that is, c3 D 29.

We conclude that all three classes are significantly discriminated, and estimated screening cut-
off points can be used when routinely assessing cognitive performance by using the MoCA. Timely
intervention for the PD-MCI group could result in an optimal management of PD complications.

5. Discussion

Our work extends the Youden index to k-class classification problems. The index Jk has intuitive the-
oretical and geometric properties and can be used in practice for the assessment of screening tests in
k-class problems and for the detection of optimal cut-off points in such problems when a monotone
ordering exists between the classes under study. Our new analysis has shown that in the common k-class
classification problem with monotone ordering, one can arrive at the same results as with the k-class
approach by following two-class methodology for the adjacent classes. In this context, however, the
k-sample approach directly addresses the problem of k-class classification to show explicitly the value
of a given measure in discriminating k-groups simultaneously. The two-class approach is therefore rec-
ommended as a standard post hoc approach to target discrimination between specific adjacent classes. A
rather restrictive limitation of this approach, which was underlined earlier, is that the k�1 cut-off points
for the adjacent classes need to be ordered, that is, c1 < c2 < � � � < ck�1. Pairwise analyses may well
result in cut-off points that violate this assumption. In that case, pooling adjacent classes is an option.
This strategy is used often in practice for constrained statistical inference applications [23].

In practice, Jk also constitutes a generalization of the Kolmogorov–Smirnov statistic in k-class dis-
crimination problems. Such extensions have been studied in the literature (e.g., [11, 24–26]) but lack
the intuitive generalization and geometric properties of Jk . In this work, we have studied properties of
the theoretical index and have used empirical estimates for the application. Various estimation methods
can be used for Jk such as empirical, other nonparametric methods such as kernel estimation, or para-
metric approaches based on distributional assumptions. Assessing accuracy and precision of different
estimation approaches for Jk is an issue of future research. However, the simulation results for bias and
mean squared error (MSE) in [11] are relevant to the three-class setting. Formal comparison with
alternative decision rules for multiple-class classification, for example, based on likelihood ratios, also
warrants further research. Bayesian decision methods are primarily based on a minimum misclassifica-
tion error approach using the expected utility index. Such approaches are presented in Chapter 2 of [27].
The weighted Youden index is in fact a degenerate case of the expected utility index.

A simultaneous k-class classification approach has shown the value of the MoCA as a screen for dif-
ferent stages of cognition status in PD and comparison with a fourth group, such as healthy controls.
The combination of an intermediate group, such as PD-MCI, within either a non-dementia group or a
cognitively impaired group that includes dementia fails to specify the direct usefulness of a single mea-
sure to discriminate three classes simultaneously. The current work has shown that under the ordering
restriction, one can determine the relevant k � 1 Youden index cut-offs required for any given ordered
k-class classification by subsequently examining the ordered pairwise two-class cut-off points. Such an
approach is thus helpful also for the broader context of many disease states when the identification of
more than two classes is of practical interest. From the clinical perspective, it is therefore pertinent to
know that pairwise two-class comparisons when there are three (or k) relevant ordered comparisons is an
appropriate strategy. For example, specific neurobehavioural tests or biomarkers could be used to address
k D 3 degrees of impairment within a dementia condition (mild, moderate, or severe), including PD-D or
other dementias such as Alzheimer’s disease or dementia with Lewy Bodies. Similarly, the identification
and characterization of multiple states, such as comparison between healthy nonrisk participants, those
at risk with prodromal markers or showing different MCI states, and those with existing dementia, are
now a more tractable problem.
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