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a b s t r a c t

This study compared the ability of binary logistic regression (BLR) and non-linear causal resource analysis
(NCRA) to utilize a range of cognitive, sensory–motor, personality and demographic measures to predict
driving ability in a sample of cognitively healthy older drivers.

Participants were sixty drivers aged 70 and above (mean = 76.7 years, 50% men) with no diagnosed
neurological disorder. Test data was used to build classification models for a Pass or Fail score on an
on-road driving assessment. The generalizability of the models was estimated using leave-one-out cross-
validation.

Sixteen participants (27%) received an on-road Fail score. Area under the ROC curve values were .76
for BLR and .88 for NCRA (no significant difference, z = 1.488, p = .137). The ROC curve was used to select
three different cut-points for each model and to compare classification. At the cut-point corresponding

to the maximum average of sensitivity and specificity, the BLR model had a sensitivity of 68.8% and
specificity of 75.0% while NCRA had a sensitivity of 75.0% and specificity of 95.5%. However, leave-one-out
cross-validation reduced sensitivity in both models and particularly reduced specificity for NCRA.

Neither model is accurate enough to be relied on solely for determination of driving ability. The lowered
accuracy of the models following leave-one-out cross-validation highlights the importance of investigat-
ing models beyond classification alone in order to determine a model’s ability to generalize to new cases.
. Introduction

Drivers aged 70 and above have higher injury and death rates
ompared to middle-aged drivers when measured by distance
ravelled, per trip, or per number of licensed drivers (Langford
nd Koppel, 2006; Organisation for Economic Co-operation and

evelopment, 2001; Tefft, 2008). Factors linked to unsafe driving

n older adults include cerebrovascular disease, visual attention
eficits, and cognitive deficits associated with dementia (Ball and
wsley, 1991, 1993; Cooper et al., 1993; Dobbs et al., 1998;
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Johansson et al., 1996; McGwin et al., 2000; McKnight and
McKnight, 1999; Meuleners et al., 2006). Given that 25% of the pop-
ulation of OECD countries will be aged 65 years and over by 2050
(Organisation for Economic Co-operation and Development, 2001),
the detection of at-risk older drivers is an increasingly important
public health concern.

There are no universally accepted requirements for older adult
driver licensing, with countries and states varying widely in test-
ing and licence renewal procedures. Until recently, New Zealand
drivers aged 80 and biennially thereafter completed compulsory
on-road testing in order to maintain their driver’s licence, with the

opportunity to re-sit the assessment following a failing grade. This
compulsory on-road testing was abolished in 2006 due to claims
that the policy was ageist. New Zealand drivers are now required
to procure a ‘medical fitness to drive’ certificate from their doctor at
ages 75, 80, and biennially thereafter. Variations in assessing older

http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:petra.hoggarth@vanderveer.org.nz
dx.doi.org/10.1016/j.aap.2010.04.017
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rivers’ competence prompted the current study, which examined
hether formal off-road measures were an efficient way to iden-

ify at-risk older drivers. During the previous system of compulsory
n-road testing, a study following 39,318 drivers found that the
isk of involvement in a crash in the following two years rose 33%
or each time the test had to be sat in order to receive a passing
rade (Keall and Frith, 2004). An Australian study found drivers
ho self-reported a crash over the previous five-year period made

ignificantly more errors in road observation, blind spot checks,
raking and accelerating, and approaching hazards during an on-
oad driving assessment compared to drivers who reported no
rashes (Wood et al., 2009). On-road driving assessments may,
herefore, provide valid estimations of older people’s driving safety
n real-world situations.

Measures of cognitive, sensory–motor and personality domains,
s well as demographic data have previously shown utility in
lassifying and predicting driving outcomes in older adults. Neu-
opsychological tests associated with on-road driving assessment
utcome in primarily healthy older drivers include lower scores
n the Useful Field of View (UFOV) (De Raedt and Ponjaert-
ristoffersen, 2000; Stav et al., 2008), selective attention (De Raedt
nd Ponjaert-Kristoffersen, 2000; Risser et al., 2008), and mea-
ures of cognitive flexibility (De Raedt and Ponjaert-Kristoffersen,
000). Similarly, on-road crashes are associated with lower cog-
itive flexibility in a 12-month retrospective self-report study (De
aedt and Ponjaert-Kristoffersen, 2000) and lower global cognitive
tatus in five- and six-year retrospective studies of police-reported
rashes (Owsley et al., 1991; Sims et al., 1998). Lower scores on the
FOV were related to the incidence of six-year retrospective police-

ecorded at-fault crashes (Sims et al., 1998), three-year prospective
fficially recorded crashes (Owsley et al., 1998), and the frequency
f five-year retrospective officially recorded crashes (Owsley et al.,
991). Sensory and motor classifiers of on-road assessment per-
ormance include movement perception and response (De Raedt
nd Ponjaert-Kristoffersen, 2000; Sommer et al., 2008; Wood et
l., 2008), reaction time (Risser et al., 2008; Sommer et al., 2008),
apid pace walking (Stav et al., 2008), and postural sway (Wood et
l., 2008).

The relationship between personality traits and driving has
een investigated primarily in young adult samples. A non-linear
eural network classification model utilized emotional stability,
ccepted level of risk, and social responsibility as classifiers of on-
oad driving assessment outcome in a sample with a mean age of
9 years (Sommer et al., 2008). In college students, higher scores
n the 14-item Driving Anger Scale (Deffenbacher et al., 1994)
ave been associated with increased self-reported risky driving
ehaviour (Dahlen and White, 2006; Deffenbacher et al., 2003,
002; Schwebel et al., 2006), and low scores on the personality con-
truct of conscientiousness, and high scores on sensation-seeking
ave been associated with higher rates of both self-reported and
imulated risky driving behaviour (Schwebel et al., 2006). The only
tudy that examined drivers aged 75 and over found that higher
cores on sensation-seeking were related to self-reports of higher
umbers of driving violations and tickets (Schwebel et al., 2007).
he effects of personality traits on driving behaviour may prove
specially relevant to drivers without significant cognitive and
ensory–motor impairment.

Driving simulators have also been used to measure on-road driv-
ng outcomes. Scores on the STISIM DriveTM driving simulator have
een shown to account for 65.7% of the variance in an on-road
ssessment in a sample with a mean age of 73 years (Lee et al.,

003a). Additionally, simulator performance classified a group of
lder drivers into 12-month retrospective self-reported crash inci-
ence groups with a sensitivity of 91.4% and specificity of 82.3% (Lee
t al., 2003b). However, despite continued improvements, up to 10%
f older drivers experience simulator sickness to the extent that
d Prevention 42 (2010) 1759–1768

they cannot complete the assessment (Lee et al., 2003a; Schwebel
et al., 2007), which limits the application of simulators in the older
population.

Throughout this paper, ‘classification’ is used to describe the
method of using a single sample to both train and test a model of
performance. ‘Prediction’ is used to describe the method of testing
a model on an independent sample or the use of statistical proce-
dures such as boot strapping or leave-one-out cross-validation.

The current study utilized a range of off-road measures across
the sensory–motor, cognitive, and personality domains to construct
and test classification models of on-road driving assessment scores
in a sample of older drivers with no overt neurological impair-
ment. Additionally an off-road computerized assessment battery
that includes sensory–motor and cognitive tests (SMCTestsTM) was
used. This test battery has been found useful for prediction of driv-
ing ability in people with brain disorders, primarily stroke (Innes
et al., 2009a, 2007). The study also compares the classification and
prediction accuracy of non-linear causal resource analysis (NCRA)
and binary logistic regression (BLR). BLR is the common method
employed to assess predictors of Pass/Fail driving performance, and
uses measures of central tendency to find a limited number of key
tests to classify group members. NCRA uses absolute values of test
scores to find the most useful test for classifying each individual.
Non-linear techniques have shown promise in classification and
prediction of driving performance (Fischer et al., 2002; Innes et al.,
2007; Risser et al., 2008; Sommer et al., 2008). The differing focus
of the two modelling techniques is expected to lead to two very
different models for predicting on-road driving performance, with
the relative utility of each model compared and discussed.

2. Methods

2.1. Participants

A convenience sample of current older drivers was recruited
from churches, recreational groups, word of mouth, and advertise-
ments placed in two free local health magazines in Christchurch
(population 369,000). Sixty participants (50% male) aged 70–84
years (mean = 76.7) were recruited, with 10 men and women in
each of three age ranges (70–74, 75–79, and 80+ years); 93% identi-
fied their ethnicity as New Zealand European. The sample reported
an average of 55.1 years driving experience (range 31–69 years),
with males reporting more years of driving (58.8 versus 51.5 years,
two-tailed Mann–Whitney U test, z = −3.82, p < .001). Men also
reported driving more km per year (males median = 8693 versus
5894, two-tailed Mann–Whitney U test, z = −2.81, p = .005). Exclu-
sion criteria included a history of moderate to severe brain injury,
diagnosed neurological or cognitive disorder, severe musculoskele-
tal disease, and acute psychiatric disorder. No participant scored
below 27 on the MMSE (mean = 28.8), suggesting none had signifi-
cant cognitive impairment. Participants were free to continue driv-
ing irrespective of the outcome of their assessment and received
NZ$ 50 compensation for participation. All undertook a 3-h off-
road testing session that included a computerized sensory–motor
and cognitive test battery, personality measures and standard-
ized cognitive tests. On-road driving assessment was performed
approximately 14 days (range 2–41 days) later. The study was
approved by the Upper South A Regional Ethics Committee, Can-
terbury, New Zealand, and all participants gave informed consent.

2.2. Off-road assessment
2.2.1. Sensory–motor and cognitive tests (SMCTestsTM)
A subset from the SMCTests battery was used, measur-

ing reaction time, ballistic movement, visuomotor tracking,
visual search, complex attention, divided attention, and plan-
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ig. 1. Four screen shots of SMCTests tests as they appeared to participants. (a) Divi
b) Visual Search; (c) Complex Attention; and (d) Planning.

ing (Innes et al., 2009b). Test stimuli were presented on
computer monitor and responses recorded using a sys-

em that included a steering wheel, direction indicators,
nd foot pedals. Detailed specifications of the SMCTests
attery are available from the User Manual (Christchurch
eurotechnology Research Programme, 2006), available online:
ww.neurotech.org.nz/files/CanDAT SMCTests User Manual.pdf.

.2.1.1. Sensory–motor function tests. The Footbrake and Clutch test
ecords reaction and movement times for releasing the accelerator
edal and depressing brake and clutch pedals in response to green
nd red-light stimuli. Ballistic Movement records reaction time,
ovement time and peak velocity when rapidly moving the steer-

ng wheel following a visually presented cue. Sine Tracking and
andom Tracking measure visuomotor coordination by recording
he mean absolute error in mm of the tip of a vertically pointing
rrow relative to a target when participants track 2D sinusoidal
nd random targets (with 8-s previews), respectively, using the
teering wheel (Fig. 1a shows the central line and vertical arrow
timuli used for Random Tracking) (Jones, 2006). Sine Tracking and
andom Tracking are performed twice each and alternated with
ne another: Sine Tracking trial 1, Random Tracking trial 1, Sine
racking trial 2, Random Tracking trial 2.

.2.1.2. Higher cognitive function tests. The Arrows Perception test
equires participants to verbally respond whether four simultane-
usly presented horizontal arrows presented on screen are pointing
n the same or different directions (Fig. 1a; four arrows on periphery
f the screen) with reaction time and number of correct responses

ecorded. Arrows Perception gathers information on visual search
peed and decision-making ability. Divided Attention consists of
oncurrent testing of the Arrows Perception and Random Tracking
ests with participants asked to verbally respond regarding arrow
irections and follow the random line target using the steering
tention, which incorporates both the Arrows Perception and Random Tracking tests;

wheel (Fig. 1a). Divided Attention measures how well participants
are able to concentrate on two competing activities using two sep-
arate response types (physical tracking of the target line using a
steering wheel, and verbal responses regarding the direction the
arrows are pointing). Visual Search requires participants to detect
a left- or right-turning arrow target from an array of 70 road sign
stimuli and to rotate the steering wheel in the direction the arrow
is pointing (Fig. 1b), with mean response time and the number of
correct responses recorded. Visual Search is sensitive to visual scan-
ning speed and also to decision-making in regard to which way the
steering wheel is turned. Complex Attention requires participants
to move an arrow out of a box and across the screen using the steer-
ing wheel as quickly as possible following changing green-light
stimuli (Fig. 1c). Recorded measures are reaction and movement
times, and lapses (when the arrow was not moved out of the box fol-
lowing the stimulus change) and invalid trials (when the arrow was
not within the box when the stimulus changed). Complex Atten-
tion requires that participants focus on relevant cues, discount
irrelevant cues, and is sensitive to lapses in attention which are
detected in the invalid and lapse response errors. Planning involves
the presentation of a driving scene in plan view with participants
instructed to ‘drive’ the car along a road using the steering wheel,
accelerator and brake pedals (Fig. 1d). Obstacles to be negotiated
include curves in the road, paint hazards, and intersections. Mea-
sures include number of paint hazards hit, number of collisions with
other cars, safety margins between cars while crossing intersec-
tions, and number and duration of road position errors (including
driving off the road). Planning can best be thought of as a complex
task which requires the use of three types of apparatus (steering

wheel, indicator stalk, and accelerator and brake pedals) to follow
a series of rules in a unique environment (e.g., stopping at intersec-
tions, indicating appropriately while overtaking obstacles on the
road, all while avoiding collisions with other vehicles). This test is
not intended to be a simulation of actual driving.

http://www.neurotech.org.nz/files/CanDAT_SMCTests_User_Manual.pdf
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.2.2. Demographic measures and road knowledge
Participants provided information regarding years of education

nd driving, and completed a modified version of the Road Sign test
Land Transport Safety Authority, 2002) which requires the partic-
pant to identify six different road signs and state the appropriate
ction a driver should take for each.

.2.3. Standardized psychometric and personality tests
Neuropsychiatric status was assessed with the 30-item Geri-

tric Depression Scale (GDS) (Aging Clinical Research Center, n.d.)
nd the Beck Anxiety Inventory (Beck, 1990). The 14-item Driv-
ng Anger Scale was used to measure propensity to become angry
n driving situations (Deffenbacher et al., 1994) and was adminis-
ered twice—once by each participant prior to the first assessment,
nd the second time at the first assessment appointment in the
resence of the examiner. We could not find a sensation-seeking
cale with questions we considered appropriate for older people.
nstead we used the 44-item Big Five Inventory, which has not been
reviously used in samples of older adults in relation to driving. In
his case, the inclusion of the Big Five Inventory was exploratory
n nature. The inventory measures five personality dimensions:
xtraversion, agreeableness, conscientiousness, neuroticism, and
penness to experience (John and Srivastava, 1999).

.2.4. Standardized cognitive tests
The Wechsler Test of Adult Reading (WTAR) (Wechsler, 2001)

as used to estimate IQ. A standardized version of the Mini-Mental
tate Examination (MMSE) (Molloy and Standish, 1997) and the
ementia Rating Scale-2 (DRS-2) (Mattis et al., 2001) established
lobal cognitive status. Trail Making Tests A and B (TMT A and
MT B) (Brainmetric, n.d.) were used to assess visual scanning and
ental flexibility.

.2.5. Driving frequency
Participants kept a log of odometer readings before and after

ach driving trip for a one-week period prior to the off-road test-
ng session. Details of longer driving excursions over the previous
2 months were elicited at the first assessment appointment and
ilometres travelled calculated using tables of travel distances and
oogle Maps (http://maps.google.co.nz/). These were combined
ith extrapolated driving log records to form an estimate of driving

xposure over the previous 12 months.

.3. On-road driving assessment

On-road assessments were conducted by an experienced driv-
ng occupational therapist and a driving instructor both from
he Driving and Vehicle Assessment Service at Burwood Hospital,
hristchurch. On-road assessors were blind to the results of all off-
oad testing. Participants were able to use their own cars (automatic
r manual) for the driving assessment, as older drivers are more
ikely to Pass an on-road driving assessment if they use their own
ar (Lundberg and Hakamies-Blomqvist, 2003). The driving instruc-
or sat in the passenger seat, provided directions, and maintained
afety of the vehicle while the occupational therapist sat in the
ear and observed driving performance. All participants travelled
he same 45-min public road route with an equal number of left
nd right turns. Road conditions included single-lane roundabouts,
ual-lane roundabouts, dual-lane roads, controlled intersections
yield and stop signs, and traffic light controlled), uncontrolled
ntersections, and changes in speed zone (i.e., 50 km/h, 60 km/h,

nd 80 km/h sections). Driving ability was rated as a consensus
ass or Fail score. A driving scale score was then assigned by the
ccupational therapist using an 11-item ordinal driving scale where
cores of 0–5 could be given to those in the Fail range and scores
–10 given to those in the Pass range (Innes et al., 2007). This scale
d Prevention 42 (2010) 1759–1768

was designed to give a continuous measure of how well a person
performed in the on-road assessment. Driving scale scores were
assigned by the number of observed driving errors, whether these
were considered major or minor, and whether the participant was
able to correct errors once they were pointed out.

2.4. Data analysis

2.4.1. Binary logistic regression
Binary logistic regression is a non-parametric statistic used

when the dependent variable is dichotomous—in this case Pass or
Fail on the on-road assessment. BLR takes a number of entered vari-
ables and builds a parsimonious equation that explains how the
variables relate to the dependent dichotomous outcome. Variables
that explain a significant amount of the variance in the dependent
variable are weighted along with the other entered variables to
form an equation of best fit. In essence, the model decides whether
a variable is useful for describing the dependent variable and, in
stepwise and elimination procedures, the model expels variables
that do not explain a significant amount of variance in the depen-
dent measure. As regression models can become overly fitted to
the sample data, to minimize over-fitting we only offered variables
to the model that were related to the on-road driving assessment
Pass or Fail group outcome. Variables had to fulfill at least one of
the following criteria: (1) a significant (p ≤ .05) difference in scores
between Pass and Fail groups as evidenced by Mann–Whitney U
tests for non-normally distributed data and t-tests for normally
distributed data, (2) a significant Spearman correlation between
a test measure and scores on the 0–10 Driving Scale score, or (3) a
receiver operating characteristic (ROC) for predicting Pass and Fail
scores with an area under the curve (AUC) of .60 or higher. If two
selected variables correlated at 0.8 or higher, we would only offer
the variable most highly related to the dependent variable to the
model.

2.4.2. Non-linear causal resource analysis
Non-linear causal resource analysis is an approach based on the

resource economic performance modelling constructs of general
systems performance theory and the elemental resource model
which state that a suboptimal amount of a necessary resource
applied to a task will result in substandard performance regard-
less of the utilization of other relevant resources (Kondraske, 2006).
Using NCRA, the minimum resource required to achieve a certain
level of performance on a high-level task (the dependent variable)
is plotted for each variable as a resource demand function (see Fig. 2
as an example). Each participant’s final predicted score is assigned
based on his or her single poorest test score compared to others in
the sample; there is no weighting of test scores. Unlike regression
models which produce an equation for assigning the dependent
measure score, the output of NCRA consists of a resource demand
function for each entered variable. In addition, the NCRA software
program provides a predicted dependent score for each participant
and identifies the measure which has limited the person’s predicted
score. The NCRA model predicts a score on a continuous measure.
For example, an outcome measure may have a possible range of
0–10 and may be further broken down into two groups, e.g., 0–5
equals a Fail score and 6–10 equals a Pass score. The NCRA model
assigns the 0–10 score but has no knowledge of what constitutes a
Pass or a Fail. In the context of driving assessment, the essence of
NCRA analysis can be summarized by: If no-one in the training data

with a foot reaction time of 800 ms had a score above 4 on the driv-
ing scale, a new person with a foot reaction time of 800 ms would
also be predicted to have a driving score of no higher than ‘4’ based
upon that single measure, irrespective of whether they performed
better on other tests.

http://maps.google.co.nz/
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Fig. 2. An actual example of the variable ‘age’ which would not be useful in an NCRA
analysis. The oldest person in the classification sample (aged 84) receives a score in
the failing range (Driving Scale Score of between 0 and 5). When used as a predictive
model with a new sample, all those aged 84 and older will be predicted to Fail and
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economic status. Random Tracking errors on trials 1 and 2 were
ll those 83 and younger will be predicted to Pass on the variable of age. As age is a
tatic variable and not an actual measure of performance, confining all people above
certain age to a Fail score does not make sense.

There are several limitations regarding the types of data suitable
or entry to an NCRA model. Because a person’s performance is lim-
ted by a single score, it is vital that each measure is clearly related
o the dependent variable in a known direction. This is not an issue
or most performance measures in a driving research scenario. For
xample, if we believe that faster reaction times are better than
lower reaction times, then a person with faster reaction times will
lways be predicted to have a higher driving score (at least for that
ne variable) than a person with slower reaction times. Any vari-
ble that does not explicitly fulfill this criterion cannot be entered
nto the model. For example, a personality scale with an outcome of
nterest at each end of the scale (e.g., extraversion at one end and
ntroversion at the other) would be difficult to use as there is no
nequivocal reason for considering one end of the scale to indicate
etter driving performance than the other. This limitation is not
resent in regression models as the model will decide which vari-
bles are related to the dependent variable, and in what direction.
on-performance-based variables can also cause problems. Taking
ge as an example, either older or younger has to explicitly be rated
s ‘better’ in one direction. In a situation in which we code younger
s ‘better’, if the oldest person in a sample receives a low score on
he dependent measures a prediction model will assign all future
ases this age or older to this low score. In the example in Fig. 2,
hich is actual data from this study, the oldest person received

n on-road score in the Fail range, thus limiting all future people
his age or older to an automatic predicted Fail score. As there is
o demonstrated point at which age will preclude all people from
riving, the inclusion of age in an NCRA model does not make sense.

Binary variables cannot be entered for a similar reason; if one
erson classified as ‘worse’ receives a high score on the depen-
ent measure, the model can no longer use that measure to classify
ew people as the resource demand curve becomes flat and cannot
iscriminate between levels of the dependent variable.

Although the NCRA model appears ruthless in its use of a single
core to predict the outcome variable, there is room for participants
o compensate for deficiencies. For example, a participant in the
raining data set who receives a low score on arm reaction speed but

till receives a high score on the dependent measure demonstrates
hat a low score on arm reaction time does not necessitate a low
core on the outcome variable. In this sense, the person could be
aid to have compensated for the low score, and the NCRA model
d Prevention 42 (2010) 1759–1768 1763

will not predict low scores for future cases who receive similar low
reaction speeds.

2.4.3. Leave-one-out cross-validation
The relatively small size of the study sample precluded pre-

diction validation using an independent test data set. Instead,
leave-one-out cross-validation was used to assess the stability of
the model. Leave-one-out cross-validation consists of removing
each case individually from the analysis, re-training the model
on remaining participants, and then testing the prediction on the
excluded case using the new model (Witten and Frank, 2000). The
procedure is repeated for all cases and prediction rates averaged
across all iterations. As classification models are by definition opti-
mized to the specific characteristics of the study sample, it was
expected that the accuracy of the BLR and NCRA classification mod-
els would be lower for prediction than for classification.

2.4.4. Choice of cut-points for reporting accuracy
Inspection of the ROC curve coordinates for each model allows

for the selection of criterion cut-points for classifying Pass and
Fail outcomes. Three different cut-points were inspected for each
model. First used were the default cut-points for a Fail score of 0.5
for the BLR and <6 for NCRA. Another cut-point was chosen that
represented the highest value of sensitivity and specificity when
averaged together. For the third cut-point we wished to maxi-
mize the sensitivity of the model for classifying Fails, and chose
a cut-point that allowed for a minimum sensitivity of 80%, mean-
ing that 80% of the observed Fail group were correctly detected
by the model. We were also interested in the negative predictive
value of each cut-point. This value represents the proportion of
participants predicted to Pass who were actual Passes and not mis-
diagnosed Fails. Avoiding misclassifying Fails as Passes is a prime
goal of driver screening, therefore ideally we would like this value
to be as high as possible, with a goal of at least 80%.

3. Results

Sixteen participants (27%) failed the on-road driving assess-
ment (7 males, 9 females; Fisher’s Exact Test, two-tailed p = .77).
Tables 1 and 2 show descriptive statistics for Pass and Fail groups
with associated effect sizes for the differences between these
groups. Cronbach’s ˛ was calculated for several ordinal scales
in order to determine the internal consistency of the measures:
Geriatric Depression Scale ˛ = .79; Beck Anxiety Inventory ˛ = .81;
Driver Anger Scale first administration ˛ = .91; Driver Anger Scale
second administration ˛ = .92; Big Five Inventory Extraversion sub-
scale ˛ = .80; Big Five Inventory Conscientiousness subscale ˛ = .84;
Big Five Inventory Neuroticism subscale ˛ = .70; Big Five Inventory
Openness to Experience subscale ˛ = .73.

3.1. Binary logistic regression

Nine variables showed a relationship with either the Pass/Fail
score or the 0–10 Driving Scale score. Five were SMCTests measures
(Random Tracking error—trials 1 and 2, Sine Tracking error—trials
1 and 2, Complex Attention reaction time standard deviation) and
two were cognitive measures (longer completion times on both
TMT A and TMT B). The remaining two variables were the demo-
graphic measures of age grouping (with older age groups having
increased numbers of on-road Fails) and occupation code, with
those in the Fail group, on average, having jobs of lower socio-
correlated (r = .87), so only Random Tracking error—trial 1 was
entered as it had a higher ROC AUC. The remaining eight variables
were entered into the BLR model using a backwards elimination
procedure. The model accepted one SMCTests measure – Random
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Table 1
Demographic, psychiatric, and personality measures in the Pass and Fail groups.

Test measure Pass group (n = 44) Fail group (n = 16) Cohen’s d p value

Mean (SD, range) Mean (SD, range)

Gender (1 = male, 2 = female) 1.48 (0.51, 1–2) 1.56 (0.51, 1–2) 0.17a .56
Age (years) 76.25 (4.37, 70–83) 77.81 (3.99, 71–84) 0.35a .25
Age groupingb 1.91 (0.80, 1–3) 2.25 (0.86, 1–3) 0.42a .15
Visual acuity left eyec 10.16 (8.79, 4–60) 8.88 (3.42, 5–18) 0.04 .89
Visual acuity right eye 8.50 (4.22, 4–18) 8.94 (4.70, 5–24) 0.20 .51
Handedness (1 = right, 2 = left) 1.09 (0.29, 1–2) 1.00 (0, 1–1) 0.44a .22
Years of education 13.18 (3.22, 8–19) 13.56 (2.71, 9–18) 0.14a .65
Occupation coded 2.73 (1.65, 1–7) 3.38 (2.00, 1–8) 0.38a .20
Distance driven in the past year (1000 km) 7.31e (18.03, 2.18–122.57) 7.18e (6.02, 0.62–27.03) 0.27a .34
Years of driving 54.98 (7.78, 31–69) 55.56 (6.61, 40–66) 0.08 .79
Geriatric Depression Scale 3.66 (3.43, 0–14) 4.38 (4.18, 0–12) 0.12a .64
Beck Anxiety Inventory 3.86 (4.07, 0–15) 5.00 (5.21, 0–21) 0.25a .40
Driving Anger Scale, 1st administration 33.16 (9.58, 15–53) 31.75 (8.85, 15–44) 0.15 .61
Driving Anger Scale, 2nd administration 32.32 (11.13, 16–61) 28.25 (7.36, 15–44) 0.40a .20

Big Five personality factors
Extraversion 26.61 (5.53, 16–39) 23.50 (5.94, 11–35) 0.55 .06
Agreeableness 38.43 (3.89, 30–45) 36.75 (4.91, 25–44) 0.40 .17
Conscientiousness 37.30 (5.01, 28–45) 34.81 (7.13, 22–45) 0.45 .14
Neuroticism 18.52 (5.41, 10–32) 18.13 (3.48, 12–24) 0.08 .74
Openness to experience 35.18 (5.44, 24–47) 35.63 (6.60, 25–48) 0.08 .79

a Cohen’s effect size for rank-transformed variables (Hopkins, 2004).
b 1 = 70–74 years, 2 = 75–79 years, 3 = 80 plus years.
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c Scoring is expressed in metric with the number listed being the denominator
easured in feet.
d 1 = managers to 8 = labourers.
e Median score presented due to highly skewed distribution.

racking error—trial 1 – and one cognitive test measure—TMT B
ompletion time, which accounted for 25% of the variance in the
n-road outcome (Nagelkerke R2). The ROC AUC for the BLR model
as .76, which is higher than the AUC of .50 for no discrimination

z = 3.48; p = < .001) (Fig. 3).
Using a criterion value of 0.5 the model correctly classified 46

f 60 participants (76.7%) into on-road Pass or Fail groups. The
ensitivity to classify fails was 25.0% (4/16 correctly classified)
nd specificity was 95.5% (2/44 incorrectly classified as Fail). The
egative predictive value of this cut-point was 77.8%, indicating
hat most classified Passes indeed received a Pass on the on-road
ssessment. The cut-point for the highest average of sensitivity and
pecificity value (cut-point = 0.25) correctly classified 44 of 60 par-

icipants (73.3%) into on-road Pass or Fail groups with a sensitivity
or detecting Fails of 68.8%, specificity of 75.0%, and negative pre-
ictive value of 86.8%. To find a minimal sensitivity of 80% another
ut-point was chosen (cut-point = 0.17) which correctly classified

Fig. 3. ROC curves for the BLR and NCRA classification models.
e fraction, e.g. 6/6 would be expressed as ‘6’ and is equivalent to 20/20 vision as

39 out of 60 participants (65%) with a sensitivity of 81.3%, specificity
of 59.1%, and negative predictive value of 89.7%.

The culmination of the 60 iterations generated by leave-one-
out cross-validation reduced accuracy at the 0.5 cut-point to 75.0%
(45/60 correctly classified), sensitivity to 12.5% (2/16 correctly pre-
dicted as Fail), and increased specificity to 97.7% (1/44 incorrectly
predicted as Fail). Applying leave-one-out results to the 0.25 cut-
point reduced overall accuracy from 73.3% to 65.0%, sensitivity
from 68.8% to 50.0%, and specificity from 75.0% to 70.5%. Using the
more sensitive 0.17 cut-point dropped overall accuracy from 65%
to 58.3% with a sensitivity drop of 81.3–68.8% and specificity drop
of 59.1–54.5%.

All 60 iterations of the leave-one-out cross-validation contained
Random Tracking error—trial 1 and all but two contained TMT B
completion time, indicating a degree of stability for the relationship
of these variables to on-road driving outcome in the sample.

3.2. Non-linear causal resource analysis

Fifty of 75 variables fulfilled criteria to be entered into the
NCRA model. Tests and measures which limited the scores of the
16 drivers who failed the on-road assessment were km per year,
visual acuity, TMT A, TMT B, Dementia Rating Scale-2, Beck Anxiety
Inventory, Random Tracking trial 1, Sine Tracking error 1, Complex
Attention, Divided Attention, Arrows Perception, Ballistic Move-
ment, and Planning. The MMSE and SMCTests Footbrake and Clutch
were the only tests that did not limit any of the 60 participants to
either Fail or Pass scores. The resource demand curve for the MMSE
was flat, meaning that variation in the score was not related on to
the Driving Scale score. The lowest scores for Footbrake and Clutch
measures were from participants who Passed the on-road assess-
ment, thus no person could be limited to a predicted Fail score.

The ROC AUC of .88 was higher than for no discrimination (z = 8.96;
p = < .001) (Fig. 3). There was no significant difference between the
ROC AUC of the NCRA and BLR models (z = 1.488, p = .137).

As with the BLR model, three cut-points from the ROC curve
were inspected. The first cut-point was based on those predicted
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Table 2
Performance-based tests including cognitive tests and SMCTests measures in the Pass and Fail groups.

Test measure Pass group (n = 44) Fail group (n = 16) Cohen’s d p value

Mean (SD, range) Mean (SD, range)

Road Sign test, number correct 11.09 (1.18, 7–12) 10.94 (1.00, 10–12) 0.23a .43
Mini-Mental State Examination 28.80 (1.00, 27–30) 28.75 (0.86, 28–30) 0.11a .70
TMT A (s) 33.34 (10.69, 19–59) 40.44 (13.22, 21–69) 0.58a .06
TMT B (s) 91.00 (38.32, 29–254) 121.31 (54.24, 61–271) 0.80a .01
Wechsler Test of Adult Reading, estimated IQ 110.23 (10.09, 79–125) 109.06 (9.91, 91–121) 0.15a .61
Dementia Rating Scale-2, AEMSSb 11.11 (2.69, 5–17) 10.13 (2.50, 5–13) 0.37 .20

Footbrake and Clutch test
Reaction time (ms) 299.68 (43.09, 238–447) 299.50 (39.99, 249–388) 0.29a .92
Movement time (ms) 301.11 (75.36, 175–509) 298.19 (69.93, 200–438) 0.02a .95

Ballistic Movement test
Reaction time, grand mean (ms) 354.03 (51.22, 275–497) 357.65 (50.16, 298–475) 0.07a .80
Movement time, grand mean (ms) 239.99 (57.63, 153–434) 232.85 (52.98, 181–378) 0.16a .59
Peak velocity, grand mean (ms) 944.27 (181.24, 603–1355) 953.61 (164.28, 716–1265) 0.05 .86

Tracking test
Sine Tracking trial 1, error (mm) 15.24 (6.18, 6.74–31.29) 19.36 (9.13, 10.13–42.15) 0.46a .12
Sine Tracking trial 2, error (mm) 9.65 (5.17, 3.99–31.63) 11.77 (6.04, 6.05–27.57) 0.52a .09
Random Tracking trial 1, error (mm) 8.57 (3.40, 3.94–17.39) 12.52 (6.90, 5.68–31.93) 0.71a .02
Random Tracking trial 2, error (mm) 8.17 (3.30, 2.79–16.79) 10.00 59 (5.54, 4.00–26.66) 0.50a .10

Arrows test
Number correct (out of 12) 11.73 (0.50, 10–12) 11.38 (0.81, 9–12) 0.53a .06

Divided Attention test
Tracking error (mm) 8.92 (2.21, 5.49–15.38) 9.85 (3.57, 6.44–20.94) 0.28a .34
Arrows correct (out of 12) 11.50 (0.73, 9–12) 11.38 (0.96, 9–12) 0.05a .85

Visual Search
Reaction time (s) 4.76 (0.78, 3.10–6.80) 4.95 (0.59, 4.00–6.00) 0.26 .39
Number correct (out of 20) 15.48 (2.39, 9–20) 14.75 (2.49, 10–18) 0.30 .31

Complex Attention test
Reaction time (s) 435.34 (80.12, 298–625) 465.19 (108.25, 329–763) 0.26a .36
Movement time (s) 303.66 (74.76, 190–471) 302.88 (81.27, 212–456) 0.07a .80
Reaction time SD (s) 160.82 (126.82, 20–541) 229.88 (200.95, 26–663) 0.25a .38
Movement time SD (s) 69.41 (89.70, 13–457) 63.50 (64.15, 14–279) 0.06a .85
Number of lapse errors 0.05 (0.21, 0–1) 0.06 (0.25, 0–1) 0.07a .79
Number of invalid trials 0.23 (0.61, 0–3) 0 (0, 0) 0.61a .09

Planning test
Number of hazards hit 2.50 (1.41, 0–5) 2.44 (1.26, 1–5) 0.07a .82
Number of crashes 1.02 (1.25, 0–5) 1.25 (1.24, 0–4) 0.23a .43
Duration of positional faults (s) 6.16 16 (4.80, 0–19.20) 6.48 (4.89, 2.50–22.20) 0.00a .99
Intersection safety margin (mm) 40.59 (13.05, 13–63) 36.56 (14.74, 0–59) 0.30 .31
Lateral road position error (mm) 2.68 (0.30, 2.00–3.30) 2.73 (0.37, 2.00–3.30) 0.16 .57
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Distance travelled (m) 4.77 (0.46, 3.00–

a Cohen’s effect size for rank-transformed variables (Hopkins, 2004).
b AEMMS, age and education-adjusted MOANS scaled score.

s a Driving Scale score of <6 predicted as a Fail. The model using this
ut-point correctly classified 52 out of 60 participants (86.7%) into
ass and Fail groups with a sensitivity for classifying Fails of 75.0%
12/16 correctly classified as Fail), specificity of 90.9% (4/44 incor-
ectly classified as Fail), and negative predictive value of 87.1%. The
ut-point for the highest average of sensitivity and specificity val-
es (cut-point = 5.7) correctly classified 90.0% of participants into
ass and Fail groups with a sensitivity of 75.0%, specificity of 95.5%,
nd negative predictive value of 91.3%. The cut-point with a mini-
um sensitivity of 80% (cut-point = 6.01) correctly classified 66.7%

f the participants into Pass and Fail groups with a sensitivity of
1.3%, specificity of 61.4%, and negative predictive value of 90.0%.

The combined results of the 60 iterations generated by leave-
ne-out cross-validation reduced overall accuracy of the cut-point
f 6 to 58.3% (35/60 correctly classified), sensitivity to 62.5% (10/16
orrectly predicted as Fail), and specificity to 56.8% (19/44 incor-

ectly predicted as Fail). Applying leave-one-out to the cut-point of
.7 reduced overall accuracy from 90.0% to 63.3%, sensitivity from
5.0% to 62.5% and specificity from 95.5% to 63.6%. Using the 6.01
ut-point reduced overall accuracy from 66.7% to 55.0%, sensitivity
rom 81.3% to 75.0% and specificity from 61.4% to 47.7%
4.60 (0.62, 2.70–5.20 0.29a .32

4. Discussion

This is the first study to have compared a standard linear model
to a non-linear model for classification of on-road driving ability in
a group of older drivers with no known neurological impairment.
This study further tested the generalizability of the two classifica-
tion models using leave-one-out cross-validation as an estimate of
how each would perform on a unique sample.

Using a 0.5 cut-point, BLR utilized TMT B completion time and
Random Tracking error—trial 1 to correctly classify 76.7% of the par-
ticipants into on-road Pass or Fail groups. This is only just above the
rate that would have been achieved by predicting that every driver
would Pass (44 passed, 73.3% of the sample). The criterion point
of the BLR model can be shifted in order find the most appropri-
ate balance of sensitivity or specificity and will depend on factors
such as whether the test would be used as a screen to detect people

more likely to Fail. The two other cut-points examined showed pre-
dictable trade-offs between sensitivity and specificity. To be used in
a practical setting, considerations over the appropriate cut-point to
use would depend on factors such as the cost of more comprehen-
sive driving assessment, and the percentage of Passes that would
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Fig. 4. Example of the effects on a resource demand function curve when a boundary
score is removed. The solid line shows a hypothetical resource demand curve drawn
to fit the distribution of scores for a variable. The circled data point shows a subject
with an observed test measure score of 8 and a Driving Scale score of 6 (on-road
Pass). When the circled data point is withdrawn during the leave-one-out analysis
the demand function curve is redrawn as indicated by the dashed line. When the
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nitially be flagged for further, unnecessary testing. It is clear that
he sensitivity and specificity of the BLR model at the three differ-
nt cut-points are not high enough for the model to be used as the
ole determinant of driving ability.

One of the tests selected by the BLR model, Random Tracking,
easures visuomotor planning and execution, with lower accu-

acy scores related to an increased likelihood of an on-road Fail
utcome. Random Tracking trial 1 is performed after Sine Track-
ng trial 1, which many people find difficult initially. This is usually
esolved by the end of the trial. Thus, Random Tracking trial 1’s
bility to classify driving ability may reflect either difficulties with
isuomotor control or with delayed learning of the tracking task
hat extends past the first tracking trial. The other test selected by
he BLR model, TMT B, consists of visual scanning, sequencing, and
ask-switching, with greater time to completion associated with a
ail score. Lower scores on TMT B could indicate the presence of
ndetected cognitive impairment in the group.

NCRA utilized 13 tests to correctly classify 86.7% of the sample
t a cut-point of <6 into on-road Pass or Fail groups. NCRA allows
ny single test in the battery to limit a person’s predicted perfor-
ance. A test which limits no-one to a Fail score in the classification

et could limit a person to a Fail score given a new sample, which
eans the significance of the 13 tests used in the NCRA classifi-

ation should not be interpreted in the same way as the two tests
ound useful in the BLR model. Shifting the cut-point for detecting
ails to the highest average balance of sensitivity and specificity
roduced a sensitivity of 75.0% and specificity of 95.5%, and a cut-
oint for a higher sensitivity of 81.3% had a specificity of 61.4%. As
ith the BLR model, a large drop in specificity occurred when the

ensitivity was raised to capture at least 80% of those who failed
he assessment. Once again, the NCRA model alone does not have
igh enough levels of both sensitivity and specificity in order to be
sed as the sole determinant of driving ability.

As expected, the accuracy of both the BLR and NCRA models
ere reduced following leave-one-out cross-validation, and this
eld for all three cut-points for both the BLR and NCRA models.
he BLR model suffered primarily in sensitivity for predicting Fails
ith specificity less affected. The NCRA model showed both a drop

n sensitivity as well as large reductions in specificity. These drops
n specificity occur because removing a participant from the model
eads to redrawing of resource demand curves in which that per-
on’s score made up part of the curve’s lower boundary. This can
ead to a Fail classification when the person’s score is tested against
edrawn resource demand curves (see Fig. 4 for an explanation of
his). For this reason the NCRA model appears substantially less sta-
le than the BLR, although this only became apparent following the

eave-one-out cross-validation. This instability may be addressed
y using a larger training set but it would be necessary to devise
method for eliminating low outliers to avoid the accumulation

f spuriously flat resource demand curves which then offer no dis-
rimination between levels of the dependent variable and can no
onger be used by the model.

The effect of the leave-one-out cross-validation emphasizes the
mportance of investigating models beyond classification alone in
rder to estimate their stability and likely performance in an inde-
endent sample. Decisions based on classification results alone are
ery vulnerable to over-fitting, exaggerated claims of predictive
tility of the model, and, in fact, reduced predictive accuracy.

Although previous studies have found higher scores on self-
eported measures of sensation-seeking to be associated with
egative driving outcomes in both college students and older

rivers (Schwebel et al., 2007, 2006), we could not find a sensation-
eeking scale that we considered appropriate for an older age
ample (e.g., how many older adults would endorse attending wild
arties or desiring to learn how to surf board?). The Big Five Inven-
ory and the Driving Anger Scale were utilized to investigate the
circled data point is re-entered as a test case against the new model, an observed
test measure score of 8 now aligns with a Driving Scale score of 4. This participant’s
score has now gone from 6 (Pass) to 4 (Fail).

influence of more general personality factors but no differences
were found between Pass and Fail groups for the BLR model, and
scores on the Big Five Inventory were not suitable for entry into the
NCRA model. Knowledge of road rules was not comprehensively
investigated, although knowledge of road signs and their related
driving actions (Road Sign test) did not discriminate between
groups. Although age differences are often found in those who Pass
versus those who Fail an on-road assessment, the current study
had a restricted age range of 70 and above which would have con-
tributed to no significant differences being found. If the lower age
bound was extended by a decade or more, average age differences
between Pass and Fail groups would be expected to be found.

Beyond the outcomes of classification and estimated prediction
rates, practical considerations influence whether a BLR or NCRA
model could be used in an applied setting. BLR is designed to choose
a small group of tests which best explain a binary outcome. In the
current study only two variables entered the BLR model, meaning
the assessment could be completed in 15 min. Assessment using
NCRA requires the inclusion of all tests since any test could poten-
tially limit the score of a future case. In the current study this would
stretch assessment time to 2.5–3 h and require several neuropsy-
chological tests that require administration training and substantial
hand-scoring. NCRA may allow for a more sensitive prediction than
BLR as it allows for many more tests to be available for the model
without the disadvantages of over-fitting that occur when numer-
ous measures are forced into a regression model. Tests that are
not useful for classification in NCRA are simply not used by the
model, and the addition of more tests with relationships to driving
can only improve classification. Any higher sensitivity afforded by
NCRA, however, requires a substantially greater effort to achieve
and we are currently investigating how NCRA works with a larger
sample.

Comparing classification performances between studies is dif-
ficult, as samples, independent and dependent variables, Pass and

Fail rates and utilized cut-points all affect the accuracies achieved.
However, comparing gross outcomes with studies that have used
similar methods may suggest whether the current procedures
have advantages over those used in previous studies. The variance
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ccounted for by the BLR classification model (25%) is lower than in
wo other studies incorporating neuropsychological tests (64% and
4% respectively) (De Raedt and Ponjaert-Kristoffersen, 2000; Stav
t al., 2008). However, these studies differed in that they included
articipants at higher risk for unsafe driving: people referred for
ssessment following one or more crashes (De Raedt and Ponjaert-
ristoffersen, 2000) and people scoring below 24 on the MMSE

Stav et al., 2008). Variance cannot be accounted for in NCRA but the
ensitivity of this model for detecting fails is near the 83–97% range
ound by previous authors who have used non-linear techniques to
lassify on-road driving ability in clinical populations (Innes et al.,
007; Risser et al., 2008; Sommer et al., 2008).

A limitation of the study is the sample size of 60 participants
achieved power of 80% for an effect size of d = 0.83 with n = 16
n-road Fail and n = 44 on-road Pass outcomes). In Tables 1 and 2,
ffects in the moderate range did not approach a priori defined lev-
ls of significance to be entered into the BLR model. As the study
ample was not recruited from a strictly representative population
f older drivers, and it was voluntary to take part, we cannot say
or certain that the results would be replicated in a general pop-
lation sample. For example, people who experience heightened
nxiety related to driving may have been less likely to volunteer for
he study and, thus, the sample could be biased to more confident
rivers. Another limitation relates to the on-road driving assess-
ent used in the study, as it has not been investigated for reliability

r validity, although this limitation is far from unique. Korner-
itensky et al. (2006) surveyed the driving assessment methods of
44 North American and Canadian driving assessors. Ninety-four
ercent of respondents routinely used on-road assessments as part
f their evaluation, 24% used a standardized scoring system, and
nly 10% used a pre-defined cutoff score to define driving compe-
ency. Only two respondents reported using a standardized road
est. Standardized on-road assessments do exist, such as the Driv-
ng Performance Evaluation and the Washington University Road
est. Some standardized assessments have been tested for inter-
ater and test–retest reliability, with the former usually found to
e moderate to high, and the latter in the moderate range (Fitten et
l., 1995; Hagge, 1994; Hunt et al., 1997; Janke and Eberhard, 1998;
omanowicz and Hagge, 1995). Investigations into the validity of
tandardized road tests have found some associations to real-world
rashes or infringements (Fitten et al., 1995; Keall and Frith, 2004;
omanowicz and Hagge, 1995), although due to the low base rates
f crashes in particular, power is low for detecting statistically sig-
ificant associations. Other methods to test on-road assessment
alidity have been based on finding differences in group perfor-
ance in expected directions, such as differences in error scores

r Pass and Fail results between novice and experienced drivers
Hagge, 1994; Romanowicz and Hagge, 1995). Measuring validity
gainst prospective real-world negative driving outcomes could be
deal but there are ethical problems in allowing persons consid-
red to be unsafe to continue driving in order to assess whether
hey have increased rates of real-world accidents and offences
ompared to those who Pass an on-road assessment. Owsley et al.
1991) have suggested that at-fault crashes would be a more use-
ul criterion for determining driving safety compared to on-road
ssessments. Although this measure would be useful to include
n research studies, the low base-rate of crashes even in people

ith demonstrable impairments would make history of recent
rashes a poor measure for determining the driving safety of an
ndividual in clinical settings. There is a certain amount of nat-
ral justice in allowing a person to demonstrate driving ability

hrough the task of driving. Driving assessments of individuals
equire a thorough assessment which should incorporate demon-
trated risk factors in the decision-making task. Accumulated risk
actors alone would likely not be accepted as sufficient for decisions
egarding driver safety. In the current study, all participants main-
d Prevention 42 (2010) 1759–1768 1767

tained their driver’s licences which provides a unique opportunity
to follow the group prospectively to investigate the relationship
between on-road Pass or Fail status and real-word crashes and
traffic infringements, of which preliminary results are available
(Hoggarth et al., 2009).

This study supports prior findings that non-linear methods can
be at least comparable to traditional approaches for prediction and
understanding of driving behaviour, although the low rates of sen-
sitivity for predicting Fails in the current study may suggest that
sensory–motor and cognitive measures of impairment may not be
suited to a population with few, if any, measurable risk factors
for unsafe driving. There are several areas in the driving research
literature the authors believe require attention. Researchers are
encouraged to compare the utility of linear and non-linear tech-
niques for the classification and prediction of driving ability, to
validate on-road assessment outcomes against recorded and/or
self-reported crashes and driving offences, and to test classifica-
tion models on independent samples, or at least to use statistical
modelling techniques such as boot strapping or leave-one-out
cross-validation to investigate the stability and generalizability of
models.
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