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Abstract— Substantia nigra (SN) and red nucleus (RN) 
located in midbrain are integral in the study of brain disease 
such as Parkinson’s disease (PD). The automatic segmentation 
of SN and RN in high-resolution quantitative susceptibility 
mapping (QSM) images can aid in PD characterization and 
progression. However, only a few methods have been proposed 
to segment them, owing to the recent development of high 
quality imaging. Therefore, we describe a novel method for the 
segmentation of SN and RN in QSM images using contrast 
enhancement, level set method, wavelet transform and 
watershed transform. The segmentation performance is 
evaluated in 20 subjects containing both healthy and PD 
patients. The results of the proposed segmentation method were 
closer to the manual segmentation performed by the radiologist 
than the popular level set methods. The Dice coefficient of the 
left SN and right SN were 0.77 0.09 and 0.78 0.07 
respectively while the Dice for the left RN and right RN were 
0.80 0.08 and 0.77 0.08 respectively.

Keywords— Parkinson’s disease, level set method, watershed 
transform, substantia nigra, red nucleus.

I. INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disease 
affecting the older population which primarily involves the 
degeneration of neurons in the substantia nigra (SN) [1].
Death of dopamine (DA) producing neurons in the SN affects 
smooth purposeful movement, poor balance and motor 
coordination [2], gradual slowness in spontaneous 
movement, rigidity and resting tremor. Almost 60 – 80 
percent of the neuronal loss is observed at the time of 
symptom onset. Hence, early detection and monitoring 
neurodegenerative changes in PD can be helpful in clarifying 
the disease and its progression. Similarly, red nucleus (RN) 
located in the mid brain along with SN, is also involved in 
PD.

Conventional magnetic resonance imaging (MRI) at 
standard field strength are limited in their ability to show 
structural changes of SN and RN but high-resolution MRI at 
3 Tesla (3T) is capable of providing detailed information 
about the structural changes of these iron-rich [3, 4] midbrain 
structures. Moreover, Quantitative susceptibility mapping 
(QSM), a phase based technique, produces high-resolution 

images with excellent contrast of these smaller brain nuclei. 
SN and RN are readily visible in T2-weighted images and 
T2*-weighted images but not clearly visible in T1-weighted 
images. 

Segmentation of SN and RN can be helpful in PD 
characterization [5] and progression but is challenging 
because of their smaller structures, morphometric variability, 
unclear boundaries, and similar intensity profiles with the 
adjacent structures. Manual segmentation is tedious, time 
consuming and susceptible to inter and intra-rater bias. 
Therefore, automated segmentation is preferred to manual 
segmentation as it is capable of producing more consistent 
results. There are fairly limited number of literature available 
for the automated segmentation of SN and RN because high 
quality imaging capable of visualizing these midbrain 
structures is developed lately.

Xiao et al. [6] proposed a segmentation method by 
combining T1-weighted and T2*-weighted images into a 
single image for better non-rigid registration of atlas so that 
higher segmentation accuracy can be achieved. Haegelen et 
al. [7] compared the manual segmentation of deep brain 
structures with two registration based methods: automatic 
nonlinear image matching and anatomical labeling 
(ANIMAL) and symmetric image normalization (SyN) and 
also with one patch based method. ANIMAL and SyN are 
performed on T1-weighted images while SyN is performed 
on T2-weighted images. Xiao et al. [8] proposed the 
segmentation method using label - fusion by applying 
majority - voting approach. Moreover, principal component 
analysis (PCA) is used to measure the morphometric 
variability of the smaller brain nuclei. Kim et al. [9] used an 
active surface model and prior shape knowledge for the 
segmentation of brain subcortical structures. Similarly, 
Visser et al. [10] employed an intensity model and a shape 
model based on Markov random field (MRF) for the 
segmentation of the smaller brainstem nuclei. Also, Guo et 
al. [11] proposed a method combining atlas registration, seed 
points discontinuity and level set method for the 
segmentation of SN and RN.

Atlas based method is one of the most popular method 
used for the segmentation of SN and RN but the 
morphometric variability of these nuclei limits the accuracy 
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of segmentation in this method. Similarly, the limitation of 
the majority of the methods proposed in the literature is the 
requirement of the substantial number of expert supervised 
reference images to increase the labeling accuracy. As a 
result, computational cost is increased but the results are not 
still error-prone. Therefore, to address the drawback of the 
existing algorithms, we propose and evaluate a new and 
improved algorithm for the segmentation of SN and RN in 
QSM images by using contrast enhancement technique, level 
set method, dual-tree complex wavelet transform (DT-CWT) 
and watershed transform.

II. MATERIALS AND METHODS

A total of 20 subjects containing both healthy and PD
patients underwent MR scans on a 3T General Electric HDxt 
scanner (GE Healthcare, Waukesha, USA) with an eight-
channel head coil. A 3D spoiled gradient recalled echo 
(SPGR) acquisition with 8 different echoes was used to 
obtain real and imaginary pairs with the following 
parameters: echo time (TE) 3.5, 7.3, 11.1, 14.9, 18.7, 22.5, 
26.3, 30.2 ms (3.8 ms intervals), repetition time (TR) 42.8 
ms, flip angle 20 , acquisition matrix 512×512×60, 
field of view (FOV) 240 mm, slice thickness 2 mm,
voxel size 0.47×0.47×2 mm3. Spatial normalization was 
facilitated by acquiring a conventional T1-weighted 3D 
SPGR acquisition (TE/TR 2.8/6.6 ms, inversion time (TI)

400 ms, flip angle 15 , acquisition matrix 
256×256×170, FOV 250 mm, slice thickness 1 mm, 
voxel size 0.98×0.98×1.0 mm3). In addition, T2-weighted 
and T2-weighted fluid-attenuated inversion recovery images 
were acquired to exclude any brain abnormalities.

Morphology enabled dipole inversion (MEDI) algorithm 
was used to generate QSM images from the real/imaginary 
pairs [12-14].

Segmentation Method

A. Contrast Enhancement
Contrast enhancement proposed in this work is based on 

local gray level and global gray level information of the 
image. Local gray level information is obtained by computing 
the mean of each non-overlapping 3 3 sub-images using 
mean filter while global gray level information is estimated 
by calculating the global mean of the entire image. The 
difference between the global gray level mean and the local 
gray level mean calculated over a neighbourhood of each 
pixels helps in identifying the gray level changes which 
depends on image characteristics in that neighbourhood [15, 
16].

Let ( , )A x y be an input image. The global mean of this 
image can be calculated from entire image sample values as 
follows:
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1 ( , )
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g A x y
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                          (1)                                                

The local mean is calculated on each non-overlapping 
3 3 sub-images using average filter. Let the sub-image of 
specified size be centered on ( , )x y . The contrast is enhanced 
on each sub-image as follows:

( , ) ( , ) [ ( , ) ]mean meanI x i y j A x i y j l x i y j g (2)

where , 1,0,1i j , ( , )meanl x i y j is the local mean and 
( , )I x i y j is the contrast enhancement performed on each 

sub-image. The overall contrast enhanced image ( , )I x y is 
obtained by repeating the process in (2) for all the sub-
images.

B. Level Set Method
Chan and Vese (CV) [17] proposed a level set method 

based on Mumford-Shah model [18] for minimizing the 
energy given by, 
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where 0v , 1 2, 0 , 1 and 2 is the regions outside
contour C and inside contour C respectively, 1c and 2c
approximate the image intensity in 1 and 2 . But, CV 
model could not segment images with intensity 
inhomogeneities, common in medical images.

Hence, Li et al. [19, 20] addressed this issue by embedding 
the local image information which helps segmenting the 
images with intensity inhomogeneities. Thus, the energy 
functional is given by, 
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                                                                                              (4)                    

where 1( )f x and 2( )f x approximate the local intensities in 
the regions outside and inside the contour respectively. K is 
a Gaussian kernel with a scale parameter 0 . H is a 

smooth Heaviside function, 1 ( ) ( )M H and 

2 ( ) 1 ( )M H , is a positive constant. Then, the 
minimization of energy functional 1 2( , , )F f f is performed 
with respect to by the gradient descent method,

       
1 1 2 2

2

( )( ) ( )e e v div
t

div
              (5)               

where is the smoothed Dirac delta function,

             
2
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and,    
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In the proposed method, (5) is the level set equation to be 
solved. The first term in (5) is responsible for driving the 
active contour towards the boundaries of the object while the 
second term in (5) maintains the regularity of the contour. 
The third term in (5) is called a level set regularization term, 
plays a vital role in avoiding the time-consuming re-
initialization since it maintains the regularity of the level set 
function significant for accurate computation and stable 
evolution in level set methods.

C. Wavelet Transform
Wavelet transform is a popular method for smoothing the 

images [21]. Wavelet based smoothing is performed by using 
a threshold to remove high frequency subband coefficients. 
Thresholding can be performed either by hard or soft 
thresholding method. In the proposed work, DT-CWT is used.

Dual-tree Complex Wavelet Transform
The ordinary discrete wavelet transform (DWT) is shift 

variant, leading to significant change of wavelet coefficients 
at the output even with a small shift in the input signal. It also 
provides limited directional selectivity ( 0 , 45 , 90 ). 
Therefore, dual tree complex wavelet transform [22, 23] is 
introduced which exhibits approximate shift invariant 
property and improves directional resolution as it produces 
six directionally selective subbands ( 15 , 45 , 75 ) at 
each scale. DT-CWT is also robust to noise, limited 
redundant and performs perfect reconstruction. 

The one-dimensional (1-D) DT-CWT [24] is shown in 
Fig. 1 which uses two DWTs. The first DWT gives the real 
part of the transform while the second DWT gives the 
imaginary part of the transform. A separate filter pair is used
with 0( )h n and 1( )h n for the real part and 0( )g n and 1( )g n
for the imaginary part otherwise no advantage is gained. The

1-D DT-CWT decomposes the input signal ( )f x in terms of

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

0 ( )h n

1( )h n

1( )h n

0 ( )h n

0 ( )g n

0 ( )g n

1( )g n

1( )g n

Tree 1: Real Part

Tree 2: Imaginary Part

Fig. 1. 1-D dual-tree complex wavelet transform.

a complex shifted and dilated mother wavelet ( )x and 
scaling function ( )x . Mathematically,

, , , ,0 0
0

( ) ( ) ( )j l j l j l j l
l Nl N j j

f x B x w x                (8)

where N is the set of natural numbers, 0j represents number 
of decomposition level,  j and l are the index of shifts and 
dilations respectively. ,0j lB represents the scaling coefficient 

and ,j lw represents the complex wavelet coefficient. Scaling

function , , ,0 0 0
( ) (x) (x)r i

j l j l j lx i and complex wavelet 

function ( (, , ,( ) x) x)r i
j l j l j lx i where the superscripts r

and i represent the real and imaginary part respectively.  

Similarly, the two-dimensional (2-D) DT-CWT 
decomposes an image ( , )f x y through a sequence of 
dilations and translations of a complex scaling function and 
six complex wavelet functions. Mathematically,

, , , ,0 0 22 0

( , ) ( , ) ( , )j l j l j l j l
j j l Nl N

f x y B x y w x y (9)

where = 15 , 45 , 75 gives the directionality of 
the complex wavelet function. Therefore, the decomposition 
of a 2-D image ( , )f x y by DT-CWT gives a complex-valued 
low pass subband and six complex-valued high pass 
subbands at every level of decomposition where each high
pass subband represents one unique direction .

D. Watershed Transformation
We first need to compute the distance transform before 

applying watershed transform. The distance transform labels 
each pixel of the image whose value correspond to the 
distance to the nearest feature pixel [25]. Watershed 
transform performed on the distance transformed image 
results in over-segmentation which is the biggest drawback 
of this algorithm because of the presence of several local 
minima. Hence, extended-minima transform is introduced to 
modify the distance transformed image for the accurate 
segmentation.

Extended-minima Transform
The extended minima transform EMIN are defined as 

the regional minima of the corresponding H -minima 
transformation [26, 27].

               ( ) [ ( )]h hEMIN f RMIN HMIN f                     (10)                   

where,

                      ( ) ( )h fHMIN f R f h                          (11)

is the H -minima transformation and is achieved by 
performing the reconstruction by erosion of f with respect 
to f h . H -minima transform suppresses all minima whose 
depth is below or equal to the given h .
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Implementation
The contrast enhanced image is obtained by using (2) for 

all the sub-images and it also is responsible for directing the 
evolution of level set function towards the desired direction. 

The implementation of the proposed level set method is 
straightforward. The level set evolution in (5) can be 
implemented by obtaining the iteration scheme by discretizing 
the partial differential equation (PDE) as central finite 
differences. The level set function is initialized using a binary 
step function simply because it helps in the faster curve 
evolution and easier emergence of new contours than the 
initialization with a signed distance map. The binary step 
function takes negative constant value 0c inside the region 
and positive constant value 0c outside the region. In our work, 

we use 0 2c .

Gaussian kernel K with a scale parameter is used as 
a convolution kernel. The convolution kernel is constructed as 
a w w mask, such that 4 1w . In our experiments, 
we use a scale parameter 10 , i.e., the size of mask is 
41 41 . A smaller can be used but it will require large 
number of iterations for accurate computation. 

In (7), there are altogether 4 convolutions in numerators 
and denominators. The two convolution K I and 1K
required to compute 2f does not depend on evolving level set 
function and therefore can be computed only once before the 
iterations. However, the other two convolutions 

[ ( ) ]K H I and ( )K H required for computing the 

functions 1f and 2f needs to be computed at every iteration 

for evolving the level set function. Similarly, 1 1 2 2( )e e in 
(5) is the combination of three convolutions. However, one of 
them is independent of evolving the level set function and can 
be computed only once before the iterations like in previous 
case. Therefore, there are four convolutions in total that needs 
to be computed at each iteration for evolving the level set 
function. 

However, the level set method is not capable of producing 
the smooth output as desired. Moreover, over-segmentation is 
also observed in addition to its incapability of separating SN 
and RN. Therefore, DT-CWT is used while evolving the level 
set function to address these issues. DT-CWT consists of two 
wavelets in each direction and each wavelets are oriented in 
six distinct directions. So, in each direction, one of the two 
wavelets can be considered as the real part while the other 
wavelet can be considered as the imaginary part of the
complex-valued wavelet. For the experiments in the paper, we 
take forward DT-CWT over 3 level of decomposition with 
different filter sets along the rows and columns. We obtain 
oriented wavelets by performing sum and difference of the 
subband images. Moreover, sum and difference operation is 
normalized by 1 2 . Additionally, threshold is determined 
by heuristic approach for thresholding the high frequency 
wavelet coefficients through all scales and subbands. Finally, 
we take the inverse DT-CWT to get the smooth image contour 
and also to resolve the problem of over-segmentation. 

But, the combination of level set method and DT-CWT is 
not capable of separating SN and RN accurately and 

efficiently. Therefore, distance transform is performed on the 
binary image resulting from the previous steps. Watershed 
transform applied on this distance transformed image cannot 
accurately separate SN and RN because of the presence of 
several local minima. Hence, extended-minima transform is 
used to suppress undesired local minima and then the distance 
transformed image is modified so that no minima appears at 
the filtered-out location. Watershed transform performed on 
this modified distance transformed image actually helps 
separating SN and RN effectively and efficiently.

Analysis of Segmentation
To assess the performance of the proposed segmentation 

method, subjective evaluation was done by a radiologist 
having years of experience in neuroimaging. Subjective 
evaluation was performed blindly, meaning the results of the 
proposed method and the various other methods used for 
comparison were mixed up for fair assessment. Subjective 
assessment was done using the score range from 1-5 for the 
obtained segmentation results.  

The segmentation accuracy (quantitative analysis) is 
assessed using Dice score [28] which is a commonly used 
similarity metric to measure the spatial overlap between the 
two segmentations. The manual segmentation performed by 
the radiologist are compared with the results generated by our 
automated segmentation method. The value of Dice score 
ranges between 0 and 1; 0 means that there is no overlap 
between the two segmentation results while 1 means that the 
two segmentation results completely overlap with each other. 

Manual Segmentations
The manual segmentations of the SN and RN was 

performed by the experienced radiologist for all the 20 
subjects. The radiologist segmented the SN and RN on both 
left and right sides using the FSLeyes software for each 
subject. The manual segmentation was considered as the 
ground truth for performing the quantitative analysis. 

Parameter Setup and Comparison with Different Methods
The proposed segmentation method for the accurate and 

effective segmentation of SN and RN requires various 
parameters to be specified. Therefore, we use the following 
parameters for the level set method in our experiments: 

1 1.0 , 2 2.0 , 1 , 0.003 255 255v and 
10.0 .

We compare our proposed method with the level set 
methods to show the effectiveness of our proposed algorithm 
in all the 20 subjects because it is frequently used method for 
the segmentation of smaller structures in medical imaging. We 
used level set method based on the minimization of region 
scalable fitting (RSF) energy for segmentation of images with 
intensity inhomogeneities proposed by Li et al. [19] for 
comparison.  Similarly, the level set method proposed by Li et 
al. [29] which is based on the local intensity clustering 
property and is capable of handling images with intensity 
inhomogeneities is also used for comparison. 

III. RESULTS

The segmentation results of the proposed algorithm, 
comparison with different level set methods and manual 
segmentation of the SN and RN are shown in Fig. 2. The 
segmentation result of the left and right side of the SN and RN 
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Fig. 2. Results of the proposed segmentation method and comparison with 
different methods. First four columns: Segmentation result of our proposed 
method. The result of automated segmentation is shown as a white contour 
and labeled mask is shown in red (SN) and blue (RN). Column 5: Result of 
the level set method based on minimization of region-scalable fitting energy. 
Column 6: Result of the level set method in the presence of intensity 
inhomogeneities with application to MRI. SN and RN both are labeled as 
green since level set method cannot separate them. Column 7: Manually
labeled structures of SN (red) and RN (blue).

clearly shows that the proposed automated segmentation
method produces good results and the labeled mask of SN and 
RN are closer to the manual segmentation. However, the RSF 
model and level set method based on the local intensity 
clustering property could not segment and separate SN and 
RN effectively. 

Subjective evaluation is performed by an experienced 
radiologist for the analysis of different methods. Our proposed 
method obtained highest subjective score in comparison to the
level set methods [19, 29] in the blind assessment and it
validates our methodology. Besides, the Dice score for the 
proposed method is also calculated for the left and right side 
of the SN and RN for all the 20 subjects and is shown in Fig. 
3. The Dice score (mean standard deviation) of the left SN 
and right SN between the manual segmentation and the 
proposed method were 0.77 0.09 and 0.78 0.07 
respectively while the Dice for the left RN and right RN were 
0.80 0.08 and 0.77 0.08 respectively. 

IV. DISCUSSION

We propose an effective method for the segmentation of 
SN and RN by combining contrast enhancement technique, 
level set method, DT-CWT and watershed transform. The 
contrast enhancement technique based on the local mean and 
global mean helps to improve the contrast of the region of 
interest thereby increasing the accuracy and effectiveness of 
segmentation. Moreover, the contrast enhanced image also 
plays an important role in directing the level set evolution 
towards the desired direction. The level set method proposed 
in this work make use of local image intensities rather than 
global intensities which makes it capable of handling images 
with intensity inhomogeneities. Additionally, the level set 
method also avoids the need of time consuming and expensive 
re-initialization process. However, the level set method results

    

Fig. 3. Boxplot of Dice scores of the proposed segmentation method for the 
left and right sides of SN and RN. 

in jagged output, over-segmentation and cannot separate SN 
and RN in some slices. Therefore, DT-CWT is used to 
produce the smooth result and also to solve the problem of 
over-segmentation. But, it cannot separate the smaller brain 
nuclei. Hence, watershed transform is introduced to separate 
and effectively segment SN and RN.  

The level set [19, 29], an effective segmentation method 
which is based on the change of gray level is used for 
comparative analysis in our work. The level set method cannot 
segment and separate SN and RN effectively because of the 
similar intensity values between the adjacent areas and blurry 
boundary between the smaller nuclei. Moreover, it also 
constantly overestimates and underestimates them.
Additionally, the level set method results in over-
segmentation of the midbrain nuclei in the form of holes 
which do not make anatomical sense according to clinicians 
perspective.   

The Dice score is used for the quantitative analysis in our 
work as it is the most commonly used metric to measure the 
fraction of spatial overlap between the binary regions for the 
evaluation of the segmentation result in the literature. The 
Dice score obtained in this study is in line with the current 
literature [10, 11] although comparison between them does 
not make much sense because of the difference in acquisition 
parameters and manual segmentation used. Moreover, the 
duration of disease in PD patients also makes considerable 
difference in the study. 

In our work, the overall Dice score of SN could have been 
higher but the partial volume effect of SN particularly present 
on the left side limits the score which is evident by those many 
outliers on the lower side in the box plot in Fig. 3. The Dice 
score for the level set methods is not calculated as it is not able 
to separate the brain nuclei and calculating the score would 
not be fair. 

V. CONCLUSION

We have presented an automated method for the 
segmentation of SN and RN in QSM images by combining 
contrast enhancement technique, level set method, DT-CWT 
and watershed transform. The experimental results shows that 
the proposed approach can produce high quality segmentation 
of SN and RN. The subjective evaluation of the results and the 
quantitative analysis performed based on the manual 
segmentation provided by the radiologist backs our claim. The 
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automated segmentation results were closer to manual 
segmentation than the popular level set methods. Our future 
work will be focused on developing more accurate, robust and 
efficient algorithm for the segmentation of SN and RN. We 
will also calculate the QSM values within the segmented 
region to find the deposition of iron and study its relationship 
to cognitive function, motor function and eventually in PD 
characterization and progression.  
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