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Abstract

The three-class approach is used for progressive disorders when clinicians and researchers want to

diagnose or classify subjects as members of one of three ordered categories based on a continuous

diagnostic marker. The decision thresholds or optimal cut-off points required for this classification are

often chosen to maximize the generalized Youden index (Nakas et al., Stat Med 2013; 32: 995–1003). The

effectiveness of these chosen cut-off points can be evaluated by estimating their corresponding true class

fractions and their associated confidence regions. Recently, in the two-class case, parametric and non-

parametric methods were investigated for the construction of confidence regions for the pair of the

Youden-index-based optimal sensitivity and specificity fractions that can take into account the correlation

introduced between sensitivity and specificity when the optimal cut-off point is estimated from the data

(Bantis et al., Biomet 2014; 70: 212–223). A parametric approach based on the Box–Cox transformation to

normality often works well while for markers having more complex distributions a non-parametric

procedure using logspline density estimation can be used instead. The true class fractions that

correspond to the optimal cut-off points estimated by the generalized Youden index are correlated

similarly to the two-class case. In this article, we generalize these methods to the three- and to the

general k-class case which involves the classification of subjects into three or more ordered categories,

where ROC surface or ROC manifold methodology, respectively, is typically employed for the evaluation

of the discriminatory capacity of a diagnostic marker. We obtain three- and multi-dimensional joint

confidence regions for the optimal true class fractions. We illustrate this with an application to the

Trail Making Test Part A that has been used to characterize cognitive impairment in patients with

Parkinson’s disease.
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1 Introduction

A three-class approach is useful for progressive disorders when clinicians and researchers aim to
characterize patients as members of one of three ordered categories. This approach is useful, for
example, when discriminating between people with ‘normal cognition’, with ‘mild cognitive
impairment’ (MCI), and with ‘dementia’, such as when pathology exists that causes Parkinson’s
disease or Alzheimer’s disease.1–4 Decision thresholds and the confidence regions generated by this
approach may also help discriminate between competing diagnostic criteria that best separate an
intermediate disease state such as MCI from both normal cognition and dementia.5,6

These discriminations are often based on a diagnostic marker with a score defined on a
continuous scale. The Trail Making Test (TMT) is a visual search test that has been extensively
used in neuropsychological assessment.7 Even the relatively simple Part A of the TMT, in which
patients are asked to draw a line through consecutively numbered Arabic numerals presented in
circles scattered across a page, is sensitive to cognitive impairment.8,9 The current study determined
cut-off points on the TMT Part A to characterize disease states of ‘normal cognition’, MCI, and
‘dementia’ in Parkinson’s disease patients. Such a tool might provide a simple quick screen to
facilitate initial diagnosis and guide disease management decision making.

The ROC curve is the most common methodological procedure for the evaluation of a
continuous- or an ordinal-scaled marker used for classification purposes in a two-class diagnostic
problem (typically a non-diseased and a diseased group). In diagnostic problems involving three
classes, the ROC surface is typically employed.10 The ROC surface can be used to assess the
discriminatory performance of a diagnostic marker simultaneously for three ordered groups. It
additionally provides the corresponding pairwise ROC curves that may be assessed in a post hoc
fashion for each pair of the three populations.11

The ROC curve is the plot of sensitivity versus 1-specificity of a diagnostic test of interest, as the
cut-off point c used for the characterization of disease is varied. Suppose that measurements Y1 from
the non-diseased group follow a distribution with distribution function F1 (i.e. Y1 � F1) and
similarly for the diseased group, Y2 � F2. The specificity of the diagnostic test, for a specific cut-
off point c, is specðcÞ ¼ ProbðY1 � cÞ ¼ F1ðcÞ. The specificity is also known as the true negative
fraction (TNF). Similarly, the sensitivity, defined as sensðcÞ ¼ ProbðY2 4 cÞ ¼ 1� F2ðcÞ, is often
called the true positive fraction (TPF). The area under the ROC curve (AUC) is widely used as
an overall performance index for the diagnostic marker under consideration. It holds that
AUC ¼ ProbðY1 5Y2Þ.

12

Regarding the general three-class classification problem, we consider three continuous random
variables that refer to the marker scores for each group, namely Y1,Y2,Y3. Without loss of
generality, we may assume that higher marker measurements are more indicative of disease and
that the ordering of interest is Y1 5Y2 5Y3. Two ordered decision thresholds, c1< c2, are needed
for the characterization of disease states resulting in three possible true class fractions (TCFs),
namely TCFi, i¼ 1, 2, 3, that are defined as follows:

TCF1 ¼ PðY1 � c1Þ, TCF2 ¼ Pðc1 5Y2 � c2Þ, TCF3 ¼ PðY3 4 c2Þ
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The graph of all possible TCFi, i¼ 1, 2, 3, triplets obtained based on all possible pairs of the
decision threshold values c1< c2 represents the ROC surface, that is, ROCðc1, c2Þ ¼ ðTCF1ðc1Þ,
TCF2ðc1, c2Þ,TCF3ðc2ÞÞ. Suppose that Y1 � F1,Y2 � F2, and Y3 � F3. The functional form of the
ROC surface is11

ROCðTCF1,TCF3Þ ¼ F2ðF
�1
3 ð1� TCF3ÞÞ � F2ðF

�1
1 ðTCF1ÞÞ ð1Þ

The corresponding index of diagnostic performance for the diagnostic marker under study is the
volume under the ROC surface (VUS). It holds that VUS ¼ PðY1 5Y2 5Y3Þ.

13 Further
generalization of the ROC context in the general case of k-class classification, where an ROC
manifold (or hyper-surface) is defined, has been described in the literature.11 Specifically, denote
with Y1,Y2, . . . ,Yk the marker scores for each of the k classes: k possible TCFs can be defined based
on c1 5 c2 5 � � � 5 ck�1 ordered decision thresholds. The corresponding TCFs define the ROC
manifold. The overall discriminatory capacity of the marker under study is summarized by the
the hyper-volume under the ROC manifold (HUM) which is equal to the probability
PðY1 5Y2 5 � � � 5YkÞ.

After a diagnostic marker has been shown to be useful for diagnostic purposes, the selection of an
optimal cut-off point based on some optimality criterion is needed. In practice, an optimal cut-off
point c� (two-class case), a pair of cut-off points, c�1 5 c�2 (three-class case), or a set of ðk� 1Þ ordered
cut-off points (k-class case), are needed in order for the practitioner to classify each subject in one of
the classes considered. The maximum of the Youden index is a very popular criterion used for cut-
off point selection in the two-class case.14 It is defined as J ¼ maxcfTPFðcÞ þ TNFðcÞ � 1g ¼
maxcfF1ðcÞ � F2ðcÞg. It can be estimated parametrically, non-parametrically, or empirically by
plugging in the corresponding distribution estimates of each of the two groups.15

Although other criteria can be considered,16 we will focus on the Youden index and its
generalization to three or more classes generalizing and developing established two-class
methodology.15 In the two-class case, the effectiveness of the optimal Youden index-based cut-off
estimate ĉ� is examined by the evaluation of the sensitivity and specificity pair associated with c�

along with the corresponding joint confidence region for sensitivity and specificity. Since c� is
estimated from data obtained on both non-diseased and diseased subjects, the corresponding
sensitivity and specificity estimates are correlated and their variability changes accordingly due to
the estimation of c�. Typically, this correlation has been overlooked in the literature. Recently, joint
confidence regions for the pair of sensitivity and specificity associated with c� that take into account
the aforementioned correlation have been proposed.15,17 In this work we generalize to the general
three- and k-class classification problem.

A generalization of the maximum of the Youden index in the three- and the k-class case has been
developed for the empirical1,18 and the parametric case assuming normality.19 For the three-
class case,

J3 ¼ max
c1,c2;c15c2

fTCF1 þ TCF2 þ TCF3 � 1g

¼ max
c1,c2;c15c2

fF1ðc1Þ þ F2ðc2Þ � F2ðc1Þ � F3ðc2Þg
ð2Þ

The estimate of J3 is associated with an estimate of the pair of cut-off points, ĉ�1, ĉ
�
2, that can be

used in practice for screening purposes. The associated triplet (TCF1ðĉ
�
1Þ, TCF2ðĉ

�
1, ĉ
�
2Þ, TCF3ðĉ

�
2Þ)

characterizes the marker under study. The construction of confidence regions that correspond
simultaneously to TCFi, i¼ 1, 2, 3, will allow for proper inference. In the two-class case there is
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available literature that addresses this issue both in cases where the cut-off is fixed and known12,20 as
well as in cases where the cut-off is estimated by the available data.15,17 Given that the optimal cut-
off points are estimated based on the available data, the TCFi, i¼ 1, 2, 3, estimates are correlated
and their variability changes accordingly similarly to the two-class case. We extend existing
methodology15 and construct simultaneous three-dimensional confidence regions for the TCFi,
i¼ 1, 2, 3, when the pair of cut-off points is estimated from the data. Solutions for this issue in
the three-class and general k-class case have not appeared in the literature. We generalize and enrich
the two-class case approaches that we have recently proposed.15

In Section 2.1, we first present a parametric approach for the construction of joint three-
dimensional confidence regions for the triplet TCF1, TCF2, and TCF3 associated with the
Youden-based (J3) pair of cut-offs, based on the delta method. We initially discuss
the construction of rectangular confidence regions. We then extend our approach to cases where
the correlation and variances of the estimates of TCF1, TCF2, and TCF3 associated with the
estimated cut-off pair of ðĉ�1, ĉ

�
2Þ are taken into account, by introducing ‘egg-shaped’ three-

dimensional confidence regions. In Section 2.2, we robustify our approaches by exploring the use
of monotone transformations that lead to marginal normality. We focus on the Box–Cox
transformation and illustrate how the variability of the extra parameter of the transformation is
taken into account. In Section 3, we develop two non-parametric alternatives. The first is based on
kernel smoothing along with smooth bootstrapping17 and the second is based on the logspline
technique.21 In Section 4, we offer a framework for the generalization in the general k-class case.
A large simulation study is presented in Section 5, while the application of our methodological
results to the Trails A test when screening for dementia is illustrated in Section 6. We end with a
discussion.

2 Parametric approaches

2.1 Delta method approach

Here we assume that Y1 � Nð�1, �
2
1Þ, Y2 � Nð�2, �

2
2Þ, Y3 � Nð�3, �

2
3Þ. Then,

TCF1 ¼ �
c1 � �1

�1

� �
, TCF2 ¼ �

c2 � �2

�2

� �
��

c1 � �1

�1

� �
, TCF3 ¼ 1��

c2 � �2

�2

� �
ð3Þ

ðTCF1,TCF2,TCF3Þ define the ROC surface described by equation (1). The corresponding
parametric generalized Youden index is

J3ðc1, c2Þ ¼
1

2
�

c1 � �1

�1

� �
��

c1 � �2

�2

� �
þ�

c2 � �2

�2

� �
��

c2 � �3

�3

� �� �
ð4Þ

The optimal cut-off points maximizing J3 are defined by19

c�1 ¼

�2�
2
1 � �1�

2
2

� �
� �1�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2Þ

2
þ ð�21 � �

2
2Þ log

�2
1

�2
2

	 
r
�21 � �

2
2

c�2 ¼

�3�
2
2 � �2�

2
3

� �
� �2�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � �3Þ

2
þ ð�22 � �

2
3Þ log

�2
2

�2
3

	 
r
�22 � �

2
3

ð5Þ
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For �1 ¼ �2 ¼ �3, maximizing equation (4) results in c�1 ¼
�1þ�2

2 and c�2 ¼
�2þ�3

2 . As a result, the
latter formulas for c�1, c

�
2 do not follow from equation (5). The corresponding estimates ĉ�1, ĉ

�
2 are

then obtained by substituting in equations (5) the maximum likelihood estimates of
�1,�2,�3, �1, �2, �3. The associated estimated optimal triplet of TCF on the ROC surface is
defined by ðdTCF1ðĉ

�
1Þ,

dTCF2ðĉ
�
1, ĉ
�
2Þ,

dTCF3ðĉ
�
2ÞÞ where

dTCF1ð�Þ, dTCF2ð�Þ, dTCF3ð�Þ are the maximum
likelihood estimates of TCF1ð�Þ, TCF2ð�Þ, TCF3ð�Þ.

The TCFi, i¼ 1, 2, 3, are bounded, being probabilities, and thus the triplet ðdTCF1, dTCF2, dTCF3Þ

lies in the unit cube. Consequently, use of a normal approximation directly for the construction of
confidence regions may be inappropriate, especially for small sample sizes. Accordingly, we use the
transformation ��1ð�Þ in order to project the TCFi, i¼ 1, 2, 3, proportions onto the real line. We
define

�1 ¼ ��1ðTCF1ðc
�
1ÞÞ, �2 ¼ ��1ðTCF2ðc

�
1, c
�
2ÞÞ, �3 ¼ ��1ðTCF3ðc

�
2ÞÞ ð6Þ

where for the parametric model in equation (3) we obtain

�1 ¼
c�1 � �1

�1
, �2 ¼ ��1 �

c�2 � �2

�2

� �
��

c�1 � �1

�1

� �� �
, �3 ¼

�2 � c�2
�2

Denote with �̂1, �̂2, �̂3 the corresponding maximum likelihood estimates to which we apply
standard normal asymptotic theory. Using the delta method we obtain the variances of the �̂i,
i¼ 1, 2, 3.22 Technical details are offered in Section 2.1 of the supplementary material of this article.

To obtain an approximate 95% rectangular parallelepiped region for the optimal TCF we use the
conservative Bonferroni adjustment. We thus consider univariate confidence intervals for �1, �2 and
�3 of the following form:

�̂i � 2:3911 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�̂iÞ

q
, i ¼ 1, 2, 3 ð7Þ

Note that if ðTCF
ðl Þ
i Þ,TCF

ðuÞ
i Þ is a 0.9830% confidence interval for TCFi then the three-

dimensional rectangle ðTCF
ðl Þ
1 ,TCF

ðuÞ
1 Þ � ðTCF

ðl Þ
2 ,TCF

ðuÞ
2 Þ � ðTCF

ðl Þ
3 ,TCF

ðuÞ
3 Þ is a 95% confidence

region for TCF1,TCF2,TCF3. To obtain the desired confidence region in the unit cube, we
transform (7) back to the ROC surface space and consider the following form of confidence
intervals for the TCFs:

� �̂i � 2:3911

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�̂iÞ

q� �
, i ¼ 1, 2, 3 ð8Þ

Even though such a rectangular confidence region may be easier for practitioners to interpret,
ellipsoidal confidence regions are preferable since they can accommodate the correlation between
�̂1, �̂2, �̂3. The covariance between �̂i, �̂j, ði, j Þ ¼ 1, 2, 3, is given in Section 2.1 of the supplementary
material of this article. An estimate �̂ of the variance-covariance matrix � that corresponds to
(�̂1, �̂2, �̂3) can thus be obtained. The ellipsoid defined by

ðy� aÞt�̂�1ðy� aÞ ¼ q3;0:95 ð9Þ

where a ¼ ð�̂1, �̂2, �̂3Þ and q3;0:95 is the 95th percentile of a �23 distribution, is an approximate 95%
confidence region for the triplet ð�1, �2, �3Þ. We transform back to the unit cube using �ð�Þ obtaining

Bantis et al. 1433



an ‘egg-shaped’ confidence region in the ROC surface space. Simulated examples for both the
rectangular and egg-shaped confidence regions are provided in Figure 1 of the supplementary
material. This approach will be referred to as ‘Delta’ in the simulation study of Section 5.

2.1.1 Bootstrap alternative

Since with small sample sizes the delta method approach may not be appropriate for estimating �,
we may resort to a bootstrap-based approach as follows: we sample with replacement measurements
of Y1, Y2, and Y3. We then use the bootstrap samples in order to obtain an estimate of the variance-
covariance matrix �, namely �̂ðbootsÞ. We use the bootstrap-based estimated variances required to
obtain the corresponding three-dimensional rectangular confidence region as well as the estimated
covariances to obtain the corresponding ellipsoid confidence region from equation (9).

In addition, instead of using �23 to obtain the confidence region we use the 95th percentile of the
bootstrap distribution of

q� ¼ ð�1ðbootsÞ � �̂1, �2ðbootsÞ � �̂2, �3ðbootsÞ � �̂3Þ
0�̂�1ðbootsÞð�1ðbootsÞ

� �̂1, �2ðbootsÞ � �̂2, �3ðbootsÞ � �̂3Þ
ð10Þ

where �iðbootsÞ, i¼ 1, 2, 3, is a vector containing the bootstrap values of the corresponding �i.
17 We

transform back to the unit cube using �ð�Þ in order to obtain an ‘egg-shaped’ confidence region in
the ROC surface space as previously. This approach will be referred to as ‘Boots’ in the simulation
study.

2.2 Box–Cox approach

Assuming that marker measurements are normally distributed is restrictive and can lead to incorrect
results when this assumption is violated. Since the ROC curve (and surface) is invariant under
monotonic transformations, the Box–Cox transformation to achieve normality is often used in
the ROC context.16,23,24 The Box–Cox transformation is defined by

Y1ð�Þ ¼

Y�1 � 1

�
, � 6¼ 0

logðY1Þ, � ¼ 0

8<:
and similarly for Y2 and Y3.

Technical details for the derivation of �̂ð�Þ, the estimate of the variance-covariance matrix of the
corresponding (�̂1ð�Þ , �̂2ð�Þ , �̂3ð�Þ ), are given in Section 2.2 of the supplementary material of this article.
The parameter � affects the information matrix and its variability must be taken into account during
the construction of confidence regions when the Box–Cox transformation is employed. This fact has
been documented in previous work.15 Notice that the partial derivatives in the formulas above are
analogous to those in the two-class case.15

Based on the supplementary material section equations (4) and (5) for the variances and
covariances of the �̂ið�Þ, i¼ 1, 2, 3, one can straightforwardly construct the desired three-
dimensional confidence rectangle and ‘egg-shaped’ regions from equations (8), (9) after using the
Box–Cox transformation. This approach will be referred to as ‘Box–Cox’ in the simulation study.

2.2.1 Bootstrap alternatives after Box–Cox

The bootstrap-based analogue of the Box–Cox approach involves sampling with replacement from
Y1,Y2,Y3 and performing the Box–Cox transformation for each bootstrap sample in order to take
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into account the variability of the estimate of the parameter �. In order to construct the ellipsoidal
confidence regions one can use �23 as in equation (9). This approach will be referred to as ‘Boots
(BC)’ in the simulation study. A second option, as follows from equation (10), is to use the 95th
percentile of the bootstrap distribution of

q�ð�Þ ¼ �1ð�ÞðbootsÞ � �̂1ð�Þ , �2ð�ÞðbootsÞ � �̂2ð�Þ , �3ð�ÞðbootsÞ � �̂3ð�Þ
	 
0
� �̂�1ð�Þ �1ð�ÞðbootsÞ � �̂1ð�Þ , �2ð�ÞðbootsÞ � �̂2ð�Þ , �3ð�ÞðbootsÞ � �̂3ð�Þ

	 
 ð11Þ

where �ið�ÞðbootsÞ, i¼ 1, 2, 3, is a vector of the bootstrap values of the �ið�Þ and �̂ð�Þ is the estimated �ð�Þ
matrix based on the supplementary material section equations (4) and (5). This approach will be
referred to as ‘Box–Cox-q’ in the simulation study.

Alternatively, as in Section 2.1.1, one can replace �̂ð�Þ in equation (11) with �̂ð�ÞðbootsÞ, the
bootstrap-based estimate of �ð�Þ. The latter approach is not assessed in the simulation study
presented in Section 5, since in general our simulations did not indicate any improvement when
using the bootstrap estimated covariance matrix.

3 Non-parametric approaches

In Section 2, we assumed that the marker scores for all three groups are either normally distributed
or can be transformed to normality using a Box–Cox transformation. This transformation to
normality may not always be adequate. In such situations non-parametric approaches may be
preferable. A simple approach would be to estimate the ROC surface empirically using the
standard empirical distribution functions to obtain non-parametric estimates of the TCFi and
then implement a bootstrap procedure in order to obtain confidence regions. Such a procedure
would imply sampling m times with replacement from Y1,Y2,Y3 and obtaining the empirical
ROC surface, the corresponding estimates of the optimal cut-off points, and the empirical
estimates of �i, i¼ 1, 2, 3, from equation (6), for each bootstrap sample. Using the m bootstrap
triplets of these estimates of �i, i¼ 1, 2, 3, one can in turn obtain an estimate of the corresponding
variance-covariance matrix and proceed as in the previous section.

However, as pointed out in previous work,15 for small to moderate sample sizes, a smooth
estimate of the ROC surface may be preferable in order to derive valid estimates for �, the
variance-covariance matrix of the estimated triplet (�1, �2, �3). Here, we investigate both a kernel-
and a spline-based approach.

3.1 Kernel-based approach

One may construct a kernel-based estimate of the ROC surface by plugging in the kernel estimate of
the underlying distribution of each group and then obtain confidence regions via bootstrapping.
However, we found that commonly used fixed bandwidth kernel approaches are not efficient enough
to deal with the scenarios presented in our simulations. Here, we explore the use of normal kernels in
combination with smooth bootstrapping.17 Specifically, we consider the normal kernel of the
following form for estimating the underlying distribution of the scores of each group:

F̂
ðkÞ
i ð yÞ ¼

1

ni

Xni
j¼1

�
y� yij
hi

� �
ð12Þ
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We employ bandwidths equal to hi ¼ 0:9minðsd ð yiÞ, iqrð yiÞ=1:34Þn
0:2
i where sd and iqr refer to the

standard deviation and interquartile range respectively.17,25,26 Under this setting, the Youden-index-
based cut-off points are obtained in a straightforward manner by plugging in the kernel-based
estimates of the three underlying distributions. The variance-covariance matrix of �̂i, i¼ 1, 2, 3, is
obtained by using a smooth bootstrap procedure.17 Specifically we propose the following algorithm:

. Step 0: Calculate h1, h2, h3 based on Y1, Y2, Y3 respectively. Derive the corresponding delta
estimates, b�1, b�2 and b�3, and the normal kernel estimates of F1,F2,F3.

. Step 1: Sample with replacement Y1, Y2, and Y3.

. Step 2: Set Y
ðsÞ
i ¼ Yi þ ei, where ei � Nð0, h2i Þ.

. Step 3: Based on Y
ðsÞ
i construct their kernel distribution estimates ðbF1

ðkÞ, bF2
ðkÞ, bF3

ðkÞÞ using hi of
Step 0 and obtain the estimates ĉ

�ðkÞ
1 , ĉ

�ðkÞ
2 of c�1 and c�2.

. Step 4: Obtain the �i estimates using the logit transformation of the estimated TCFi, namely

. �̂ðbÞ1 ¼ log itðdTCF1Þ ¼ log it F̂
ðkÞ
1 ðĉ

�ðkÞ
1 Þ

	 

,

. �̂ðbÞ2 ¼ log itðdTCF2Þ ¼ log it F̂
ðkÞ
2 ðĉ

�ðkÞ
2 Þ � F̂

ðkÞ
2 ðĉ

�ðkÞ
1 Þ

	 

, and

. �̂ðbÞ3 ¼ log itðdTCF3Þ ¼ log it 1� F̂
ðkÞ
3 ðĉ

�ðkÞ
2 Þ

	 

.

. Step 5: Repeat steps 1 to 4 m times to obtain m bootstrapped estimates of each delta.

. Step 6: Based on the previous step derive an estimate of � (which we denote by �̂ðbÞ), and proceed
to the construction of the ellipsoid: ðy� aÞt�̂�1ðbÞ ðy� aÞ ¼ q3;0:95 where a ¼ ð�̂1ðbÞ, �̂2ðbÞ, �̂3ðbÞÞ and
q3;0:95 is the 95th percentile of the �23 distribution. Alternatively, one may use the 95th percentile
of q� as given by equation (10).

. Step 7: Transform back to the ROC space by using the inverse logit function and obtain a three-
dimensional egg-shaped 95% confidence region for the triplet ðTCF1,TCF2,TCF3Þ.

We assess the kernel-based method that involves the smooth bootstrap and is based on q� for the
construction of the confidence region in the simulation study (Section 5) and denote this approach
by ‘Kernels(SB)-q’.

3.2 Logspline approach

Another convenient choice is the logspline approach.15,21 We estimate F1, F2 and F3 using the
logspline approach as outlined in Section 2.3 of the supplementary material and then, based on
these logspline estimates, obtain the associated cut-off points and corresponding TCFs. This
approach has been shown to perform satisfactorily in the two-class case.15 After using the probit
(or logit) transformation to project the TCFs onto the real line, we obtain the corresponding �̂i, i¼ 1,
2, 3. Using the bootstrap, where for each bootstrap sample we repeat the estimation with the
logspline approach, we obtain the estimated covariance matrix for ð�̂1, �̂2, �̂3Þ. Finally, we proceed
as in the previous section in order to construct the corresponding confidence regions for
ðTCF1,TCF2,TCF3Þ. We note that the knot selection is an automated procedure in the logspline
approach and involves using stepwise addition or deletion. The package polspline can be used for
logspline estimation in R. The logspline approach is assessed in conjunction with equation (9) for the
construction of confidence regions for the triplet ðTCF1,TCF2,TCF3Þ in the simulation study we
present in Section 5. This approach will be referred to as ‘Logspline’ in the simulation study. We also
initially examined an alternative version using a bootstrap-based percentile point instead of the 95th
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percentile of the �23 distribution. This performed poorly and therefore was excluded from the
simulation study.

4 The k-class case

There are situations where classification to more than three classes is of interest.1 Our approaches
can be straightforwardly extended to k-class classification problems. The corresponding marker
measurements are denoted by Y1,Y2, . . . ,Yk and the underlying distributions by F1,F2, . . . ,Fk.
The ordering of interest is Y1 5Y2 5 � � � 5Yk. In this case we have ðk� 1Þ cut-offs,
c1 5 c2 5 � � � 5 ck�1. By defining a fine grid in the support of the possible cut-offs we obtain, but
cannot visualize, the corresponding ROC manifold based on TCF1ðc1, . . . , ck�1Þ, . . . ,
TCFkðc1, . . . , ck�1Þ. The hypervolume of such an ROC manifold equals 1=k! for an uninformative
marker. Subtleties for the construction of the ROC manifold are given in the literature.11 The
generalized Youden index for the k-class case is defined as follows:1

Jk ¼ max
c1,...,ck�1;c1 5 c2 5 ���5 ck�1

fTCF1 þ � � � þ TCFk � 1g

¼ max
c1,...,ck�1;c1 5 c2 5 ���5 ck�1

F1ðc1Þ � F2ðc1Þ þ � � � þ Fk�1ðck�1Þ � Fkðck�1Þ
� � ð13Þ

If the normality assumption is justified for each one of the k groups then as in the three-class case
we can obtain

c�j ¼

�jþ1�
2
j � �j�

2
jþ1

	 

� �j�jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�j � �jþ1Þ

2
þ ð�2j � �

2
jþ1Þ log

�2
j

�2
jþ1

� �s
�2j � �

2
jþ1

ð14Þ

and for the case of equal variances c�j ¼
�jþ�jþ1

2 , j ¼ 1, . . . , k� 1. In order to construct k-dimensional
confidence regions for the associated optimal ðTCF1, . . . ,TCFkÞ point we define �j ¼ ��1ðTCFj Þ and
its corresponding maximum likelihood estimate is denoted by �̂j. We can then apply all proposed
methods as previously discussed. Both a hyper-ellipsoid and a hyper-rectangular confidence
region can be obtained. The hyper-ellipsoid is of the form ðx� aÞt�̂�1ðx� aÞ ¼ qk;0:95, where
a ¼ ð�̂1, . . . , �̂kÞ and qk;0:95 is the 95th percentile of a �2k or can be obtained via bootstrapping
similarly to the three-class case. Here, the Bonferroni adjustment implies that the corresponding
univariate intervals must have a 0:95

1
k theoretical coverage in order to obtain an approximate 95%

confidence region in the k-dimensional space.

5 Simulation study

We conducted a large simulation study to evaluate our methods in terms of coverage and mean
confidence region volumes in the three-class case. We considered different scenarios (detailed in
Table 1 of the supplementary material) based on the normal, log-normal, and gamma
distributions. The gamma distribution scenarios were included although outside the Box–Cox
family of transformations in order to check the robustness of the Box–Cox-based methods. The
parameters of these distributions were set in order to achieve J3 theoretical values of 0.4, 0.6, or 0.8.
The sample size scenarios we explore are (50, 50, 50), (100, 100, 100), (200, 200, 200), and (50, 100,
200) for (n1, n2, n3). The nominal coverage was 0.95.
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For the scenarios involving three normal distributions we considered the seven methods described
in Sections 2 and 3, namely: ‘Delta’, ‘Boots’, ‘Box–Cox’, ‘Boots (BC)’, ‘Box–Cox-q’, ‘Kernels(SB)-
q’, and ‘Logspline’. Results are shown in Table 2 of the supplementary material. We only present
results for the ‘egg-shaped’ regions since the rectangular regions result in consistently larger volumes
and poorer coverage given that they do not take into account the correlations of the TCFs.

For the normal case, results are satisfactory for almost all J3 values and sample sizes. For J3 ¼ 0:4 and
(n1, n2, n3)¼ (50, 50, 50) the coverage is somewhat lower than the nominal one except for the
‘Kernels(SB)-q’ method. The ‘Boots’ method provides somewhat better results than the ‘Delta’ method
in terms of both coverage and confidence region volumes for the case J3 ¼ 0:4 and (n1, n2, n3)¼ (50, 50,
50). As the sample size increases the methods yield almost identical results, as expected.

The ‘Box–Cox’ approach provides approximately the same coverage as ‘Boots’ and ‘Delta’, with
the cost of a larger volume. This is expected since the variability of the extra parameter � is taken
into account. This is the price to pay for being more robust and not assuming that the data are
intrinsically normally distributed.

The ‘Boots (BC)’ method yields the least satisfactory results as compared to the possible
parametric alternatives. The non-parametric approaches result in nice coverage in all cases but
with substantially larger volumes, as expected. This is the price to pay for not making any
parametric assumptions about the underlying data.

The non-normal case scenarios are presented in Table 3 of the supplementary material of the
article. We considered ‘Box–Cox’, ‘Boots (BC)’, ‘Box–Cox-q’, ‘Kernels(SB)-q’, and ‘Logspline’ given
that the use of ‘Delta’ and ‘Boots’ is not recommended a priori in these cases. Note that even though
the gamma distribution is not in the Box–Cox transformation family the ‘Box–Cox’ and ‘Box–Cox-
q’ procedures still provide reasonable results. The usefulness of the Box–Cox transformation
approach in the ROC context even for distributions which are not strictly in this family has been
pointed out previously.14,15,24

We observe that most methods provide satisfactory coverage results in almost all cases.
Specifically, the ‘Box–Cox’ approach performs nicely although for small sample sizes and

Table 1. Trails A assessment and optimal cut-off points. Cut-off points are transformed back to the original scale in

the Box–Cox case for convenience. Also, 95% bootstrap confidence intervals based on estimated percentiles of

bootstrap distributions (1000 replications used) are given.

Methods VUS J3 c1 c2

‘Box–Cox’ 0.745 (0.669, 0.821) 0.588 (0.507, 0.670) 46.12 (43.28, 48.96) 81.92 (73.56, 90.29)

‘Box–Cox-q’ 0.745 (0.669, 0.821) 0.588 (0.507, 0.670) 46.12 (43.28, 48.96) 81.92 (73.56, 90.29)

‘Kernels(SB)-q’ 0.689 (0.650, 0.729) 0.557 (0.463, 0.650) 48.06 (43.26, 52.86) 81.38 (70.41, 92.35)

‘Logspline’ 0.752 (0.658, 0.846) 0.600 (0.501, 0.727) 44.91 (39.21, 50.62) 71.43 (57.29, 85.57)

Table 2. TCFs for the three disease states corresponding to Trails A followed by 95% marginal

confidence intervals. The class order is U<MCI<D.

Methods TCFU TCFMCI TCFD

‘Box–Cox’ 0.789 (0.716, 0.849) 0.624 (0.505, 0.732) 0.764 (0.622, 0.870)

‘Box–Cox-q’ 0.789 (0.722, 0.845) 0.624 (0.502, 0.734) 0.764 (0.655, 0.851)

‘Kernels(SB)-q’ 0.813 (0.703, 0.889) 0.574 (0.422, 0.714) 0.726 (0.576, 0.837)

‘Logspline’ 0.784 (0.642, 0.881) 0.581 (0.403, 0.741) 0.862 (0.716, 0.939)
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J3 ¼ 0:4 its coverage is somewhat reduced. This is corrected with the method ‘Box–Cox-q’
which provides better coverage for small sample sizes with a cost of a somewhat larger volume.
The ‘Box–Cox-q’ approach seems to improve ‘Box–Cox’ in terms of coverage in almost all cases
both in Tables 2 and 3 of the supplementary material of the article. As sample sizes increase these
two methods yield similar results as expected. The method ‘Boots (BC)’ performs poorly compared
to its competitors. The non-parametric approaches, that is, ‘Logspline’ and ‘Kernels(SB)-q’, yield
coverage close to the nominal level in most cases, but, as in the normal case, with substantially larger
volumes. The ‘Kernels(SB)-q’ approach results in smaller volumes than ‘Logspline’, a preferable
property that will result in tighter marginal confidence intervals for the TCFs. Comparing
‘Logspline’ and ‘Kernels(SB)-q’ no clear winner in terms of coverage exists. Regarding the
parametric approaches, the ‘Box–Cox-q’ method provides the most satisfactory coverage
although with somewhat larger volumes than ‘Box–Cox’.

6 Application

A total of 245 patients with Parkinson’s disease underwent the TMT Part A (also referred to as
‘Trails A’ in the sequel) as a routine examination. Based on a battery of cognitive tests used for the
characterization of cognitive impairment, 170 patients were classified as unimpaired (U), scoring
within the normal range for the test battery. Fifty-two patients were classified as having MCI, while
23 patients were classified as having dementia (D). In terms of the TMT Part A, the latter group is
expected to have a slow mean completion time, while patients with MCI are expected to have
completion times that are intermediate relative to Parkinson’s disease patients who show normal
cognition (U). This dataset is available in the online supplementary material of this article.

Unimpaired patients (U) had a mean completion time of 37.71 ð�11:39Þ seconds, similar to that
expected of an older population of otherwise healthy controls. Patients with MCI had an average of
59.73 ð�19:57Þ seconds, while patients with dementia (D) had an average of 122.83 ð�57:09Þ seconds.
The Anderson–Darling test for normality was used. Data did not support the normality assumption in
general (A¼ 1.43, p¼ 0.001 for U, A¼ 0.69, p¼ 0.069 for MCI, A¼ 0.87, p¼ 0.022 for D).

The Box–Cox transformation was used, which resulted in p> 0.1 for the Anderson–Darling test for
all three groups. As a result, the delta method approach and a bootstrap alternative were employed for
the transformed measurements (‘Box–Cox’ and ‘Box–Cox-q’), while the kernel and logspline methods
were employed for the untransformed measurements (‘Kernels(SB)-q’, ‘Logspline’).

VUS, J3 and the corresponding optimal cut-off points along with 95% confidence intervals are
shown in Table 1. The ‘Kernels(SB)-q’ method seems to underestimate the VUS and J3, however,
this does not affect the optimal cut-off points and TCFs. We mention that the empirical VUS is 0.754
(0.674, 0.834).

Resulting TCFs are given in Table 2, while the corresponding ROC surfaces along with their ‘egg-
shaped’ confidence regions for the TCFs are illustrated in Figure 1. For this particular example
‘Boots (BC)’ (not shown) and ‘Box–Cox-q’ provide virtually identical results, which was shown not
to hold in general. As expected from the simulation study, the non-parametric confidence regions are
much larger than those based on the Box–Cox transformation. All four methods result in cut-off
points in the vicinity of 45 for c1 and in the vicinity of 80 for c2. These would result in TCFU around
80%, TCFMCI around 60% and TCFD around 75%. We conclude that a quick screen based on
Trails A would classify patients with a completion time of less than 45 s as normal, patients in the
range 45–80 s as MCI, and patients above 80 s as D. The Trails A test is a quickly administered
diagnostic marker for cognitive impairment in Parkinson’s disease and the estimated cut-off points
could be taken into consideration in clinical practice.
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7 Discussion

We generalized and expanded on our two-class methods for the construction of confidence regions for
the optimal TCF in the ROC context to the three- and general k-class cases. These methods can be
useful in practice when interpreting the results of the assessment of a diagnostic marker that results in
three or more classes. Several parametric and non-parametric approaches have been proposed and
discussed generalizing previous results.15 Also, a kernel-based approach has been introduced here. The
simulation study of Section 5 has highlighted strengths and weaknesses of the proposed approaches
according to the distributional properties underlying the markers measurements.

Parametric approaches may not work as expected in practice when extreme departures from
normality are present and the Box–Cox transformation does not adequately address the problem.
The proposed non-parametric approaches, logspline and kernel-based, provide suitable alternatives
which cover a very wide range of applications in practice.

In contrast to other authors who used the Box–Cox transformation approach for ROC curve
analyses23 we found it necessary to take into account the variability due to estimating the
transformation parameter lambda. This may be due to the fact that previous authors considered
one-dimensional problems such as confidence intervals for the Youden index while our construction
of confidence regions in the ROC space is a multi-dimensional problem.

Figure 1. ROC surfaces and corresponding proposed 95% confidence regions for the Trails A test. (a) ‘Box–Cox’

approach. (b) ‘Box–Cox-q’ approach. (c) ‘Kernels(SB)-q’ approach. (d) ‘Logspline’ approach.
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Our work revolves around the use of the generalized Youden index for cut-off point selection in the
three- and k-class classification problems. The generalized Youden index apart from its simplicity has
a useful clinical interpretation as the accuracy of the diagnostic marker under consideration. Future
research may concern the use of our approaches when other indices are preferred for cut-off point
selection in the three-class case. Such indices have recently been proposed.27

We have illustrated our approach from a dataset of Parkinson’s disease patients based on the
TMT Part A as a screen for cognitive impairment. We have generated cut-off values with suitable
confidence intervals using this simple test for three cognitive states associated with this
neurodegenerative condition. The three-class approach has been shown to be convenient in
clinical practice in applications that cannot be accommodated by the two-class case.1,2,9,11,19,27 As
a result our methods may find a wide range of applicability in such situations, given that there are no
alternative approaches that will result in correct coverage when the optimal cut-off points are
estimated from the data.

A Matlab package (named egg3d) for the implementation of ‘Delta’, ‘Boots’, ‘Box–Cox’, ‘Boots
(BC)’, ‘Box–Cox-q’, and ‘Kernels(SB)-q’ is offered with the supplementary material of the article,
along with the dataset used for the application in Section 6. Information on the use of the package is
provided in Section 4 of the supplementary material. R and Matlab code for the implementation of
the ‘Logspline’ method is available from the authors upon request.

Supplementary material

This paper is accompanied by supplementary material which includes technical details for the delta
method approach, the Box–Cox approach, and the logspline approach for the construction of
confidence regions for TCF triplets, as well as the simulation scenarios and results (Tables 1 to 3
therein), and information on the use of the Matlab package egg3d which was produced by the
authors and can be used for the implementation of the proposed methodologies.
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