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We propose source-space independent component analysis (ICA) for separation, tomography, and time-course
reconstruction of EEG andMEG source signals. Source-space ICA is based on the application of singular value de-
composition and ICA on the neuroelectrical signals from all brain voxels obtained post minimum-variance
beamforming of sensor-space EEG orMEG.We describe the theoretical background and equations, then evaluate
the performance of this technique in several different situations, including weak sources, bilateral correlated
sources, multiple sources, and cluster sources. In this approach, tomographic maps of sources are obtained by
back-projection of the ICA mixing coefficients into the source-space (3-D brain template). The advantages of
source-space ICA over the popular alternative approaches of sensor-space ICA together with dipole fitting and
power mapping via minimum-variance beamforming are demonstrated. Simulated EEG data were produced
by forward head modeling to project the simulated sources onto scalp sensors, then superimposed on real EEG
background. To illustrate the application of source-space ICA to real EEG source reconstruction, we show the
localization and time-course reconstruction of visual evoked potentials. Source-space ICA is superior to the
minimum-variance beamforming in the reconstruction of multiple weak and strong sources, as ICA allows
weak sources to be identified and reconstructed in the presence of stronger sources. Source-space ICA is also
superior to sensor-space ICA on accuracy of localization of sources, as source-space ICA applies ICA to the time-
courses of voxels reconstructed from minimum-variance beamforming on a 3D scanning grid and these time-
courses are optimally unmixed via the beamformer. Each component identified by source-space ICA has its
own tomographic map which shows the extent to which each voxel has contributed to that component.

© 2014 Elsevier Inc. All rights reserved.
Introduction

A substantial advantage of electroencephalography (EEG) and
magnetoencephalography (MEG), over other noninvasive functional
imaging of the brain, such as functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET), is their millisecond
temporal resolution. This high temporal resolution provides the oppor-
tunity for the study of highly transient brain source activities.

In EEG andMEG, the inverse solution is used to estimate the location
of sources and corresponding time-courses. The inverse problem in EEG
andMEG, however, is ill-posed as the EEG/MEG scalp sensors are highly
outnumbered by the brain source signals.
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Several approaches have been proposed for solving the inverse
problem including dipole fitting (Mosher et al., 1992; Sarvas, 1987;
Uutela et al., 1983), minimum-norm spatial filters (Dale et al., 2000;
Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui, 2002), and
minimum-variance spatial filters (Greenblatt et al., 2005; Robinson
and Vrba, 1998; Sekihara et al., 2001; Van Veen et al., 1997). Dipole
fitting is a popular technique which assumes that a predefined number
of dipoles have generated the given EEG/MEG segment. The main limi-
tation of this technique is that an arbitrary number of sources must be
specified in advance. In addition, dipole fitting finds a single point for
each brain source and is unable to produce a tomographic map.
Minimum-norm based spatial filters, such as the original minimum-
norm filter (Hämäläinen and Ilmoniemi, 1994) and standardized low
resolution brain electromagnetic tomography (sLORETA) (Pascual-
Marqui, 2002), produce a tomographic map for the whole brain for a
given MEG/EEG epoch and do not require prior knowledge of the
number of brain sources. Minimum-variance spatial filters, such as the
EG source separation, localization, and time-course reconstruction,
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adaptive minimum variance beamformers (Robinson and Vrba, 1998;
Sekihara et al., 2001; Van Veen et al., 1997), scan the whole brain
(source-space) voxel by voxel and estimate the power of each voxel
for a given epoch to produce a tomographic map. Minimum-variance
beamformers have been shown to have a higher spatial resolution
than minimum-norm based filters and can reconstruct signal sources
with a small signal-to-noise-ratio (SNR) (Jonmohamadi et al., 2014a;
Sekihara et al., 2005).

The recently proposed Champagne algorithm (Owen et al., 2012;
Wipf et al., 2009, 2010) has shown improvement over other popular
source localization algorithms in terms of accuracy, robustness to
correlated sources, and computational efficiency. However, in the
performance evaluation of Champagne (Owen et al., 2012), there is no
example of the reconstruction of weak sources, e.g., SNR b 1. Cham-
pagne is dependent on segmentation of the EEG/MEG to pre- and
post-stimulus epochs, and performance of Champagne is partly depen-
dent on the orientation of the sources as the performance drops when
the orientation of the sources is not known (Owen et al., 2012).

The above-mentioned techniques are based on detecting sources
based on measuring the power and, therefore, these techniques may
not be able to detect weak sources in the presence of stronger interfer-
ing sources. Besides measuring the power of the signals for source
localization, the statistical properties of the signals, such as entropy
and non-Gaussianity, can be estimated and used as a means to detect
and separate source signal time-courses. Independent component
analysis (ICA) is a blind source separation (BSS) technique which aims
to separate P mutually statistically independent, zero mean, sources
from M linearly combined signal mixtures (Sanei and Chambers,
2007). In EEG and MEG, ICA has been extensively used for component
extraction of event related potentials (ERPs) (Jervis et al., 2007; La
Foresta et al., 2009; Makeig et al., 2004; Onton et al., 2006; Ventouras
et al., 2010) and for artifact removal (Fatima et al., 2013; Jung et al.,
1998, 2000).

In the case of source localization, ICA accompanied with dipole
fitting (Makeig et al., 2004) has been applied to localize and reconstruct
the time-course of the sources. In this approach, after applying ICA on
EEG (sensor-space ICA), dipole fitting is used to localize the identified
sensor-space components in the source-space (brain). The limitation
of this approach is that dipole fitting does not provide a tomographic
map and shows a single point as the location of the generator of the
identified sensor-space independent component. In another approach
(Ventouras et al., 2010), sLORETA has been applied instead of dipole
fitting for the components of sensor-space ICA which can provide the
tomographic maps. As a minimum-norm spatial filter, sLORETA has
been shown to have low spatial resolution compared to minimum-
variance beamformers (Sekihara et al., 2005) and, as will be demon-
strated, dipole fitting of sensor-space independent components is not
accurate in localization of sources.

We propose source-space ICA for separation, tomography and time-
course reconstruction of EEG and MEG source signals (Jonmohamadi
et al., 2013), which, similar to minimum-variance beamformers, has a
high spatial resolution and, similar to ICA, can separate weak and strong
sources and provide a unique spatial signature for every separated
source. Source-space ICA applies a vector minimum-variance spatial fil-
ter to reconstruct the time-series of the source-space (brain volume) on
a 3D scanning grid and then applies singular value decomposition and
ICA to separate the sources. This approach does not rely on a known
number of sources and their orientations, or pre- and post-stimulus seg-
mentation, but also estimates the orientations of the separated sources.
The difference between the popular sensor-space ICA and the proposed
source-space ICA is that, in sensor-space ICA, the ICA is applied to the
time-courses of the data from actual sensors (scalp EEG/MEG sensors),
whereas, in source-space ICA, the ICA is applied to the time-courses of
a 3D grid of virtual sensors in the brain (as reconstructed via
beamforming). Consequently, the independent components of sensor-
space signals have corresponding topographic maps, whereas the
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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independent components of the source-space signals have correspond-
ing tomographic maps.

In this paper, the performance of source-space ICA in several simu-
lated situations, including single and multiple weak sources, bilateral
correlated sources, and cluster sources is evaluated and compared
with the beamforming technique and sensor-space ICA/dipole fitting
(Makeig et al., 2004). Finally, we demonstrate the source-space ICA
approach for source reconstruction of real visual evoked potentials
(VEPs). Throughout this paper, plain italics indicate scalars, lower-case
boldface italics indicate vectors, and upper-case boldface italics indicate
matrices.

Methods

Problem formulation

The EEG signal for K time samples B(t) = [b(t1), b(t2),…, b(tK)]T, on
M sensors, at time point t is

b tð Þ ¼ ∫L rð Þq rð Þs t; rð Þd rð Þ þ η tð Þ; ð1Þ

and L(r) = [lx(r), ly(r), lz(r)] is a M × 3 lead-field matrix which shows
the sensitivity of scalp sensors in three orthogonal directions (x,y,z) to
the source signal s(t, r) located at r = [rx, ry, rz]T (mm) with a moment
of q(r) = [qx(r), qy(r), qz(r)]T (A·m), and η(t) is the additive noise.

The reconstructed time-course, ŝ t; rð Þ ¼ ½̂sx t; rð Þ; ŝy t; rð Þ; ŝz t; rð Þ�T, for
a given location r to the vector spatial filter can be written as

ŝ t; rð Þ ¼ WT rð Þb tð Þ; ð2Þ

whereW(r) = [wx(r),wy(r),wz(r)] is aM × 3matrix of the vector spa-
tial filter coefficients. One way to obtain a tomographic map for all the
brain locations (voxels) for a given EEG/MEG segment, is to measure
the power for each voxel

pξ rð Þ ¼ wT
ξ rð ÞCwξ rð Þ ¼ ŝξ t; rð Þ2

D E
;

ξ∈ x; y; z; r∈Ω;
ð3Þ

where 〈 ⋯ 〉 is the ensemble average, and Ω is the different location on
the scanning grid which covers the whole brain (source-space), and C
is the covariance matrix

C ¼ b tð ÞbT tð Þ
D E

: ð4Þ

In Eq. (3), only the dominant sourceswill be identified for the period
that C ismeasured butweaker sourcesmay not be identifieddue to their
small power.

Beamformer

Beamforming, as a formof spatial filtering, is a popular technique for
localization and signal reconstruction of brain sources in EEG and MEG
and has been successfully applied (Robinson and Vrba, 1998; Sekihara
et al., 2001; Van Veen et al., 1997) and the performances of different
beamformers have been evaluated (Greenblatt et al., 2005; Huang
et al., 2004; Sekihara et al., 2005). Of the several beamformers, we
chose the vector weight-normalized minimum-variance (WNMV)
beamformer, also known as Borgiotti–Kaplan (Sekihara et al., 2001),
as it has normalized weight vectors which results in unit noise gain
and, hence, the time-courses of all voxels have the same gain. The
weight matrix of the vector WNMV beamformer is

WWNMV rð Þ ¼ C−1L rð ÞP−1 rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P−1 rð ÞQ rð ÞP−1 rð Þ

q

EG source separation, localization, and time-course reconstruction,
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where P(r) and Q(r) are

P rð Þ ¼ LT rð ÞC−1L rð Þ and
Q rð Þ ¼ LT rð ÞC−1L rð Þ:

ð6Þ

The constraint of the WNMV beamformer ensures that the gain is
the same in all locations

WT
WNMV rð ÞWWNMV rð Þ ¼ I; ð7Þ

where I is the identity matrix.
Themagnitude time-series of each voxel via theWNMVbeamformer

is obtained via

ĵs t; rbð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr WT rbð Þb tð ÞbT tð ÞW rbð Þ� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2x t; rð Þ þ ŝ2y t; rð Þ þ ŝ2z t; rð Þ:

q
ð8Þ

For source-space power measurement via beamforming, the mean
power of the source-space over an EEG epoch is estimated via

ŝ t; rbð Þj jh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr WT rbð Þb tð ÞbT tð ÞW rbð Þ� �� �q

: ð9Þ

Source-space ICA

Source-space ICA comprises the following basic steps:

• Divide the brain (source-space) via a 3D scanning grid into N voxels.
• Apply the vector WNMV beamformer to sensor-space data to recon-
struct the 3 orthogonal time-series of each voxel in the source-space
and store it in the source-space data matrix (rows of the data matrix
are the time-series of each voxel).

• Determine the rank of the source-space data matrix.
• Apply SVD to the source-space data matrix to reduce the size of the
matrix to its rank.

• Separate the temporal and spatial subspaces of the reduced data
matrix.

• Apply ICA to the temporal subspace.
• Use the mixing matrix of the ICA to the spatial subspace to produce
tomographic maps of the identified components.

The block diagram of source-space ICA is shown in Fig. 1.
Source-space ICA is based on the application of ICA as a BSS

technique on the reconstructed time-courses of all brain voxels via the
vector WNMV beamformer. Since the reconstructed time-course for a
given location is the source signal at that location partially mixed with
interfering sources (i.e., ŝ t; rð Þ≠s t; rð Þ), ICA can be applied to separate
the statistically independent source signals. The reconstructed source-
space data matrix Ŝ∈ℜ 3N�Kð Þ for all N voxels and time samples K is

Ŝ ¼

ŝx t1; r1ð Þŝx t2; r1ð Þ⋯ŝx tK ; r1ð Þ
ŝy t1; r1ð Þŝy t2; r1ð Þ⋯ŝy tK ; r1ð Þ
ŝz t1; r1ð Þŝz t2; r1ð Þ⋯ŝz tK ; r1ð Þ
ŝx t1; r2ð Þŝx t2; r2ð Þ⋯ŝx tK ; r2ð Þ
ŝy t1; r2ð Þŝy t2; r2ð Þ⋯ŝy tK ; r2ð Þ
ŝz t1; r2ð Þŝz t2; r2ð Þ⋯ŝz tK ; r2ð Þ

⋮ ⋮ ⋱ ⋮
ŝz t1; rNð Þŝz t2; rNð Þ⋯ŝz tK ; rNð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð10Þ

Since the rank of the data matrix Ŝ is ≤ M, applying ICA to Ŝ is an
undercomplete ICA problem where the number of the signal mixtures
3N ≥ rank Ŝ

� �
and ICA will not provide a correct estimation of the
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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sources. In addition, ICA algorithms are computationally demanding
and, therefore, SVD is needed for dimensional reduction of the source-
space data matrix Ŝ. Via SVD,

Ŝ ¼ UΣVT
; ð11Þ

whereU andVT are 3N× 3N and K× K unitarymatrices respectively and
Σ is a 3N × K diagonal matrix with its diagonal elements being the
singular values on descending order. For dimensional reduction, Ŝ is
decomposed as

Ŝ¼ UDUUD½ � ΣD 0
0 ΣUD

	 

VT

DV
T
UD

h i

¼UDΣDV
T
D þ UUDΣUDV

T
UD ¼ ŜD þ ŜUD;

ð12Þ

where ŜD is the desired subspace of the source-space data matrix and
ŜUD is the undesired subspace containing noise only. Therefore, ΣD con-
tains the firstM′ singular values andM′≤M. In the case of high density
EEG, e.g., M = 512, a smaller number should be considered for M′,
dependent on the length of the EEG measurement. Therefore, to define

M′, the rank test for the data matrix was used, M0 ¼ rank Ŝ
� �

. By appli-

cation of ICA on the temporal subspace,Y ¼ ΣDV
T
D;Y ∈ℜ M0�Kð Þ, we can

estimate the independent components and the unmixingmatrix via ICA

S ¼ HY ; ð13Þ

whereH ∈ℜ M0�M0ð Þ is the unmixing matrix, S is the matrix of indepen-

dent components and the ith row of S ¼ ½s1; s2;…; sM0 �T is the time-
series of the ith independent component. The tomographic maps of M′

identified components in S can be obtained by multiplication of the

spatial subspace UD ∈ℜ 3N�M0ð Þ to the mixing matrix H−1

G ¼ UDH
−1

; ð14Þ

where the ith column of G ¼ g1; g2;…; gM0½ �∈ℜ 3N�M0ð Þ shows the 3D
map for the ith rowof S. However, for each location r, the column vector
gi has 3 coefficients (x, y, z) corresponding to the vector beamformer

gi ¼ gix r1ð Þ; giy r1ð Þ; giz r1ð Þ; gix r2ð Þ; giy r2ð Þ; giz r2ð Þ;…; giz rNð Þ
h iT

;

i ¼ 1;2;…;M0
;

ð15Þ

to obtain a single value for each location, vector addition is applied to
the 3 orthogonal values

gi rnð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ix rnð Þ þ g2iy rnð Þ þ g2iz rnð Þ

q
n¼1;2;…;

ð16Þ

and

gi gi r1ð Þj j; gi r2ð Þj j; ⋯; gi rNð Þj j½ �T ; i¼1;2;…M0
: ð17Þ

The tomographic map of the ith component in S, i.e., si, is obtained
by projecting the vector ĝi to the 3D scanning grid.

The location of the voxel in the source-space with maximum inten-
sity for the ith component is

rmax ¼ argmax
rn

gi rnð Þj jð Þ;n ¼ 1;2;…N: ð18Þ

The normalized orientation of the ith component at its focal location
rmax is

qi rmaxð Þ ¼ gix rmaxð Þ
gi rmaxð Þj j ;

gix rmaxð Þ
gi rmaxð Þj j ;

gix rmaxð Þ
gi rmaxð Þj j

	 
T
: ð19Þ
EG source separation, localization, and time-course reconstruction,
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Fig. 1. Block diagram of source-space ICA. Each rectangle is a matrix of data. The red and blue rectangles contain the final results for temporal and spatial information. The rows of the red
rectangle are independent temporal components, unmixed by ICA, and their 3Dmaps are columns of the blue rectangle, i.e., the ith column of the blue rectangle shows the 3Dmap of the
ith row of the red rectangle. N: number of voxels,M: number of EEG sensors, M′: rank of the source-space data matrix (M′ ≤M), K: number of time samples.
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Although, rmax has been used to identify the orientation of the com-
ponent at the focal point, in the case of network sources, Eq. (19) can be
applied to any rnwhich has a high |gi(rn)| value or, in the case of cluster
sources, the orientation can be obtained by averaging the orientations of
all the voxels in the cluster or just by considering the center of the clus-
ter to obtain the orientation of the source.

Computer simulations

The background EEG for simulated sources was real EEG from a
healthy subject, recorded during the resting state. The 64-channel
10–20 system was used for positioning of the EEG sensors and the
EEGwas sampled at 250Hz and band-pass filtered at 1–45Hz.Montreal
Neurological Institute (MNI) coordinates (Bush and Luu, 2000) were
used to describe the locations in the brain. The boundary elementmeth-
od (BEM) model of the head (Oostendorp and van Oosterom, 1989)
with 3 layers and a conductivity ratio of skull to soft tissue of 0.0125, ob-
tained from the average MNI-template brain and implemented via the
FieldTrip toolbox (Oostenveld et al., 2011), was used to calculate the
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
NeuroImage (2014), http://dx.doi.org/10.1016/j.neuroimage.2014.07.052
lead-field matrix. The x, y, and z axes are shown in Fig. 2. The EEGLAB
toolbox (Delorme and Makeig, 2004) was used for the ICA algorithm
(infomax Bell and Sejnowski, 1995).

To compare the performance of source-space ICA with sensor-space
ICA and with beamformers, simulated EEG data were synthesized in
several situations. The SNR of the simulated sources superimposed on
the real EEGwas defined as the Frobenius norm of the source signal ma-
trix to that of the real EEG matrix. The SNR of the sources was 0.5 if not
mentioned in the simulations.We did not need to reduce the rank of the
sensor-data matrix for sensor-space ICA, and the sensor-data matrix
was always full rank, as the lengths of the simulated and real EEG
were sufficient for this.

The 3D scanning grid divides the brain into 2041 voxels, each of
10 × 10 × 10 mm3. Performance was estimated in terms of ability to
identify and localize the sources. The quality of the reconstructed
time-courses of the simulated sources is also measured in terms of
SNR which was measured after fast Fourier transformation of the
time-courses and division of the power at the frequency of the source
by summation of the power in other frequencies. Localization error
EG source separation, localization, and time-course reconstruction,

http://dx.doi.org/10.1016/j.neuroimage.2014.07.052


Fig. 2. The direction of the x, y, and z axes in the coordinate system used to describe the
spatial location of the artificial dipole in the brain. Coordinate [0, 0, 0] is at the anterior
commissure and in line with the anterior/posterior commissural line.
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(LE) is the distance of the center of voxelwithmaximum intensity (̂r) to
that of the actual location (r) of the source:

LE ¼
ffiffiffiffiffiffiffiffiffiffi
r̂−r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂x−rxð Þ2 þ r̂y−ry

� �2 þ r̂z−rzð Þ2
r

ð20Þ

e.g., for source-space ICA r̂ ¼ rmax.
The error in estimated orientation of the desired dipole via source-

space ICA is given by the orientation error (OE):

OE ¼ arccos
qT rmaxð Þ � q rð Þ

Nq rmaxð ÞNN rð ÞN : ð21Þ

Source imaging via beamforming estimates the power of the source-
space for a given epoch of EEG, resulting in a single tomographic map
showing the power of the different brain regions for that epoch.
Hence, a source can be localized if the power in the location of that
source is stronger than the other background activity or other sources.
The location of the sources can be determined by thresholding — i.e., if
the power of certain regions becomes higher than a specified proportion
of the maximum power, they can be considered as active sources in the
EEG epoch due to an event in that epoch. As sensor-space ICA and
source-space ICA produce independent components (ICs), visual
inspection of ICs is needed to identify sources of interest.

Weak and strong sources

To evaluate performance onweak and strong sources, a single 10 Hz
sinusoidal source was simulated with a weak (SNR= 0.2) and a strong
(SNR = 2.0) magnitude, with orientation and location kept constant.

Discrimination of two closely-placed sources

Two sinusoidal sources of 10 and 12 Hz were placed bilaterally
(symmetrical from the midline) for the case of shallow locations at
z = 44 mm and y = −18 mm, and for the case of deep locations at
z =0mmand y=−18mm. The aimwas to identify theminimumdis-
tance in the x direction between two sources that was required by
source-space ICA to discriminate the two sources. Therefore, with keep-
ing y and z constant, different x were used in this part to identify the
minimum x for which the source-space ICA could separate the bilateral
sources.

Since the head model was not spherical, r= [0, 0, 0] mmwas not
the center of the brain and, in this study the center was assumed r=
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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[0,− 18, 0]mm. Therefore, sources placed closer to r=[0,− 18, 0] mm
were considered deeper.

Cluster sources

Two clusters of sources were simulated with the size of each cluster
being 3 × 3 × 3 voxels (i.e., 27 sources). The time-courses of the sources
in each cluster were 5 Hz and 10Hz sinusoids, and of 5 s to 8 s and 6 s to
9 s respectively. The centers of the clusters were [−6,−70, 4] mm and
[−16, 0, 4] mm.

Multiple sources

To evaluate the ability of the algorithms to localizemultiple sources,
10 sourceswere simulatedwith frequencies arbitrarily chosen from2 to
20 Hz and SNRs from 0.2 to 1 and arbitrary orientations. The time-
courses of the sources were fixed or damped sinusoids of 2 to 4 s dura-
tion, with an arbitrary start (from 0 to 8 s) on a 12 s background EEG.
The simulated sources were scattered on two slices (z = −4 mm and
z = 36 mm on MNI coordinates) with each slice having 5 sources (see
Table 1 and Fig. 6).

Real EEG

To demonstrate and compare the application of the source-space ICA
for localization and time-course reconstruction of real EEG sources, EEG
data from 128 scalp sensors, using an ActiveTwo system, were
downloaded from the SPM website (http://www.fil.ion.ucl.ac.uk/spm/
data/mmfaces). These EEG data comprise 172 VEPs from 86 face and
86 scrambled face VEPs. Only the 86 VEPs for the faces were used in
the current study. From these, 48 artifact-free VEPs were visually cho-
sen, concatenated, and given to source-space ICA. The covariancematrix
for the beamformer was measured over the 48 concatenated VEPs
(48 × 800 ms) in line with other literatures (Cheyne et al., 2006;
Fatima et al., 2013; Quraan and Cheyne, 2010; Robinson, 2004).

To identify the components of sensor- and source-space ICAwith ac-
tivity associated with the VEPs, the components were averaged over 48
trials to obtain single-trial components and then rectified. A Pearson
correlation test was then applied between the components and a refer-
ence signal, to identify components with higher magnitudes during the
0–300ms post-stimulus. The reference signal was a rectangular pulse of
magnitude 1 from 0 to 300 ms and zero otherwise over the interval
−200 to 600 ms (i.e., the same as for the VEP epoch). Components
correlated with the reference signal were interpreted as sources due
to the visual stimulus.

Evaluation of the beamformer approach was similar to source-space
ICA in that the 48 VEPs were given to the beamformer and the power of
the source-space was measured during 0–300 ms post-stimulus. For
thresholding and source identification via beamforming, the power
map of the source-space was thresholded at 80% of the maximum
power, i.e., if the power of a voxel was higher than 80% of themaximum
power in the source-space, it was considered a source and its location
and time-course were shown.

Beamforming + ICA vs. ICA + beamforming

Although we are comparing the application of beamforming follow-
ed by ICA (source-space ICA) with sensor-space ICA followed by dipole
fitting, it may seem that a better comparison could have been between
source-space ICA and sensor-space ICA followed by a minimum-norm
or a minimum-variance beamforming. However, sensor-space ICA
followed by minimum-variance beamforming is less than ideal as the
minimum-variance beamformer requires a covariance matrix of the
sensor signals. If the only activity on the sensors becomes confined to
a single independent component separated from other components by
sensor-space ICA, the rank of the sensor covariance matrix will be 1,
EG source separation, localization, and time-course reconstruction,
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Table 1
Specification of the 10 sources and summary of results for localization errors and SNR of reconstructed sources. LE: localization error, OE: orientation error, SNR; signal-to-ratio.

Source frequency
and SNR

Location and
orientation of source

Localization error, orientation
error, and SNR via source-space ICA

Localization error and SNR via
sensor-space ICA ne and dipole fitting

Localization error and SNR via
beamformer

s1(t)
F = 2 Hz
SNR = 0.4

r1 = [34, 40, −4] mm
q1 = [0.00, 0.70, 0.70]

r1 ¼ 34;40;−14½ � mm
LE = 10 mm, OE = 33°
SNR = 2.7

r̂1 ¼ 34;50;−4½ � mm
LE = 10 mm
SNR = 2.2

Not found

s2(t)
F = 15 Hz
SNR = 0.3

r2 = [4, 10, −4] mm
q2 = [0.00, 0.00, 1.00]

r1 ¼ −36;20;−24½ � mm
LE = 46 mm, OE = 68°
SNR = 2.1

r̂2 ¼ −36;20;−4½ � mm
LE = 41 mm
SNR = 1.2

Not found

s3(t)
F = 6 Hz
SNR = 0.3

r3 = [−36, −30, −4] mm
q3 = [1.00, 0.00, 0.00]

r3 ¼ −46;−20;−4½ � mm
LE = 14 mm, OE = 34°
SNR = 1.7

r̂3 ¼ −46;−20;−4½ � mm
LE = 14 mm
SNR = 1.5

Not found

s4(t)
F = 8 Hz
SNR = 0.5

r4 = [−26, −50, −4] mm
q4 = [0.00, 1.00, 0.00]

r4 ¼ −26;−50;−4½ � mm
LE = 0 mm, OE = 7°
SNR = 2.0

r̂4 ¼ −36;−70;6½ � mm
LE = 24 mm
SNR = 1.9

Not found

s5(t)
F = 10 Hz
SNR = 0.5

r5 = [34, −70, −4] mm
q5 = [0.70, 0.70, 0.00]

r5 ¼ 34;−70;−4½ � mm
LE = 0 mm, OE = 3°
SNR = 1.9

r̂5 ¼ 54;−70;6½ � mm
LE = 22 mm
SNR = 1.9

r̂5 ¼ 34;−60;−4½ � mm
LE = 10 mm
SNR = 0.6

s6(t)
F = 10 Hz
SNR = 0.7

r6 = [−6, 30, 36] mm
q6 = [0.44, 0.18, 0.88]

r6 ¼ −6; 30; 36½ � mm
LE = 0 mm, OE = 1°
SNR = 0.8

Not found r̂6 ¼ −6;30;36½ � mm
LE = 0 mm
SNR = 4.0

s7(t)
F = 15 Hz
SNR = 0.3

r7 = [44, 10, 36] mm
q7 = [0.45, 0.90, 0.00]

r7 44;10;36½ � mm
LE = 0 mm, OE = 3°
SNR = 5.6

r̂7 ¼ 54;20;36½ � mm
LE = 14 mm
SNR = 8.2

r̂7 ¼ 44;10;36½ � mm
LE = 0 mm
SNR = 3.5

s8(t)
F = 8 Hz
SNR = 0.8

r8 = [−26, −30, 36] mm
q8 = [0.00, 0.70, 0.70]

r8 ¼ −26;−30;36½ � mm
LE = 0 mm, OE = 3°
SNR = 0.9

r̂8 ¼ −36;−10;46½ � mm
LE = 24 mm
SNR = 0.9

r̂8 ¼ −26;−30; 36½ � mm
LE = 0 mm
SNR = 3.7

s9(t)
F = 18 Hz
SNR = 0.4

r9 = [4, −60, 36] mm
q9 = [0.00, 1.00, 0.00]

r9 ¼ 4;−70; 36½ � mm
LE = 10 mm, OE = 0°
SNR = 10.6

r̂9 ¼ 34;−60;36½ � mm
LE = 30 mm
SNR = 9.1

r̂9 ¼ 4;−70;36½ � mm
LE = 10 mm
SNR = 3.9

s10(t)
F = 20 Hz
SNR = 0.2

r10 = [24, −70, 36] mm
q10 = [0.57, −0.57, 0.57]

r10 ¼ 24;−70;36½ � mm
LE = 0 mm, OE = 23°
SNR = 5.2

r̂10 ¼ 24;−70;36½ � mm
LE = 0 mm
SNR = 2.7

Not found
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thematrixwill not be invertible, and, therefore, regularization of the co-
variance matrix is necessary. A low-rank covariance matrix, together
with regularization of the inverse matrix, degrades the spatial resolu-
tion of a minimum-variance beamformer and it will act like a
minimum-norm filter. This may bewhy Ventouras et al. (2010) applied
sLORETA rather than a minimum-variance beamformer for sensor-
space independent components, despite other studies (e.g., Sekihara
and Nagarajan, 2008) showing the superior spatial resolution of the
minimum-variance spatial filters over their minimum-norm counter-
parts. In contrast, in source-space ICA, the beamformer is applied first
on the sensor data and, therefore, the rank of the covariance matrix
will be the same or close to the number of the sensors (also depending
on the length of the data).We undertook a brief comparison to see how
the order of application of ICA and beamforming affects source separa-
tion and spatial resolution. In this comparison, we compared source-
space ICA (WNMV beamforming + ICA) to sensor-space ICA followed
by the WNMV beamformer (ICA + WNMV). We also made the same
comparison for the weight-normalized minimum-norm (WNMN)
beamformer (Dale et al., 2000). The simulated EEG for these compari-
sons was the 10 simulated sources described in the Multiple sources
section. In the case of sensor-space ICA, data with rank 1 was made by
removing other independent components and leaving only the compo-
nents of interest. The WNMV beamformer or the WNMN filter was ap-
plied to this rank 1 data to project the sensor data into the source-space.

In a further quantitative comparison, 2160 simulations were run for
each of the three techniques: (1) WNMV beamformer, (2) WNMV +
ICA, and (3) ICA+WNMN filter. These simulations comprised a source
at different depths,magnitudes, and orientations. The depthswere from
[0 0 0] mm to [0,−90, 0] mm (moving in the y direction every 10mm),
the orientations were from [1, 0, 0] to [−1, 0, 0] (corresponding to
180 deg rotation around the z vector in 8 samples), and the SNRs of
the simulated source were 0.01, 0.10, 0.25, 0.50, 0.80, 1.20, 2.20, and
2.75. The simulations were applied to the EEG backgrounds from 3
subjects. Therefore, there were 10 (depths) × 8 (orientations) × 9
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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(magnitudes) × 3 (EEG backgrounds) = 2160 simulations per tech-
nique. The length of the simulated EEG was 10 s and the simulated
source was a 10 Hz sinusoid from 6 to 9 s and zero otherwise. In the
case of the beamformer, for every simulation, the beamformer was
run to produce the source-space data and the power at each voxel
was then estimated via neural activity index for the 6–9 s period, and
the voxel with the maximum power was considered as the source.
The time-course of the identified source was the neural activity index
at each time sample for that voxel and its SNR could be estimated. In
the case of source-space ICA and sensor-space ICA, source identification
was done via Pearson's correlation between the absolute value of the in-
dependent time-courses and a reference signal. The ith independent
time-course with the highest correlation coefficient was considered to
be the source of interest, and in the case of source-space ICA, the voxel
with the greatest value in the ith column of G (in fact gi which contains
the norm of gi in x, y, and z directions)was considered to be the location
of the source. In the case of the sensor-space ICA, the same correlation
testwas applied and theWNMN filter was applied to the ith topograph-
ic map (mixing vector) to project it to the voxels and the voxel with the
greatest value was considered as the location of the source and the
localization error was the distance between this location and the actual
location of the simulated source. The reference signal had the same
length as the independent components (10 s) and was ‘1’ from 6 to 9 s
and ‘0’ otherwise.

Results

The actual locations of the sources are shown as the first sub-figure,
called ground truth, in Figs. 3–6.

Weak and strong sources

With an SNR of 2, all three algorithms were able to localize the
source of interest (Figs. 3b, c, d). The LE for sensor-space ICA/dipole
EG source separation, localization, and time-course reconstruction,
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(a) Ground truth

(b) Source-space ICA, SNR = 2.0

(c) Source-space ICA, SNR = 0.2

(d) Sensor-space ICA/dipole fitting, SNR = 2.0

(e) Sensor-space ICA/dipole fitting, SNR = 0.2

(f ) Beamformer, SNR = 2.0

(g) Beamformer, SNR = 0.2

Fig. 3. Localization of a strong source, SNR= 2.0, and a weak source, SNR= 0.2, via source-space ICA, sensor-space ICA/dipole fitting, andWNMV beamformer. Sensor-space ICA failed to
separate the weak source of interest as an independent component (e).
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(a) Ground truth, shallow bilateral sources (b) Ground truth, deep bilateral sources

(c) Source-space ICA, shallow bilateral sources (d) Source-space ICA, deep bilateral sources

(e) Sensor-space ICA/dipole fitting, shallow bilateral sources (f ) Sensor-space ICA/dipole fitting, deep bilateral sources

(g)Beamformer, shallow bilateral sources (h) Beamformer, deep bilateral sources

Fig. 4. Localization of shallow (y=−18 mm and z = 44mm) bilateral sources and deep (y =−18 mm and z = 0mm) bilateral sources via source-space ICA, sensor-space ICA/dipole
fitting, andWNMVbeamformer. Minimum inter-source distances of 26mmand 42mmwere needed for source-space ICA to separate the shallow and deep bilateral sources respectively.
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fitting was 20 mm, whereas source-space ICA had 0 mm LE and the
WNMV beamformer was 10 mm. With SNR = 0.2, sensor-space ICA
failed to identify the source of interest (Fig. 3e). Source-space ICA
identified the source of interest with 10 mm LE (Fig. 3c), and the
power map via the beamformer shows a very weak source with
10 mm LE (Fig. 3f). However, in the map provided by the beamformer
(Fig. 3f), although the source of interest is visible, it is not the dominant
source as there are other stronger background activities with their
voxels having higher powers. This is due to the fact that plotting the
power measured by a beamformer will show only the stronger sources
and, therefore, if the source of interest is weak, it may not be distin-
guishable from other background activities. In the maps provided by
source-space ICA, the source of interest was the dominant source as it
was separated from other background activities.

Discrimination of two closely-placed sources

After repeated examination of the bilateral sources at different sep-
arations in the x direction (i.e., y and z kept constant) it was found
that when the bilateral sources were shallow (y = −18 mm and z =
44 mm), the minimum distance that source-space ICA needed to sepa-
rate the two sources was 26 mm (Fig. 4c), compared to 42 mm when
the sources were deep (y = −18 mm and z = 0 mm) (Fig. 4d). The
LE was 0 mm. Although source-space ICA was able to separate the two
sources spatially (as shown in Figs. 4c, d), it failed to separate the
time-courses of these two sources and identified time-courses of a mix-
ture of 10 and 12 Hz. Sensor-space ICA also failed to separate the time-
courses of two sources, and dipole fitting (with a bilateral constraint)
had a 30-mm LE for both deep and shallow sources (Figs. 4e, f). For
the shallow sources, the power map via the beamformer shows the
middle of the two sourceswith highest intensity (sourcesweremerged)
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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(Fig. 4g). However, for the deep (and greater spaced) sources, the
power map shows a weak bilateral source (Fig. 4h).

Cluster sources

Source-space ICA identified two clusters, with the center of the pos-
terior cluster having a 0-mm LE and the center of the anterior cluster
having a 10-mm LE (Figs. 5b, c). Sensor-space ICA identified two
sources, with the distance of these two from the center of the clusters
being 10 mm LE for the posterior source and 20 mm for the anterior
cluster (Fig. 5d). The beamformer identified two sources (Fig. 5e) but
the posterior source is more similar to a single source than a cluster
source. The center of the posterior source has a 0-mm LE and the center
of the anterior cluster has a 10-mm LE.

Multiple sources

Of the 10 simulated sources, source-space ICA identified 10 sources
(Fig. 6b), sensor-space ICA identified 9 sources (Fig. 6c), and the
WNMV beamformer identified 5 sources (Fig. 6d) (Table 1). As men-
tioned earlier, source-space ICA provides a tomographic map for every
identified source. However, to avoid having 10 tomographic maps, we
only show one map with the voxel with the highest intensity for
every identified component by source-space ICA. As for the power
map via the beamformer, only the voxels with higher intensities than
the background activity are shown. From 10 sources identified by
source-space ICA, 6 sources had an LE of 0 mm, 3 had LEs between 10
and 20 mm, and one had an LE of 46 mm. From 9 sources identified
by sensor-space ICA, 1 source had an LE of 0 mm, 3 had LEs between
10 and 20 mm, and 5 had LEs between 20 and 42 mm. In the power
map via the beamformer, 5 of the sources had lower power than the
EG source separation, localization, and time-course reconstruction,
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(a) Ground truth

(b) Source-space ICA, frontal cluster

(c) Source-space ICA, posterior cluster

(d) Sensor-space ICA/dipole fitting

(e) Beamformer

Fig. 5. Localization of two clusters of sources, via source-space ICA, sensor-space ICA/dipole fitting, and theWNMVbeamformer. As source-space ICA provides a tomographicmap for each
of the two components, themaps of each component are shown separately, (b) and (c). Sensor-space ICA/dipolefitting also provides a separate location for each component, however, for
simplicity they are superimposed on each other (d). The power map via the beamformer is obtained over the period in which two clusters were active (e).
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background activity and, therefore, are not visible in the map. From the
5 sources identified by the beamformer, 3 had LEs of 0 LE and 2 had LEs
of 10mm. The time-course of the 10 sources (ground truth) and the re-
constructed time-courses via the three approaches are shown in Fig. 7.

For the beamformer and power measurement of the source-space,
first the power of the source-space was measured over the 1–10 s
epoch covering the activation of all of the sources. However, only two
sources (6 and 8) had higher power than the background activity
(Fig. 8f). To be able to detect more sources via the beamformer, the
power measurement was applied individually for 10 epochs when
each of the 10 sourceswas active. In such away it was possible to detect
5 sources. Both sensor-space ICA and source-space ICA were unable to
separate the time-courses of sources 6 and 8 since the two sources
had similar frequencies (10 and 8 Hz), were active at almost the same
time (6.0–9.0 s and 6.5–9.5 s) and were spatially close to each other,
making it difficult for ICA to separate the time-courses (Figs. 7y and z
and also Figs. 8b and d). The application of dipole fitting to the sensor-
space ICA component found a location between sources 6 and 8
(Fig. 6c at z = 46), whereas source-space ICA spatially separated the
two sources with 0 localization error (Fig. 6b at z = 36; also Fig. 8c).
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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As the ability to estimate the orientation of sources (Eq. (19)) is an
important feature of source-space ICA, the estimated source orienta-
tions for the 10 sources are shown in Table 1. More details on the 10-
source simulation are given in Supplementary Figs. 1–5.
Real EEG with VEPs

The average VEPs for the 128 channels are shown in Fig. 9. However,
the non-average VEPswere given to the source-space ICA. Source-space
ICAwas set to identify 83 components as the rank of signal matrix Ŝwas
83. The result of correlation test between the sensor- and source-space
ICA components and the reference signal (Fig. 10a) shows 6 compo-
nents of source-space ICA with correlation coefficients, r, higher than
0.1, of which 5 components (IC9, IC13, IC27, IC31, and IC63) have r N 0.3
and one (IC41) has r = 0.24. Fig. 10 shows which components are
time locked to the stimulus. Time-courses of these components and
their corresponding tomographicmaps are shown in Fig. 11. As ICA can-
not retain the polarity of the sources, the time-courses are adjusted in
such a way that all of the ICs have their peaks in the positive direction.
EG source separation, localization, and time-course reconstruction,
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(a) Ground truth

(b) Source-space ICA

(c)Sensor-space ICA/dipole fitting

(d) Beamformer

Fig. 6. Localization of 10 sources placed on two axial slices (z=36 and z=−4mm). Details of the location, orientation, and SNR of the simulated sources (i.e., ground truth) are provided
in Table 1.
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The time-courses shown in Fig. 11 are averages of the 48 events for the
ICs.

IC13 has the earliest peak, 65 ms, and has activations in the right
occipital cortex area and posterior inferior temporal sulcus/gyrus. IC31
has a peak at 100 ms and it shows focal activation on the left occipital
cortex. IC63 has a peak at 130ms and is located in the right calcarine fis-
sure. IC27 has a peak at 155 ms and shows activation mostly in the right
precuneus cortex and partially in the left lateral occipital cortex and
posterior fusiform gyrus. IC9 has a peak at 180ms and shows activations
in the precuneus cortex, superior frontal gyrus, and left calcarinefissure.
IC41 has a peak at 230 ms and a second peak at 325 ms and shows
activity focally in the precuneus cortex.

The correlation coefficients for components of the sensor-space ICA
(Fig. 10b) show 3 components (IC1, IC6, and IC64) with r N 0.2. Dipole
fitting of these components is shown in Fig. 12. IC6 has peaks at 65 ms
and 100 ms and is similar to a mixture of IC13 and IC31 from source-
space ICA. Dipole fitting of IC6 (Fig. 12a) shows a central area in the
brain as the origin of this component. IC64 has a peak at 130 ms and is
similar to IC63 from source-space ICA but has two smaller peaks at 100
and 200ms, whereas IC63 of source-space ICA has only one peak. Dipole
fitting of IC64 (Fig. 12c) shows that the origin of the component is locat-
ed in the right side of the occipital cortex. IC1 has its highest peak at
160 ms and is similar to a mixture of IC27, IC63 and IC41 of source-
space ICA since the IC1 of sensor-space ICA has two other smaller
peaks at 130 and 240 ms. Dipole fitting of IC1 (Fig. 12e) shows that the
origin of the component is located in the left precuneus cortex.

Source imaging via beamforming and power measurement of the
source-space is shown in Fig. 13. Fig. 13a shows the power of the
source-space without thresholding and Fig. 13b shows the same map
after 80% thresholding. As frontal ocular artifact is much stronger than
the VEP-related brain area, it will be the only area to pass the threshold.
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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To improve the result of power mapping via beamformer, we first re-
moved the ocular-related components of the EEG by visual inspection
of the ICA components, and then performed the power measurement
of the source-space again. In the second step, the power of the prior
−200–0 ms was subtracted from the power of the 0–300 ms of the
source-space. This step reduces the baseline power of the source-
space and helps identify sources related to the VEPs. The power of the
source-space was then thresholded at 80% (Fig. 14a). Three clusters of
voxels passed the threshold, located bilaterally in the calcarine fissure
(sources 1 and 2) and one in the right posterior inferior temporal
gyrus (source 3). These areas are similar to IC13, IC31, and IC63 for
source-space ICA. Source 1 in the right calcarinefissure has 3magnitude
peaks at 65 ms, 130 ms, and 150 ms (Fig. 14b). The last two peaks
merged as a single they occurred close to each other. Source 2 in the
left calcarine fissure also has 3 peaks at 100 ms, 150 ms, and 190 ms
(Fig. 14c). Source 3 in the right posterior inferior temporal gyrus has 1
peak at 65 ms and smaller peaks at 180 ms and 250 ms (Fig. 14d).

Beamforming + ICA vs. ICA + beamforming

Comparisons between WNMV/WNMN + ICA and ICA + WNMV/
WNMNare provided in Supplementary Figs. 1–5. Based on these compar-
isons, the separation power of ICA is similar for all four combinations.
However, in terms of spatial resolution, WNMV + ICA (WNMV-based
source-space ICA) is superior to WNMN-based source-space ICA and
sensor-space ICA + WNMV/WNMN. WNMV-based source-space ICA
provided sharp images for the location of the 10 sources, except source
2, whereas the other alternatives had blurry images (poor spatial
resolution). Theworst spatial resolution (i.e., highly blurry) was obtained
from ICA + WNMN (as shown in Supplementary Fig. 5). We estimated
the average spatial FWHM of these four combinations of the techniques
EG source separation, localization, and time-course reconstruction,
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Fig. 7. Time-courses of the 10 simulated sources in a 10 s EEG epoch. The first column from the left shows the ground truth, the second column shows the time-courses of the components
identified by source-space ICA, the third column shows the components identified by sensor-space ICA, and the fourth column shows themagnitude time-series of the sources identified
by the beamformer. The SNR of these time-courses is shown in Table 1 and their localization in Fig. 6.
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(a) Topographic map of an independent component for source

6 mixed with source 8, via sensor-space ICA

(b) Time-course of an independent component for source 6

mixed with source 8, via sensor-space ICA

(c) Voxel intensities of an independent component for source

6 mixed with source 8, via source-space ICA

(d) Time-course of an independent component for source 6

mixed with source 8, via source-space ICA

(e) Power of the source-space (voxel power values) via
beamforming for a 1-10 s epoch

(f ) Magnitude time-course via beamformer for source 2 whose
power is below the threshold and therefore undetectable

Fig. 8. An illustration of how both beamforming and sensor-space ICA failed to detect some of the sources in the multiple source analysis. Figure (a) is the topographic map for an inde-
pendent component identified by sensor-space ICA and figure (b) is the time-course for this component. Similar to the topographic map, the time-course is a mixture of sources 6 and 8
and, therefore, dipole fitting for this component found a location somewhere between sources 6 and 8, as shown in Fig. 6c at z = 46. Figure (c) shows voxel intensities (Eq. (17)) for a
component identified by source-space ICA. Source-space ICA also failed to separate the time-courses of sources 6 and 8 (figure (d)) but, the two sources are spatially separated with
zero localization error (figure (c)). The two spikes in figure (c) are the intensities of voxels where sources 6 and 8 are located. Figure (e) shows the power of the source-space for a period
of 1–10 s when all the 10 sources were active. The red line shows the threshold which separated the power of the sources from the power of the background activity, i.e., all voxels with
power below the red line were removed from the tomographic maps, with only sources 6 and 8 having a higher power than the background activity during the 1–10 s of EEG epoch.
Figure (f) is an example of the magnitude time-course of source 2, reconstructed by the beamformer, which had a lower power than the background activity and therefore did not
pass the threshold. Figure (f) can be compared to the other two techniques and the ground truth in the second row of Fig. 7.
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for 10 multiple sources: WNMV + ICA = 10 mm, ICA + WNMV =
45 mm, WNMN + ICA = 50 mm, and ICA + WNMN = 55 mm. These
values may change with other factors (especially number of scalp
sensors), but they provide an approximate estimation of the relative
spatial resolution of these four combinations.

Fig. 15 shows the quantitative evaluation of three approaches
(1) WNMV, (2) WNMV + ICA, and (3) ICA + WNMN, with respect to
changes in the magnitude (SNRin), depth, and orientation of a simulat-
ed source. The localization error and SNR of the reconstructed source
(SNRout) were the measures used in the evaluation. Based on
Figs. 15a, c, and e, the ICA+WNMNhas a generally higher source local-
ization error than the other two approaches and is sensitive to changes
in source orientation. All approaches had lower localization error for the
stronger sources, but, based on Fig. 15b, unlike the other two ap-
proaches, ICA + WNMN had a higher localization error for cortical
sources. Based on Fig. 15a, the localization error for ICA + WNMN will
never reach zero, whereas the other two approaches will have a zero lo-
calization error (regardless of depth and orientation) for stronger
sources (i.e., SNRin ≥ 1.2). The worst performance for the proposed
WNMV + ICA approach was obtained with deep weak sources. In
terms of the quality of the reconstructed source time-course, based on
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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Figs. 15b, d, and f, the two approaches incorporating ICA had similar
performances and both had a higher SNRout to that of beamforming
by itself, as in beamforming approach the neural activity index at each
time sample (magnitude time-series) is used for time-course recon-
struction, which can only be positive values.

Discussion

In this paper, we have described and formulated source-space ICA as
a novel technique for separation, localization, and time-course recon-
struction of EEG sources. Source-space ICA is the application of
minimum-variance beamforming followed by ICA. This combination of
minimum-variance beamforming and ICA results in having the high
spatial resolution of the beamformer, plus substantially improved iden-
tification and localization of multiple weak and strong sources, which
are challenging for current source imaging techniques. In source-space
ICA, source imaging is obtained via back-projection of the ICA mixing
coefficients, as opposed to more popular methods based on back-
projection of the power at each location (such as neural activity index).

As the orientations of sources are not known in EEG andMEG, vector
beamforming is applied to reconstruct the time-courses of the sources
EG source separation, localization, and time-course reconstruction,
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Fig. 9. (a) Average VEPs (faces) for the 128 channels. The average VEPs were obtained over 48 VEPs. Topographic maps of the VEPs at (b) 65 ms, (c) 100 ms, (d) 130 ms, (e) 160 ms,
(f) 180 ms, and (g) 230 ms.
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in 3 orthogonal directions. The usual approach to estimate activity in a
given voxel is to merge the 3 orthogonal time-courses to get magnitude
(i.e., ŝ2 t; rbð Þ ¼ ŝ2x t; rð Þ þ ŝ2y t; rð Þ þ ŝ2z t; rð Þ or neural activity index).
However, this can only produce positive values and, hence, is not the
time-course of sources. An alternative for reconstruction of a single
time-course for each source is the scalar beamformers, which are them-
selves dependent on a prior good estimate of the source-orientation, via
techniques such as grid search (Robinson and Vrba, 1998). Additionally,
as shown by Jonmohamadi et al. (2014b) and Fig. 15, merging the time-
courses via calculating the magnitude degrades the SNR of the recon-
structed time-courses as all the samples become positive, e.g., in the
case of ŝ2 t; rbð Þ, if the source of interest at ‘rb’ has a moment only in
the x direction, the other two directions will only contribute noise
power to ŝ2 t; rbð Þand degrade the SNR of the ŝ2 t; rbð Þ(which is problem-
atic for weak sources). In contrast, ICA identifies in which directions the
maximum contributions of an independent component are and puts
higher coefficients on those directions and minimizes the other direc-
tions. Therefore, source-space ICA acts as a scalar beamformer and
gives a single time-course for each identified source, and estimates the
orientation of the source as shown via Eq. (19). This means that
source-space ICA is also a source-orientation estimation technique and
is superior to the well-known grid search of Robinson and Vrba
(a) Source-space ICA

Fig. 10. The correlation coefficients r for (a) components of source-space ICA and (b) component
a reference signal, to identify components with highermagnitudes during the 0–300ms post-st
zero otherwise over the interval−200 to 600 ms (i.e., the same as for the VEP epoch). Compon
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(1998)which assumes that the source of interest is the strongest source
in the source-space.

Source-space ICA is superior to source-space power mapping via
beamforming for identification of multiple weak and strong sources.
This is because source-space ICA can separate weak and strong
sources and provide separate tomographic maps for each of the iden-
tified components, whereas the power map of the source-space via
beamforming is unable to distinguish weaker sources in the pres-
ence of stronger sources. Source-space ICA is also able to localize
sources with higher spatial accuracy than ICA plus dipole fitting/
minimum-norm filter.

On reconstruction of VEP sources, source-space ICAwas able to iden-
tify 6 sources time-locked to stimuli. The 4th and 5th ICs have latencies
of 140–200 ms following the presentation of the stimulus and corre-
spond to the N170. The localization of these ICs is in line with other
studies of VEPs for EEG andMEG in the lateral occipital cortex/posterior
fusiform gyrus (e.g., Rossion and Jacques (2012) and Owen et al.
(2012)). Sensor-space ICA identified 3 components and all of these
had 2 or 3 amplitude peaks. In contrast, the components identified by
source-space ICA had only one large peak.

The simulation of 10 multiple sources (Multiple sources section)
showed that source-space ICA had smaller localization error than
(b) Sensor-space ICA

s of sensor-space ICA. A Pearson correlation testwas applied between the components and
imulus. The reference signal was a rectangular pulse of magnitude 1 from 0 to 300ms and
ents correlated with the reference were interpreted as sources due to the visual stimulus.

EG source separation, localization, and time-course reconstruction,
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(a) (b) Averaged IC 13 time-series

(c) (d) Averaged IC 31 time-series

(e) (f ) Averaged IC 63 time-series

(g) (h) Averaged IC 27 time-series

(i) (j) Averaged IC9 time-series

(k) (l) Averaged IC 41 time-series

Fig. 11. Time-courses of the ICs identified via source-space ICA and time-locked to the VEPs, based on Fig. 10a. The left figures show the location of the ICs and the right figures show the
averaged time-courses of the ICs.
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sensor-space ICA followed by dipole fitting, albeitmarginally (Wilcoxon:
p = 0.062), of the 9 sources identified by both sensor-space ICA and
source-space ICA. Source-space ICA was also successful for the
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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localization and spatial separation of the independent components
which are mixtures of more than one source (e.g., Fig. 8c). In contrast,
the quality of the reconstructed time-course in terms of SNR was
EG source separation, localization, and time-course reconstruction,
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(a) (b) Averaged IC 6 time-series

(c) (d) Averaged IC 64 time-series

(e) (f ) Averaged IC 1 time-series

Fig. 12. Time-courses of the ICs identified via sensor-space ICA and time-locked to the VEPs, based on Fig. 10b. The left figures show the location of the ICs and the right figures show the
averaged time-courses of the ICs.
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essentially the same (p = 0.30). Based on 2160 simulations per tech-
nique, source-space ICA had a significantly lower localization error
than sensor-space ICA (p b 0.001). There was no significant difference
between localization error of source-space ICA and beamforming on its
own (p = 0.076).

The beamformer and power mapping approach has the similar spa-
tial accuracy as the source-space ICA. However, if the sources of interest
are weaker than background activity or other sources, they may not
pass the power threshold and, therefore, not appear in themaps. An ex-
ample of this situation is shown in Fig. 13 where the ocular artifacts
(a) Power map via beam

(b) Power map via beam

Fig. 13. Source imaging via beamforming and power mapping of the source-space of VEP
Figure (a) shows the power map without thresholding whereas figure (b) shows the power m
artifact) and therefore passed the thresholding.
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have much higher power than the VEP sources. It was only after artifact
removal that the power plot was able to show the VEP sources (Fig. 14).
Similar results regarding the effect of ocular artifacts on beamforming
are shown in Fatima et al. (2013). Compared with the beamforming
and power mapping approach, source-space ICA is far more robust to
artifacts as it separates the activity of different brain sources and
artifacts and provides a unique tomographic map for each. That is, the
artifacts have their own maps and cannot interfere with the maps of
other sources. For example, in Fig. 8c, except for the two voxels contain-
ing sources 6 and 8, the voxels have near zero intensitieswhichprovides
former without thresholding

former thresholded at 80%

s. The power of the voxels was measured over a window of 0–300 ms post-stimulus.
ap thresholded at 80%. The voxels in the frontal area had the highest power (due to ocular

EG source separation, localization, and time-course reconstruction,
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(a) (b) Averaged time-series for source 1

(c) Averaged time-series for source 2 (d) Averaged time-series for source 3

Fig. 14. (a) Source imaging of VEPs via beamforming and power of the source-space. After ocular artifact removal, the power of the voxelswasmeasured, over awindowof 0–300mspost-
stimulus, less pre-stimulus (−200–0 ms) power. Figures (b)–(d) show the time-courses of the 3 areas passing an 80% threshold.
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a sharp tomographic map, whereas the power of the source-spacemea-
sured by the beamformer shows that background activity is stronger
than 8 of the 10 sources (Fig. 8e, below the red line).

Although we used the vector WNMV beamformer (Sekihara et al.,
2001) to reconstruct the time-courses of voxels, other types of spatial
filter (e.g., minimum-norm family) can also be used. The general
Fig. 15.Quantitativemeasurement of the localization error (left-side plots) and SNR (right-side p
depth (figures (c) and (d)), and orientation (figures (e) and (f)) of the simulated source. Three ap
(green). The vertical bars are mean ± 95% confidence interval. For figure (b) the ratio of the SNR
defined as the distance of the simulated source to a point on the scalp ([0 −115 0] mm). The
(f) were obtained from 2160 simulations for each of the 3 approaches.
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concept of source-space ICA in EEG (and MEG) is to apply SVD and
ICA to the time-courses of the voxels, regardless of how the time-
courses of the voxels have been reconstructed. However, the final result
(e.g., spatial resolution and accuracy) will be dependent on the type of
spatial filter used to reconstruct the time-courses. We chose the
WNMV beamformer due to its normalized weight vectors and, hence,
lots) of a reconstructed source,with respect to changes inmagnitude (figures (a) and (b)),
proaches were examined: (1)WNMV (blue), (2)WNMV+ ICA (red), and (3) ICA+WNMN
of the reconstructed source (SNRout) to the simulated source (SNRin) is shown. Depth was
source angle was the angle between the y vector and the simulated source. Figures (a) to

EG source separation, localization, and time-course reconstruction,
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unit noise gain (uniform white-noise spatial map); that is, the time-
courses of all voxels have the same gain (Greenblatt et al., 2005;
Sekihara et al., 2005) and the non-uniform white noise spatial map
which was shown in Van Veen et al. (1997) will not appear.

Similar to the options of different beamformers for source-space ICA,
different BSS algorithms other than ICA can be considered as suitable
variants of source-space ICA, such as spatio-spectral decomposition
(Nikulin et al., 2011) and non-negative matrix factorization
(Rutkowski et al., 2007). Each of these techniques has their own as-
sumptions and, therefore, strengths and weaknesses. As there are op-
tions in both spatial filtering and BSS for the proposed approach, we
consider source-space ICA to be a subcategory of the “source-space
BSS” approach in EEG/MEG source imaging. Therefore, we propose
“source-space BSS”, which includes source-space ICA, as a powerful al-
ternative for EEG/MEG source imaging over the widely-used source-
space power measurement.

The proposed source-space ICA is similar to the application of ICA in
fMRI studies, with themain difference being that, for EEG andMEG, ICA
is applied to the temporal subspace Y whereas in the fMRI case, due to
the poor temporal resolution of the voxel time-series, ICA is applied to
the spatial subspace UD (e.g., Petersen et al. (2000) and Bai et al.
(2008)). In the case of MEG, Brookes et al. (2011) (and similarly
Luckhoo et al. (2012)) applied ICA in source-space, rather than
sensor-space, for detection of the resting state brain networks. Howev-
er, their approach is not generally applicable for source localization and
time-reconstruction of brain sources, especially for highly transient
neural sources, as in their approach the temporal resolution is consider-
ably reduced due to enveloping and down-sampling of the voxel time-
courses prior to application of ICA.

We carried out simulations to compare source-space ICA with other
popular techniques in EEG source localization. However, there are other
aspects in EEG which have not been considered in this study, such as
rotating and moving (dynamic) sources, as the aim of this paper was
to describe a new technique rather than undertake a comprehensive
performance evaluation. In future work, we aim to evaluate the perfor-
mance of source-space ICA under different conditions and also demon-
strate its application inMEG source localization and reconstruction. The
multiple simulations (Fig. 15) provided important information on local-
ization error and quality of the reconstructed time-course via the differ-
ent techniques. However, this did not show the main advantage of the
two ICA approaches over beamforming by itself, as there was only one
source (plus background activity) in all of the simulations, whereas
multiple concurrent sources provide a greater challenge for the
beamforming alone, as shown in the Multiple sources section. In the
future, we also aim to compare source-space ICA with other techniques
in such conditions.

In addition to being a valuable tool for separation, localization, and
time-course reconstruction of sources, source-space ICA also has con-
siderable potential as a step towards improved estimation of 3D func-
tional connectivity in the brain. As source-space ICA reconstructs the
time-series of each component separately, by applying techniques
such as partial directed coherence to the times-series of these compo-
nents it should be possible to better identify information flow and
Granger causality between sources.

As source-space ICA performs analysis of EEG and/or MEG signals in
the source-space (virtual sensors), it is similar to the other voxel-based
brain imaging techniques such as fMRI, diffusion tensor imaging (DTI),
and PET. Sui et al. (2011) performed fMRI and DTI data fusion via SVD,
multimodal canonical correlation analysis (Correa et al., 2010), and
joint-ICA (Calhoun et al., 2006) to discriminate between schizophrenia
and bipolar disorder. Their approach has a similar structure to the
proposed source-space ICA. They also mentioned that it is possible to
perform EEG/MEG data fusion with fMRI, in which techniques such as
joint-ICA can be applied to concatenated spatial maps of EEG (UD in
this study) and fMRI or other imaging techniques. By changing its struc-
ture, it would also be possible to incorporate source-space ICA into the
Please cite this article as: Jonmohamadi, Y., et al., Source-space ICA for E
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fusion of information from EEG/MEG and other voxel-based brain imag-
ing techniques.
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