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Abstract In electroencephalography (EEG) and magne-

toencephalography signal processing, scalar beamformers

are a popular technique for reconstruction of the time-

course of a brain source in a single time-series. A pre-

requisite for scalar beamformers, however, is that the ori-

entation of the source must be known or estimated, whereas

in reality the orientation of a brain source is often not

known in advance and current techniques for estimation of

brain source orientation are effective only for high signal-

to-noise ratio (SNR) brain sources. As a result, vector

beamformers are applied which do not need the orientation

of the source and reconstruct the source time-course in

three orthogonal (x, y, and z) directions. To obtain a single

time-course, the vector magnitude of the three orthogonal

outputs of the beamformer can be calculated at each time

point (often called neural activity index, NAI). The NAI,

however, is different from the actual time-course of a

source since it contains only positive values. Moreover, in

estimating the magnitude of the desired source, the back-

ground activity (undesired signals) in the beamformer

outputs also become all positive values, which, when added

to each other, leads to a drop in the SNR. This becomes a

serious problem when the desired source is weak. We

propose applying independent component analysis (ICA) to

the orthogonal time-courses of a brain voxel, as recon-

structed by a vector beamformer, to reconstruct the time-

course of a desired source in a single time-series. This

approach also provides a good estimation of dipole orien-

tation. Simulated and real EEG data were used to demon-

strate the performance of voxel-ICA and were compared

with a scalar beamformer and the magnitude time-series of

a vector beamformer. This approach is especially helpful

when the desired source is weak and the orientation of the

source cannot be estimated by other means.

Keywords Beamformer � Electroencephalography �
Independent component analysis �
Magnetoencephalography � Signal-to-noise ratio �
Time-course reconstruction

Introduction

Electroencephalography (EEG) and magnetoencephalog-

raphy (MEG) are noninvasive procedures for measuring

brain electric potentials or magnetic fields, respectively, by

an array of sensors over the scalp. Compared with other

common techniques in functional imaging of the brain,

such as functional magnetic resonance imaging (fMRI) and

positron emission tomography (PET), EEG and MEG have

much higher temporal resolution and, therefore, provide an

opportunity for localization and time-series reconstruction
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of highly dynamic brain sources. The time-series of the

sources provides information for investigation of the tem-

poral dynamics of source activities and finding connectiv-

ity between sources. Therefore, techniques which can

reconstruct the time-course of a source, especially under

poor signal-to-noise ratio (SNR), such as beamforming, are

in demand.

Beamforming is a popular technique for localization and

signal reconstruction of brain sources in EEG and MEG [1–

6] and their relative performances have been evaluated [7–

10]. The beamformer is a form of spatial filtering for pro-

cessing data from an array of sensors [4]. Beamformers

were originally applied in array signal processing including

sonar, radar, and seismic exploration [11]. In EEG and

MEG, a beamformer can focus on any location in the brain

and works so as to attenuate signals arising from other

locations in the brain. Beamformers in EEG and MEG can

b2e categorized into two types: (1) scalar beamformers and

(2) vector beamformers. The scalar beamformer recon-

structs the time-course of the source in a single time-series.

In contrast, the vector beamformer reconstructs the time-

course of a source in three orthogonal directions (x, y, and

z). Hence, a scalar beamformer is more desirable. However,

a prerequisite for scalar beamformers is that the orientation

of the source is known or can be estimated. Differences

between the actual orientation of the source and its pre-

sumed orientation degrade the performance of the beam-

former [12, 13]. Therefore, techniques such as grid-search

to maximize the source power [3, 14] or eigen-decompo-

sition of the source power [4], with the largest eigenvalue

corresponding to the source orientation for a given location,

can be applied to estimate the source signal orientation. But

in both approaches the power is assumed over a wide range

(hundreds of ms) of EEG or MEG and it is assumed that

only a single source is active for a given location. This

assumption fails when the source of interest for a given

location is weak and the time-series reconstructed for that

location is mostly contributed to by a stronger interfering

source outside the location of interest [15].

Hence, the application of scalar beamformers is con-

fined to cases where the orientation of the source of interest

is known or is the dominant source and its orientation can

be estimated. In contrast, the vector beamformer does not

require the orientation of the source. However, a difficulty

with vector beamformers is that they cannot estimate the

source time-series as a single signal. To obtain a single

time-course, the vector magnitude of the three orthogonal

outputs of the beamformer can be calculated at each time

point [2, 4, 9] (often called neural activity index, NAI). The

NAI, however, is different from the actual time-course of a

source since it contains only positive values. Moreover, in

estimating the magnitude of the desired source, the back-

ground activity (undesired signals) in the beamformer

outputs also become all positive values, which, when added

to each other, leads to a drop in the SNR. This becomes a

serious problem when the desired source is weak.

In this study, we reconstruct the time-courses of a given

location by a vector beamformer and use independent

component analysis (ICA) to (1) reconstruct the time-

course of that location in a single time-series, (2) estimate

the orientation of the source in the vicinity of that location,

and (3) increase the SNR of the reconstructed signal. We

then demonstrate that ICA is superior to NAI at each time

sample for reconstructing the time-courses of brain source

signals.

Throughout this paper, plain italics indicate scalars,

lower-case boldface italics indicate vectors, and upper-case

boldface italics indicate matrices. Subscript b refers to

assumed location or orientation of the dipole and subscript

d refers to actual location or orientation of the dipole.

Methods

Forward problem

The measured EEG or MEG signal BðtÞ ¼ ½bðt1Þ; bðt2Þ; :::;
bðtKÞ�T ; K number of time samples, on M electrodes, at

time point t is

bðtÞ ¼
Z

LðrdÞqdðrdÞsðt; rdÞdðrdÞ þ gðtÞ; ð1Þ

and LðrdÞ ¼ ½lxðrdÞ; lyðrdÞ; lzðrdÞ� is a M � 3 lead-field

matrix which shows the sensitivity of scalp sensors in three

orthogonal directions (x,y,z) to the source signal sðt; rdÞ
located at rd ¼ ½rdx; rdy; rdz�T (mm) with a moment of

qdðrdÞ ¼ ½qdxðrdÞ; qdyðrdÞ; qdzðrdÞ�T (A.m), and gðtÞ is the

additive noise. The dipole moment can be written as

qdðrdÞ ¼ a~qdðrdÞ; ~qdðrdÞ ¼ qdðrdÞ=kqdðrdÞk ð2Þ

where ~qdðrdÞ is the orientation of the dipole source and a is

the magnitude of the dipole.

Scalar beamformer

The reconstructed time-course via a scalar beamformer for

a given location rb and orientation qb is

ŝðt; rb; qbÞ ¼ wTðrb; qbÞbðtÞ ð3Þ

where wðrb; qbÞ is a M � 1 vector of the scalar beamformer

coefficients, rb ¼ ½rbx; rby; rbz�T (mm) is assumed dipole

location, and qbðrbÞ ¼ ½qbxðrbÞ; qbyðrbÞ; qbzðrbÞ�T is assumed

dipole orientation. In the ideal case qb ¼ ~qd. The orientation

of the source must be known in advance, or, if not, needs to

be estimated via orientation estimation algorithms [3, 4, 14].
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However, although these algorithms work well when the

source of interest is the dominant source, the estimation of rd

will be inaccurate for small sources.

Vector beamformer

The reconstructed time-courses ŝðt; rbÞ ¼ ½ŝxðt; rbÞ;
ŝyðt; rbÞ; ŝzðt; rbÞ�, of a source via a vector beamformer for a

given location rb is

ŝðt; rbÞ ¼ WTðrbÞbðtÞ ð4Þ

where WðrbÞ ¼ ½wxðrbÞ;wyðrbÞ;wzðrbÞ� is a M � 3 matrix

of the vector beamformer coefficients. In the case of MEG,

it is possible to convert the three orthogonal reconstructed

time-courses into two tangential (h and /) components and

ignore the radial component as the radial component is

effectively zero for MEG, by using Cartesian to spherical

coordinate conversion [4].

One way to merge the three components of ŝðt; rbÞ is to

calculate the magnitude of the source at each time sample

jŝðt; rbÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

xðt; rbÞ þ ŝ2
yðt; rbÞ þ ŝ2

z ðt; rbÞ
q

: ð5Þ

Another approach is to estimate the NAI at each time

sample. The NAI, however, has different formulations for

different types of beamformers [9]. In this study, we focus

on the vector minimum-variance (MV) beamformer, also

known as the linearly-constrained minimum-variance

(LCMV) beamformer, for which

NAIðt; rbÞ ¼
trfWTðrbÞbðtÞbTðtÞWðrbÞg

trfðLTðrbÞLðrbÞÞ�1g
ð6Þ

where WðrbÞ ¼ ½wxðrbÞ;wyðrbÞ;wzðrbÞ� is the vector-MV

beamformer weight matrix and

wnðrbÞ ¼
C�1lnðrbÞ

lT
n ðrbÞC�1lnðrbÞ

; n ¼ x; y; z: ð7Þ

and C is the covariance matrix

C ¼ hbðtÞbTðtÞi ð8Þ

where h:::i is the ensemble average, and for the scalar-MV

beamformer wðrb; qbÞ is

wðrb; qbÞ ¼
C�1lðrb; qbÞ

lTðrb; qbÞC�1lðrb; qbÞ
ð9Þ

where lðrb; qbÞ is the scalar lead-field

lðrb; qbÞ ¼ LðrbÞqb: ð10Þ

The NAI has been shown to be a superior option compared

to magnitude jŝðt; rbÞj for measuring the activity of neural

sources where the SNR of the source of interest is low [2].

If the normalized lead-field is used for the beamformer,

Eqs. (6) and (5) will be similar and the magnitude will

become the square root of the NAI. Both jŝðt; rbÞj and

NAIðt; rbÞ have positive rectified values only and, there-

fore, the time-courses reconstructed by these two approa-

ches are double the frequency of the original source signal

sðt; rdÞ.

Voxel-ICA

ICA is a blind source separation technique. The concept of

ICA lies in the fact that the signals may be decomposed

into their constituent statistically independent components

[16]. ICA has been successfully used for EEG signal pro-

cessing, including component extraction of event-related

potentials [17–21] and artefact removal [22, 23].

Voxel-ICA is proposed as a new technique to obtain a

single time-series from three orthogonal time-series of

vector beamformers and estimate the orientation of the

source for a given location rb. Voxel-ICA is based on the

application of ICA to the 3 orthogonal time-courses of a

voxel (location rb), reconstructed via a vector beamformer.

Ideally, the voxel should be close to the location of the

source. Hence, a prerequisite of the voxel-ICA approach is

that the approximate location of the source of interest must

be known; i.e., rb � rd. ICA separates the time-course of

the source of interest from other background activities

which appear in the output of the vector beamformer

leading to a higher SNR compared with NAI. The

unmixing equation by ICA is

HTðrbÞŜðt; rbÞ ¼ �SðtÞ; ð11Þ

where Ŝðt; rbÞ is the 3D orthogonal signal matrix after

vector beamforming

bSðt; rbÞ ¼
ŝxðt1; rbÞ ŝxðt2; rbÞ � � � ŝxðtT ; rbÞ
ŝyðt1; rbÞ ŝyðt2; rbÞ � � � ŝyðtT ; rbÞ
ŝzðt1; rbÞ ŝzðt2; rbÞ � � � ŝzðtT ; rbÞ

0
@

1
A; ð12Þ

and HðrbÞ ¼ ½h1ðrbÞ; h2ðrbÞ; h3ðrbÞ�; HðrbÞ2R
ð�Þ is the

unmixing matrix and each of its columns is a unmixing

vector for extracted independent components by ICA and

each row of �SðtÞ is an independent component,

SðtÞ ¼
�s1ðt1Þ �s1ðt2Þ � � � �s1ðtTÞ
�s2ðt1Þ �s2ðt2Þ � � � �s2ðtTÞ
�s3ðt1Þ �s3ðt2Þ � � � �s3ðtTÞ

0
@

1
A: ð13Þ

By visual inspection it is possible to identify the time-

course of the source of interest in �SðtÞ. If �siðtÞ; i ¼ 1; 2; 3 is

the estimated time-course of the source of interest, then the

orientation of the source is

qbðrÞ ¼ hiðrÞ=khiðrÞk; i ¼ 1; 2; 3: ð14Þ

Computer simulations
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EEG setup and coordinates

Simulated EEG was synthesized by Eq. (1) and gðtÞ was

real background EEG. Real background EEGs were

obtained from three healthy subjects in a resting state. The

64-channel 10–20 system was used for the location of EEG

electrodes and the EEG was sampled at 250 Hz. Montreal

Neurological Institute (MNI) coordinates are used to

describe the locations in the brain. The boundary element

method (BEM) model of the head [24] obtained from the

average MNI-template brain, implemented in the FieldTrip

toolbox [25], was used to calculate the lead-field matrix,

with 3 layers and a conductivity ratio of skull to soft tissue

of 0.0125. The directions of the x, y, and z axes are shown

in Fig. 1. The length of the simulated EEG was 6 s. The

EEGLAB toolbox [26] was used for ICA (infomax [27]).

Performance evaluation

To measure performance, the SNR of the reconstructed

time-series by each approach was measured for a 1.0 s time

window, 2.0–3.0 s. The FFT was used to measure the

power of different frequencies and the SNR of the signal

was calculated accordingly [10]. The SNR of the d1 and d2

sources superimposed on the real EEG was defined as the

Frobenius norm of the source signal matrix to that of the

real EEG matrix. To demonstrate the advantage of the

voxel-ICA approach over NAI and a scalar beamformer,

three situations were simulated:

– High SNR source: For this situation, the source of

interest d1 had a relatively high SNR of 1.00. The

spatial location and orientation of the d1 is shown in

Fig. 2 and the time-course of the d1 is shown in Fig. 3.

– Low SNR source: For this situation, the source of

interest d1 had a small SNR of 0.20.

– Source located close to an interfering source: For this

situation, while the source of interest d1 had a small

SNR of 0.20, an interfering source d2 was placed

nearby with a SNR of 0.50. For this part, the signal-to-

interference ratio (SIR) [10] was measured for the

scalar beamformer, NAI, and voxel-ICA, between 2 s

and 3 s.

The accuracy of the estimated orientation of the desired

dipole via voxel-ICA is given by the orientation error (OE):

OE ¼ arccos
qb:eqd

qbk k eqdk k : ð15Þ

Real EEG data

To compare the performances of voxel-ICA and NAI in a

real-world situation, real EEG data from 128 scalp sensors,

ActiveTwo system, were downloaded from the SPM

website (http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces).

These EEG data contain 86 visual evoked potentials

(VEPs).

Results

Figures 4, 5, and 6 show the reconstructed time-courses of

the source d1 for three situations described in ‘‘Perfor-

mance evaluation’’ section for Subject 1. Note that the

magnitude of the time-series in these plots have been

normalized for ease of visual comparison. The blue signals

are the 3 orthogonal time-courses reconstructed by the

vector-MV beamformer for which the assumed location of

dipole for the beamformer was the actual location of the

dipole (i.e., rb ¼ rd1). The green signals are the three

independent components found by ICA of the three

orthogonal outputs of the vector-MV beamformer. The red

Fig. 1 The direction of the x, y, and z axes in the coordinate system

used to describe the spatial location of the artificial dipole in the brain.

Coordinate [0, 0, 0] is at the anterior commissure and in line with the

anterior/posterior commissural line

Fig. 2 The red dot shows the location of the source sðt; rd1Þ, with

rd1 ¼ ½0; 0; 0�T mm and ~dðrd1Þ ¼ ½0:57; 0:57; 0:57�T . The yellow dot

shows the location of the interfering source sðt; rd2Þ, with rd2 ¼
½10; 0; 0�T mm and ~dðrd2Þ ¼ ½0:9; 0:0; 0:45�T
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signal is the reconstructed time-course of d1 via the scalar-

MV beamformer for which the assumed orientation for the

beamformer was the actual orientation of the dipole (i.e.,

qb ¼ qd1) and the cyan color signal is the reconstructed

time-course of d1 via the NAI approach.

Based on Fig. 4, when the source of interest has a high

SNR (i.e., � 1), all three approaches—voxel-ICA, scalar

beamformer, and NAI—work well and reconstruct the

time-courses of source d1 with high SNRs, but NAI still

has a lower SNR compared with the other two approaches.

For a smaller magnitude source, however, Fig. 5 shows

that, the NAI performs very poorly compared with voxel-

ICA and the scalar beamformer. When source d1 was

placed close to a stronger interfering source d2, again NAI

had a very low SNR and SIR (Fig. 6).

Table 1 shows the results for voxel-ICA, scalar beam-

former, and NAI for a source d1 placed close to a stronger

interfering source d2, applied to background EEG of three

subjects. Voxel-ICA had a performance, in terms of SNR

and SIR, which was only slightly less than that of the scalar

beamformer with ideal orientation and outperforms the

NAI. The table also shows the error that voxel-ICA had for

estimated orientation of the desired source d1.

For the real EEG, VEPs, the location given to the

beamformer was [0 �65 16] mm, in the posterior region of

the brain. As the orientation of the VEPs was not known in

advance, the scalar beamformer could not be applied for

this part and is shown as a flat red line in Fig. 7. The voxel-

ICA approach, but not NAI at each time sample, was able

to successfully separate the VEPs (component �s2ðtÞ in Fig.

7) from other background activities. Also the artefact at

113.5 s appears strongly in NAI as well as orthogonal

signals of the vector beamformer whereas voxel-ICA

effectively separated this artefact from �s2ðtÞ. The circles in

�s2ðtÞ in Fig. 7 show the VEPs between each of the vertical

dashed lines.

Fig. 3 The time-courses of the

d1 and d2 sources. The sources

are sinusoids of 8 Hz for d1 and

5 Hz for d2

Fig. 4 The reconstructed and normalized time-courses of d1 with SNR =

1.0, via the vector-MV beamformer in blue, voxel-ICA in green, scalar-

MV beamformer in red, and NAI in cyan. The SNRs of �s1ðtÞ; ŝðt; rb; qbÞ,
and NAIðt; rbÞ are 81:9; 67:2, and 10:3 respectively. The orientation of

d1 is~dðrd1Þ ¼ ½0:57; 0:57; 0:57�T and the estimated dipole orientation via

voxel-ICA for �s1ðtÞ, is qbðrd1Þ ¼ ½0:58; 0:64; 0:49�T

Fig. 5 The reconstructed and normalized time-courses of the source

d1, SNR = 0.2, via the vector-MV beamformer in blue, voxel-ICA in

green, scalar-MV beamformer in red, and NAI in cyan. The SNR of

the �s1ðtÞ; ŝðt; rb; qbÞ, and NAIðt; rbÞ is 8:3; 8:2, and 0:6 respectively.

The dipole orientation of d1 are ~dðrd1Þ ¼ ½0:57; 0:57; 0:57�T and

the estimated dipole orientation via voxel-ICA for �s2ðtÞ, is

qbðrd1Þ ¼ ½0:50; 0:60; 0:62�T
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Voxel-ICA provided good estimation of dipole orienta-

tions, qbðrd1Þ ¼ ½0:58; 0:64; 0:49�T and ½0:50; 0:60; 0:62�T
for Fig. 4 (SNR = 1.0) and Fig. 5 (SNR = 0.2) respectively

compared with the actual orientation of the source

~dðrd1Þ ¼ ½0:57; 0:57; 0:57�T , with OE � 6� for both cases.

For the third situation in which the desired source was

placed close to a stronger interfering source, the error of

the estimated source orientation was larger at OE � 26� for

all three background EEGs. However, voxel-ICA still

provided a similar SIR and SNR to the scalar beamformer.

Discussion

We have proposed voxel-ICA as a means of reconstructing

the time-course of a brain source in a single time-series

with a high SNR for a given location. Voxel-ICA also

provides an estimate of the orientation of the sources and

the user does not need to use an exhaustive grid-search

method [3, 14] or eigen-decomposition approach [4] which

only work for high SNR sources.

A prerequisite of voxel-ICA is that the approximate

location (i.e., 	 10 mm) of the source of interest is known;

if not, voxel-ICA can be applied to several locations in the

subspace of interest to identify the desired source. If the

user has no information on the location of sources of

interest then source-space ICA [28] is recommended.

Source-space ICA is a similar concept to voxel-ICA but,

instead of one or several locations, it scans the whole brain

and identifies the location, orientation, and time-course of

the sources. However, source-space ICA requires consid-

erably more computational time than voxel-ICA.

In the case of VEPs, the location given to the beam-

former was [0 �65 16] mm whereas the location with the

Fig. 6 The reconstructed and normalized time-courses of the source

d1, with SNR = 0.2, in the presence of an interfering dipole

(d2; SNR ¼ 0:5) via the vector-MV beamformer in blue, voxel-ICA

in green, scalar-MV beamformer in red, and NAI in cyan. The SNRs

of �s2ðtÞ; ŝðt; rb; qbÞ, and NAIðt; rbÞ are 7:4; 7:5, and 0:6 respectively.

The SIR of the �s2ðtÞ; ŝðt; rb; qbÞ, and NAIðt; rbÞ are 19:7; 15:8, and 1:6
respectively. The dipole orientation of d1 is ~dðrd1Þ ¼ ½0:57; 0:57;

0:57�T and the interfering sources is ~dðrd2Þ ¼ ½0:70; 0:00; 0:70�T the

estimated dipole orientation via voxel-ICA, Eq. 14 for �s2ðtÞ, is

qbðrd1Þ ¼ ½0:16; 0:83; 0:52�T

Fig. 7 The reconstructed and normalized time-courses of the VEPs,

via the vector MV beamformer in blue, voxel-ICA in green, scalar-

MV beamformer in red, and NAI in cyan. Component 2, �s2ðtÞ, is the

component which represent the VEPs and the other two components

are interfering sources. The estimated dipole orientation of VEPs via

voxel-ICA, Eq. 14 for �s2ðtÞ, is qbðrd1Þ ¼ ½0:20; 0:900:37�T

Table 1 Measure of performance for a source located close to an

interfering source applied on the EEG background of 3 subjects (SNR

= signal-to-noise ratio, SIR = signal-to-interference ratio, OE = ori-

entation error)

Subject 1 Subject 2 Subject 3

Voxel-ICA

SNR 7.4 6.0 7.8

SIR 15.8 8.4 10.3

OE 28� 24� 27�

Scalar beam-former

SNR 7.5 6.3 7.9

SIR 19.7 13.4 13.0

NAI

SNR 0.6 1.6 2.3

SIR 1.6 1.7 3.4
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highest power for VEPs was found (via vector-MV

beamformer scanning) to be [�2 �46 28] mm and the

voxel-ICA still worked well despite the location given to

voxel-ICA being more than 20 mm away from the location

of the primary VEPs source.

Voxel-ICA is especially useful when the desired source

has a small SNR or is close to a strong interfering source.

In such situations, NAI performs poorly (SNR and SIR at

least three times smaller than voxel-ICA) and it may not be

possible to use a scalar beamformer as the orientation of

the source is unknown.

Estimation of source orientation after beamforming has

been shown for radar and sonar for which a multi-rank

beamformer is applied to a known subspace and singular

value decomposition of the reconstructed time-series in the

subspace provides information about the orientation of the

sources [29, 30]. In comparison, voxel-ICA applies ICA for

a single voxel or a cluster of voxels for a known location or

subspace and is similar to the approaches described in [29,

30], except that ICA has been applied instead of singular

value decomposition. In the current study, we focused on

both the quality of the reconstructed time-series via voxel-

ICA compared to other approaches and on voxel-ICA as a

tool to identify source orientation.

Conclusion

Voxel-ICA involves the application of ICA following

vector beamforming. In EEG and MEG, vector beam-

formers can be applied to reconstruct the time-courses of

sources of interest. Vector beamformers provide three

orthogonal outputs but the user is often interested in a

single signal representing the source time-course. The NAI

is also able to merge the three orthogonal outputs but the

proposed voxel-ICA approach has been demonstrated to be

superior both with simulated and real EEG sources. In

addition to reconstruction of a source time-course, voxel-

ICA is able to estimate source orientation.

Acknowledgments This work was funded by a University of Otago

Postgraduate Scholarship. The authors thank Simon Knopp for his

suggestions and thoughts on this work.

References

1. Spencer M, Leahy RM, Mosher JC, Lewis PS (1992) Adaptive

filters for monitoring localized brain activity from surface

potential time series. Proc IEEE Asilomar Conf Signal Syst

Comput 26:156–160

2. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997)

Localization of brain electrical activity via linearly constrained

minimum variance spatial filtering. IEEE Trans Biomed Eng

44:867–880

3. Robinson SE, Vrba J (1998) Functional neuroimaging by syn-

thetic aperture magnetometry (SAM), Proceedings of the 11th

International Conference on Biomagnetism pp. 302–305

4. Sekihara K, Nagarajan SS, Poeppel D, Marantz A, Miyashita Y

(2001) Reconstructing spatio-temporal activities of neural sour-

ces using an MEG vector beamformer technique. IEEE Trans

Biomed Eng 48:760–771

5. Ward DM, Jones RD, Bones PJ, Carroll GJ (1999) Enhancement

of deep epileptiform activity in the EEG via 3-D adaptive spatial

filtering. IEEE Trans Biomed Eng 46:707–716

6. Congedo M (2006) Subspace projection filters for real-time brain

electromagnetic imaging. IEEE Trans Biomed Eng 53:1624–1634

7. Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local linear

estimators for the linear bioelectromagnetic inverse problem.

IEEE Trans Biomed Eng 53:3403–3412

8. Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias

and spatial resolution of adaptive and non-adaptive spatial filters

for MEG source reconstruction. NeuroImage 25:1056–1067

9. Huang MX, Shih JJ, Lee RR, Harrington DL, Thoma RJ, Wei-

send MP, Hanlon F, Paulson KM, Li T, Martin K, Millers GA,

Canive JM (2004) Commonalities and differences among vec-

torized beamformers in electromagnetic source imaging. Brain

Topogr 16:139–158

10. Mohamadi YJ, Poudel G, Innes C, Jones R (2012) Performance of

beamformers on EEG source reconstruction. Proc Int Conf IEEE

Eng Med Biol Soc 34:2517–2521

11. Van Veen BD, Buckley KM (1988) Beamforming: a versatile

approach to spatial filtering. IEEE Mag Acoust Speech Signal

Process 5:4–24

12. Li J (2005) Robust adaptive beamforming. Wiley, Hoboken

13. Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004)

Asymptotic SNR of scalar and vector minimum-variance beam-

formers for neuromagnetic source reconstruction. IEEE Trans

Biomed Eng 51:1726–1734

14. Vrba J, Robinson SE (2001) Signal processing in magnetoen-

cephalography. Methods 25:249–271

15. Quraan MA (2011) Characterization of brain dynamics using

beamformer techniques: advantages and limitations. In: Pang EW

(ed) Magnetoencephalography. InTech, Toronto, pp 67–92

16. Sanei S, Chambers JA (2007) EEG signal processing. Wiley,

West Sussex

17. Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging

human EEG dynamics using independent component analysis.

Neurosci Biobehav Rev 30:808–822

18. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-

related brain dynamics. Trends Cogn Sci 8:204–210

19. Jervis B, Belal S, Camilleri K, Cassar T, Bigan C, Linden D,

Michalopoulos K, Zervakis M, Besleaga M, Fabri S, Muscat J

(2007) The independent components of auditory P300 and CNV

evoked potentials derived from single-trial recordings. Physiol

Meas 28:745–771

20. Ventouras EM, Ktonas PY, Tsekou H, Paparrigopoulos T, Kal-

atzis I, Soldatos CR (2010) Independent component analysis for

source localization of EEG sleep spindle components. Comput

Intell Neurosci 2010:1–12

21. La Foresta F, Mammone N, Morabito FC (2009) PCAICA for

automatic identification of critical events in continuous coma-

EEG monitoring. Biomed Signal Process Control 4:229–235

22. Jung TP, Humphries C, Lee TW, Makeig S, McKeown MJ, Iragui

V, Sejnowski TJ (1998) Extended ICA remove artifacts from

electroencephalographic recordings. Adv Neural Inf Process Syst

10:894–900

23. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui

V, Sejnowski TJ (2000) Removing electroencephalographic arti-

facts by blind source separation. Psychophysiology 37:163–178

Australas Phys Eng Sci Med (2014) 37:457–464 463

123



24. Oostendorp TF, van Oosterom A (1989) Source parameter esti-

mation in inhomogeneous volume conductors of arbitrary shape.

IEEE Trans Biomed Eng 36:382–391

25. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) Fieldtrip: open

source software for advanced analysis of MEG, EEG, and invasive

electrophysiological data. Comput Intell Neurosci 2011:1–9

26. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox

for analysis of single-trial EEG dynamics. J Neurosci Methods

134:9–21

27. Bell AJ, Sejnowski TJ (1995) An information-maximization

approach to blind separation and blind deconvolution. Neural

Comput 7:1129–1159

28. Jonmohamadi Y, Poudel G, Innes C, Jones R (2013) Electro-

magnetic tomography via source-space ICA, Proc Int Conf IEEE

Eng Med Biol Soc 35:37–40

29. Pezeshki A, Van Veen BD, Scharf LL, Cox H (2008) Eigenvalue

beamforming using a multirank MVDR beamformer and sub-

space selection. IEEE Trans Signal Process 56:1954–1967

30. Scharf LL, Pezeshki A, Van Veen BD, Cox H, Besson O (2006)

Eigenvalue beamforming using a multirank MVDR beamformer

and subspace selection. Proceedings of 5th Workshop on Defence

Application of Signal Process, Queensland, Australia, 10–14 Dec

2006

464 Australas Phys Eng Sci Med (2014) 37:457–464

123


	Voxel-ICA for reconstruction of source signal time-series and orientation in EEG and MEG
	Abstract
	Introduction
	Methods
	Forward problem
	Scalar beamformer
	Vector beamformer
	Voxel-ICA
	Computer simulations
	EEG setup and coordinates
	Performance evaluation

	Real EEG data

	Results
	Discussion
	Conclusion
	Acknowledgments
	References


