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Multivariate analysis of diffusion tensor imaging data improves the
detection of microstructural damage in young professional boxers
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Abstract

In this study, we present two different methods of multivariate analysis of voxel-based diffusion tensor imaging (DTI) data, using as an
example data derived from 59 professional boxers and 12 age-matched controls. Conventional univariate analysis ignores much of the
diffusion information contained in the tensor. Our first multivariate method uses the Hotelling's T2 statistic and the second uses linear
discriminant analysis to generate the linear discriminant function at each voxel to form a separability metric. Both multivariate methods
confirm the findings from the individual metrics of large-scale changes in the bilateral inferior temporal gyri of the boxers, but they also
reveal greater sensitivity as well as identifying major subcortical changes that had not been evident in the univariate analyses. Linear
discriminant analysis has the added strength of providing a quantitative measure of the relative contribution of each metric to any differences
between the two subject groups. This novel adaptation of statistical and mathematical techniques to neuroimaging analysis is important for
two reasons. Clinically, it develops the findings of a previous mild head injury study, and, methodologically, it could equally well be applied
to multivariate studies of other pathologies.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Conventional neuroimaging analysis such as that per-
formed by Statistical Parametric Mapping (SPM) [1]
employs univariate statistics. Multivariate methodology
using multiple biomarkers may improve the sensitivity of
significance testing between groups of subjects and controls
to provide a more sensitive indication of regions of brain
damage. To test this hypothesis, two multivariate methods
were applied to diffusion tensor imaging (DTI) data obtained
from professional boxers who had experienced chronic,
mild, closed head injury, for which the results from standard
univariate analysis have been published elsewhere [2].
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DTI is a valuable tool to identify microscopic changes in
brain tissue resulting from damage or disease [2–6]. The 3×3
symmetric tensor that models the diffusion of water in the
brain can be represented geometrically by an ellipsoid [7].
The tensor contains information about the ellipsoid's axes
lengths and spatial orientation. The axis lengths are
proportional to the square roots of the three tensor
eigenvalues, λ1≥λ2≥λ3≥0. If the ellipsoid's three orthogo-
nal axes are aligned with the reference axes, the tensor is
diagonal; if the ellipsoid is rotated with respect to the
reference axes, the tensor contains symmetric off-diagonal
elements to account for the rotation. Several tensor
derivatives are unaffected by any rotation of the tensor,
and these are the quantities used to calculate quantitative
values of the diffusion process [8–10]. Such derivatives that
are potentially useful for imaging can be classified into three
groupings: apparent diffusion coefficients, which measure
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the “magnitude” of the diffusion; diffusion anisotropy
indices, which measure the directional preferences of the
diffusion; and the apparent propagation measures, which
quantify whether the geometry of the diffusivity is
more linear (λ1≥λ2≈λ3), spherical (λ1≈λ2≈λ3) or planar
(λ1≈λ2≥λ3). Diffusion following a single fibre bundle
shows linear diffusivity, while regions of crossing fibres,
along with any sheet-like structures, show planar diffusivity
[11]. Since these three groupings are measuring different
physical properties of diffusion, it is conceivable that they
might be sensitive to different microstructural changes. To
ignore two of the three groupings, as is necessary in
conventional univariate analysis, risks losing important
information about such changes.

In this study, mean diffusivity (MD) was used as the
apparent diffusion coefficient; fractional anisotropy (FA) as
the diffusion anisotropy index; and mode as the apparent
propagation measure. In terms of the tensor eigenvalues,
these are given by:

MD ¼ 1
3

k1 þ k2 þ k3ð Þ ð1Þ

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

k1 �MDð Þ2þ k2 �MDð Þ2þ k3 �MDð Þ2
k21 þ k22 þ k23

s
ð2Þ

mode ¼ k1k2k3

k1 �MDð Þ2þ k2 �MDð Þ2þ k3 �MDð Þ2
h i3=2 : ð3Þ

Voxel-based analysis of brain structure, such as that done
by SPM, leaves the choice of the variable of interest to the
individual researcher. The analysis is, however, restricted to
being univariate. Commenting on this aspect of the
methodology in their paper on voxel-based morphometry
(using grey matter concentration as the variable of interest),
Ashburner and Friston [12] said, “A possibly more powerful
procedure would be to use some form of voxel-wise
multivariate approach…The Hotelling's T2 test could be
used to perform simple comparisons between two groups.
However, for more complex models, the more general
multivariate analysis of covariance would be necessary.”
This study picks up this suggestion from morphometry and
applies it to the investigation of microstructural integrity,
using the same underlying methodology. Here, instead of
using grey matter concentration as in morphometric analysis,
we use the diffusion tensor derivatives MD, FA and mode.
To our knowledge, it is the first time that microstructural
integrity has been interrogated using multivariate methods
with voxel-based DTI parameters.

Our first multivariate method entailed evaluating the
Hotelling's T2 statistic [13,14] at each voxel to test the null
hypothesis that the centroid (the vector of means of the three
metrics) of the boxer dataset was the same as the centroid of
the control dataset. This statistic is the multivariate counter-
part of Student's t-statistic, while the centroid is the multi-
variate counterpart of the mean.

Our second method was a novel application of linear
discriminant analysis (LDA) at the voxel level. Other
studies have used LDA to investigate brain structure, but
they focused on using LDA to perform group identification,
such as one based on regional DTI data [15] and another
using multimodal MR spectroscopic and conventional MRI
data [16]. The aim of the approach used in this report was
to employ LDA at every single voxel to generate a new
diffusion metric to subsume independent MD, FA and
mode measures, to maximise the differentiation between
the group of boxers and their controls at the level of each
voxel. We called this new metric the separability metric.
The feature of this approach compared with other multi-
variate analyses is that it is voxel based, generating this new
separability metric at each voxel. The advantages of a
voxel-based approach over operator-dependent region selec-
tion are well documented (see, e.g., [17]). In this way, it can
be used to investigate every voxel, and to objectively
identify those where the separability metric of the boxers is
statistically significantly different from the controls. To do
this, the new metric was used in a standard voxel-based
analysis of the brain using SPM2 (http://www.fil.ion.ucl.ac.
uk/spm/). The difference between this approach and
standard SPM analysis is that instead of using MD, FA or
mode individually in the analysis, the separability metric
has, at each voxel, incorporated information from all three
diffusion metrics to ensure optimal separability between
the two groups of subjects. Extending the improved power
of multivariate analysis to DTI data at the voxel level is
likely to have potential value in studying many clinical
disorders that involve diffuse and/or multisystem altera-
tions or damage.
2. Materials and methods

In vivo data were acquired from 59 professional male
boxers and 12 male control subjects (aged from 22 to
31 years) in the same age range. The control subjects were
free from neurological disease and had no boxing history.
Informed consent was obtained from all participants.
Imaging protocols were approved by the institutional review
board. The brain imaging was part of a screening programme
to monitor professional boxers; those in this study did not
show clinical signs of neurological damage. Conventional
MR imaging of these subjects produced negative or
nonspecific findings, including cavum septum pellucidum,
subcortical white matter disease and periventricular white
matter disease.

2.1. MR Data acquisition

Scans were performed on two GE 1.5-T MRI scanners
(General Electric Medical Systems, Milwaukee, WI, USA)
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Fig. 1. Comparison of the effects of different smoothing filters. Statistical group comparisons and data used in each case were identical, except for the isotropic
filter width of (A) 4 mm and (B) 8 mm FWHM.
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with 22 mT/m gradient strength. A quadrature head coil was
used, and in all cases the section thickness was 5 mm, with
no intersection gaps. A 2D spin-echo EPI acquisition was
used with TE/TR=100 ms/12 s. An acquisition matrix of
128×128×30 and 1.7×1.7×5 mm3 voxels in 26 gradient
directions with direction-dependent b values between 815
and 1152 s/mm2, and six acquisitions with no diffusion
weighting, was used. The total acquisition time was 6 min
24 s. No subjects, whether boxers or controls, were excluded
from the analysis.

SPM2 was used to preprocess the data. The images were
firstly spatially normalized to the Montreal Neurological
Institute's (MNI) EPI template using SPM's nonrigid body
transformations. The source image used to obtain the
normalization parameters for each subject was the subject's
T2-weighted (b=0 s/mm2) image which was fitted to an MNI
template image with similar contrast. These parameters were
applied to the MD, FA and mode images. The resulting
normalized images were then smoothed. The selection of the
smoothing filter width should ideally be driven by the
matched filter theorem, which states that the filter width
should match the expected size of the differences being
investigated [18,19]. In practice, however, this a priori
information is seldom available. However, as traumatic head
injury is known to manifest itself as diffuse axonal injury
[20,21], we started with a 4-mm full-width at half maximum
(FWHM) filter and compared it with an 8-mm one (Fig. 1).
This visual comparison showed the 8-mm filter was more
sensitive and was thus used in all remaining analyses. It is
also an intermediate width in the range of 0–16 mm reported
in the literature [18].

The pre-processed normalized, smoothed images became
the input data for all three analysis methods: conventional
univariate testing, Hotelling's T2 statistic and the LDA.
Multiple comparison correction algorithms such as false
discovery rate and random field theory corrections have not
yet been written for the Hotelling's algorithm. To facilitate
comparison of the different methods, we therefore addressed
the problem of multiple comparisons by using a level of
significance for the two-tailed t tests of α=0.001, and by
requiring a cluster size of at least k=8 voxels before the
cluster was accepted. A flowchart outlining the analysis
methods used is shown in Fig. 2.

2.2. Hotelling's multivariate tests

We used Hotelling's T2 statistic to perform multivariate
hypothesis tests of the data (see Johnson and Wichern [22] for
the relevant equations). With this methodology, an imbalance
in the “strengths” of the contributing metrics tends to reduce
the power of the final test compared to the strongest individual
metric. In this study, including the weak metric mode was
found to noticeably reduce the power of the analysis. We
therefore opted to use just MD and FA in the Hotelling's
analyses in this study.

2.3. Linear discriminant analysis

Linear discriminant analysis (see [23,24]) investigates the
extent to which two or more groups of subjects can be



Fig. 2. Flowchart outlining the analysis process from using the DTI data to find the tensor at each voxel through to obtaining images of statistical difference
between the subject and control groups.

1 http://cmp.felk.cvut.cz/~xfrancv/stprtool/.
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separated, based on the measurements of several different
variables for each subject. It does this bymaximizing the ratio
of the between-group variance to the within-group variance
— i.e., the distance between the groups is maximized while
the distance within the groups is minimized. The resulting
“separating” function is called the linear discriminant
function. Unlike Hotelling's analysis, LDA does not penalise
strong metrics if weaker ones are included in the analysis.
This is because it finds the weighted combination of the
metrics that best separates the two groups. Any metric that
contributes little or nothing to the discriminating power of the
analysis is simply down- or zero-weighted.

If xi are the univariate metrics being used (in this study
MD, FA and mode), the linear discriminant function (L) can
be written as

L ¼ a0 þ a1x1 þ a2x2 þ N þ anxn: ð4Þ

The weighting parameters ai are determined in such a way
that the discrimination between the groups is maximised. The
linear discriminant function is the single linear function in
MD, FA and mode that provides a mathematically derived
optimal discrimination between the boxer and control
groups. This is the justification for using the evaluated linear
discriminant function for each subject at each voxel as the
new multivariate metric to test for differences between
boxers and controls, and to test whether it is more sensitive
than any of the contributing univariate metrics.

We used the Fisher's Linear Discriminant function in the
Matlab Statistical Pattern Recognition toolbox1 to perform
the LDA. Its identification of the function that best
discriminates between the groups is based on the Rayleigh
quotient as the measure of separability [25].

The novelty of this study is in applying LDA to each and
every voxel, and thus generating a different linear dis-
criminant function at each voxel. This provides two
important pieces of information about that voxel. Firstly, it

http://cmp.felk.cvut.cz/~xfrancv/stprtool/


Fig. 3. Scatter plot of FA vs. MD for voxel with MNI coordinates (36 –16
12) in the insular cortex. The linear discriminant function using the FA and
MD metrics (the “separator line”) is superimposed. For ease of display and
visualisation, this result was produced using only two of the three metrics,
with an attendant reduction in successfully categorising each subject from
90% to 72%.

Table 1
A pair-wise comparison of the sensitivity of the different methods, where the
number of “significant” voxels common to both methods as a proportion of
the total number of voxels in the brain is recorded (For example, the number
of voxels that were identified as significant by both univariate MD and by
Hotelling's T2 comprised 1.8% of the brain)

Univariate
MD

Hotelling's
T2

Linear discriminant
analysis

Univariate MD 0.040 0.018 0.023
Hotelling's T2 0.018 0.050 0.031
Linear discriminant analysis 0.023 0.031 0.126
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finds the linear discriminant function L, which is the linear
combination of the three metrics that best separates boxers
from controls at that voxel. This gives a quantitative measure
of the discriminating ability of the different contributing
metrics at that voxel— i.e., which metrics contribute most to
the separation. This property is the motivation for the novel
use of LDA in this study: that a separability metric can be
generated at each voxel of each subject. This is done by the
voxel-wise evaluation of L for each subject. These separ-
Fig. 4. Coloured regions showing voxels where the boxers are statistically sig
superimposed on an average FA map of normalized, undamaged brain. The univa
ability metric values for each subject were then used in
significance testing to find voxels where the boxers' and
controls' values were different.

An example of the results of LDA at a single voxel in the
insular cortex region [with MNI coordinates (36 –16 12)] is
shown in Fig. 3. This scatterplot shows the expected pattern
that with mild head injury MD increases and FA decreases
[26,27]. With the diffusion metric values statistically
normalized to a mean of 0 and standard deviation of 1, the
discriminant function (Eq. (4)) for this voxel was:

L ¼ 0:0265þ 0:0116�MDz;�0:0042� FAz � 0:038
�modez

where the z subscript refers to normalized values. The
coefficients show that at this voxel mode is the strongest
metric, followed by MD, with FA the weakest. This is
unusual, as mode is typically a weak discriminator (see
Results and discussion section below) which is not used in
univariate analysis. However, in the rare voxels such as
this one where it makes an important contribution to the
nificantly different from the controls (α=0.001, k=8). These regions are
riate analyses used are (A) MD, (B) FA and (C) mode.



Fig. 5. Coloured regions showing pair-wise comparisons of where each method identifies the boxers as being statistically significantly different from the controls,
and where the two methods overlap (α=0.001, k=8), using (A) univariate MD vs. Hotelling's T2 statistic fromMD and FA; (B) univariate MD vs. LDA's measure
using MD, FA and mode; (C) Hotelling's T2 statistic from MD and FA, vs. LDA's measure using MD, FA and mode; and (D) a coronal section of the main
damage identified by both Hotelling's and LDA methods. These regions are superimposed on an average FA map of normalized, undamaged brain. The circled
regions (C and D) contain voxel (36 –16 12) (see also Fig. 3), whose analysis is discussed in the text.
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ability to discriminate between the two groups, LDA is
able to include this information and so increase the power
of the test. This illustrates the importance of the linear
discriminant function as a separator, optimally incorporat-
ing as it does, separation information from all three metrics
at every voxel.
3. Results and discussion

Before utilising multivariate analyses, it is important to
understand the behaviour of the three univariate metrics
separately. Fig. 4 displays standard two-sample two-tailed
t-test results for each metric. Visual inspection shows
that overall there is one strong metric (MD) and two weak
ones (FA and mode) in identifying differences between the
professional boxer brains and the control brains.

The comparative sensitivities of Hotelling's, LDA and the
univariate MD methods in this study are shown in Table 1.
This quantifies the extent of the regions identified as being
different between boxers and controls by the different
methods. From the table, it is apparent that LDA is 2.5 times
as sensitive as Hotelling's, which itself is 1.25 times as
sensitive as MD. The Hotelling's linear discriminant pairing
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has the greatest overlap, i.e., the greatest number of
“significant” voxels in common, with Hotelling's sharing
60% of its significant voxels with LDA.

Fig. 5 shows the pair-wise comparisons of the regions
of difference unique to each method, and the regions
common to both. Fig. 5A shows that Hotelling's T2

confirms the main problem area identified by MD: bilateral
damage to the region of the inferior temporal gyrus. In
addition, however, the Hotelling's approach identifies
major subcortical damage in the striatum and thalamus
that was not detected by MD. By contrast, Hotelling's did
not detect some of the diffuse white matter damage shown
by MD.

Fig. 5B and C shows that LDA appears to provide an
optimal multivariate approach. LDA supports the main
damage identified by both the univariate MD analysis and
the multivariate (MD and FA) Hotelling's analysis, although
the extent of subcortical damage in the striatum and thalamus
is less evident. An additional feature of the LDA analysis is
that it reveals more diffuse microstructural damage than
the other methods. Fig. 5D is a coronal view of the damage to
the subcortical and internal capsule regions, showing that the
subcortical damage in boxers appears most prominent at
the level of the posterior limb of the internal capsule when
analysed with Hotelling's and LDA multivariate methodol-
ogies. This finding, not apparent from the univariate analysis
of these data, is in agreement with results of another boxers
study [28].
4. Conclusions

In this study, we have presented two different methods for
analysing and displaying differences in brain structure
between two subject groups using multivariate statistics.
The two methods are the voxel-wise evaluation of
Hotelling's T2 tests of multivariate data and Student's
t tests of LDA's separability metric that optimises group
differences at individual voxels.

In this study, LDAwas more sensitive and provided more
detail of the microstructural damage in the boxers, while
Hotelling's statistic revealed fewer, more consolidated
subcortical clusters. LDA in addition reflects the diffuse
nature of the mild, repetitive, closed head injury. Hotelling's
and LDA methods complement each other, improving the
power and thereby extending the findings of separate
univariate analyses.

LDA is robust to changes in the relative strengths of the
contributing metrics, since if one metric is weak at a
particular voxel, it is down-weighted there without penalis-
ing the others. This is a strength it has over the Hotelling's
method which loses power when a weak metric is included.
We have demonstrated LDA's flexibility in this regard,
showing how it can capture the discriminating information
from a metric that is weak in most voxels but is nevertheless
a strong separator in a few.
Aweakness of this retrospective study is the low number
of control subjects, which considerably reduces the power
of the analyses. Despite this limitation, these new methods
enabled us to identify major subcortical damage in the
brains of the professional boxers that was not evident using
univariate analysis.
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