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EEG-Based Lapse Detection With High Temporal
Resolution

Paul R. Davidson*, Member, IEEE, Richard D. Jones, Senior Member, IEEE, and Malik T. R. Peiris

Abstract—A warning system capable of reliably detecting lapses
in responsiveness (lapses) has the potential to prevent many fatal
accidents. We have developed a system capable of detecting lapses
in real-time with second-scale temporal resolution. Data was from
15 subjects performing a visuomotor tracking task for two 1-hour
sessions with concurrent electroencephalogram (EEG) and facial
video recordings. The detector uses a neural network with nor-
malized EEG log-power spectrum inputs from two bipolar EEG
derivations, though we also considered a multichannel detector.
Lapses, identified using a combination of video rating and tracking
behavior, were used to train our detector. We compared detectors
employing tapped delay-line linear perceptron, tapped delay-line
multilayer perceptron (TDL-MLP), and long short-term memory
(LSTM) recurrent neural networks operating continuously at 1 Hz.
Using estimates of EEG log-power spectra from up to 4 s prior to
a lapse improved detection compared with only using the most re-
cent estimate. We report the first application of a LSTM to an EEG
analysis problem. LSTM performance was equivalent to the best
TDL-MLP network but did not require an input buffer. Overall
performance was satisfactory with area under the curve from re-
ceiver operating characteristic analysis of 0.84 + 0.02 (mean + SE)
and area under the precision-recall curve of 0.41 + 0.08.

Index Terms—Alertness monitoring, artificial neural networks,
EEG, lapses of responsiveness, microsleeps, visuomotor tracking.

1. INTRODUCTION

lapse in psychomotor performance at the wrong moment

can have catastrophic consequences. The fatigue process
is associated with gradual deterioration in perceptual, cognitive,
and sensorimotor performance [1], [2] but it is also common
to observe rapid, temporary lapses of responsiveness, particu-
larly in deeper fatigue states. These are typically accompanied
by other behavioral sleep signs, such as head nodding, slow eye
movements (SEM), loss of facial tone, and partial or full eye
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closure [3], followed rapidly by resumption of acceptable per-
formance [4]. These episodes are often termed lapses or mi-
crosleeps 5], and indicate temporary deactivation of the cortical
networks responsible for task performance [6]. A device capable
of detecting or predicting lapses has the potential to markedly
improve public safety.

Research into EEG-based lapse detection has been encour-
aged by studies showing lapses are correlated with changes
in EEG spectra [7]-[11]. However, the short-term temporal
dynamics of these changes tend to be considered too variable to
be useful. Consequently, most studies have aimed to estimate
alertness level by averaging performance at discrete auditory or
visual vigilance tasks over broad 1-2 min time windows [10],
[12], [13]. Studies using continuous compensatory tracking
tasks have also estimated alertness by smoothing the tracking
error with a moving window of 1 [14] or 2 [15] min duration.
This windowing approach provides approximately minute-scale
temporal resolution, which is appropriate for detecting slow
shifts in arousal but does not provide sufficient temporal speci-
ficity to detect lapse events lasting only a few seconds. In this
paper we report work on detection of lapses with finer temporal
resolution. Our novel approach is to utilize the EEG patterns
occurring in the seconds leading up to a lapse that might be
obscured by the averaging process.

While the terms “lapse” and “microsleep” are often used
as synonyms, there is an important distinction between mi-
crosleeps defined by EEG and behavioral criteria. EEG-defined
microsleeps, usually identified via bursts of theta activity, can
occur without any noticeable changes in task performance [16].
Behavior-defined microsleeps are less easily detected. They
occur when key attentional or sensorimotor pathways required
for responding to a given task are temporarily deactivated [17].
While it may be associated with EEG-defined microsleep, this
deactivation process has no consistent EEG markers identifiable
by human experts [18]. Despite this, we aimed to identify subtle
spatio-temporal patterns in the EEG power spectrum that may
by overlooked by a human EEG observer.

We have developed a system to detect lapses in real-time
with second-scale temporal resolution based on continuous
EEG data. The system was tested using a data set collected in a
previous study of lapsing during a visuomotor pursuit tracking
task [19]. The task was selected for its similarity to driving a
car, though we hope our detector will generalize beyond this
to other related tasks. Lapse episodes during the task were
identified using a simple combination of tracking and video
measures.

Our detector uses a neural network to identify lapses given
only the EEG log-power spectrum. Unlike comparable systems
operating with lower temporal resolution (e.g., [3], [12], [20],
and [21]), our system makes use of the temporal dynamics of
the EEG log-power spectrum, which we show improves lapse
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detection. We report results using tapped delay-line linear per-
ceptron (TDL-Linear), tapped delay-line multilayer perceptron
(TDL-MLP), and long short-term memory (LSTM) [22]-[24]
networks to classify our EEG data. LSTM is a promising recur-
rent neural network architecture which, as far as we are aware,
has not previously been applied to EEG analysis. Unlike TDL-
MLP, LSTM networks do not employ a fixed memory represen-
tation and can learn complex temporal relationships over arbi-
trary time scales.

II. METHODS

A. Tracking Study

In a previously reported study [19], 15 normal male vol-
unteers aged 18-36 years performed a visuomotor tracking
task [25] while EEG, video of facial features, and tracking
behavior were recorded. Subjects were asked to keep a cursor
as close as possible to a repeating pseudorandom target
(bandwidth = 0.164 Hz, period = 128 s) scrolling down
a screen. The cursor was located at the bottom of the screen
and subjects had an 8-s preview of the scrolling target. Sub-
jects moved the cursor horizontally by rotating a steering
wheel. A 25 Hz analog video camera, time locked to the
tracking, recorded head and facial features of subjects during
the task. Sixteen channels of scalp EEG, and horizontal and
vertical EOG, were recorded continuously during all sessions
(sampling rate = 256 Hz, bandwidth = 0.1-100 Hz). EEG
electrodes were placed according to the international 10-20
system. Each subject attended two sessions, held on separate
days in which they performed the tracking task continuously
for one hour. They were asked to stay alert and perform to the
best of their ability.

As part of the same study, 30 hr. of video were rated by
a human expert on a 7-point scale indicating probable lapses,
sleep, deep drowsiness, light drowsiness, forced eye closure,
distraction, and alertness. The rater marked transitions between
levels with 1-s accuracy. The lapse and sleep categories were
rated conservatively, with the subject’s eyes having to be closed
before these categories were assigned. This ensured that the sub-
ject was definitely unresponsive to new stimuli when a lapse or
sleep episode was marked. The video analysis revealed that 8
of 15 subjects lapsed at some time during the two sessions, and
these subjects were used in our subsequent analysis. Of those
that lapsed, the median rate was 44 lapses per hour.

B. Lapse Identification

The video rating represents our most reliable conservative
indication of when a lapse had occurred but we also observed
clear lapses in the tracking response. This tracking informa-
tion was used to improve identification of lapses. Subjects
frequently stopped moving the response cursor just prior to a
video lapse event, and these tracking flat-spots usually con-
tinued throughout, and frequently beyond the end of, a video
lapse. Tracking flat-spots were a more reliable and specific indi-
cation of lapsing than simple tracking error, at least for our 1-D
task, for several reasons. The low frequency of the target meant
there was often a delay of several seconds between the start of
a lapse and a clear increase in tracking error. Also, because the
target was constrained within a limited range, tracking error
periodically dropped to zero, even when the response cursor

was not moving. Tracking error tolerance also varied both
between and within individuals, with a higher error tolerance
being characteristic of drowsiness—an observation consistent
with vigilance studies showing shifts in both response criterion
and stimulus sensitivity with vigilance level [6].

Identification of tracking flat-spots was made more difficult
because of periodic stationary points in the target (where the ve-
locity dropped to zero). At these times a tracking flat-spot may
reflect appropriate behavior. Consequently, an algorithm was
developed to distinguish “appropriate” from “inappropriate”
tracking flat-spots. A lapse was deemed to be occurring when a
subject was unresponsive according to the video rating and/or
their tracking response exhibited an “inappropriate” flat-spot.

To identify flat-spots the target and response signals were first
low-pass filtered with a cutoff at 5 Hz using an 8th-order bidi-
rectional Butterworth filter. Target flat-spots were identified as
intervals of at least 300 ms duration in which the target moved
less than 1.5 mm. Similarly, response flat-spots were identi-
fied as intervals of at least 1500 ms duration in which the re-
sponse cursor moved less than 0.8 mm. A “start-zone” and an
“end-zone” were also marked for each response flat-spot. The
start zone extended forward 2.0 s from the beginning of the re-
sponse flat-spot. The end zone extended back 1.3 s from the end
of the response flat-spot.

A tracking flat-spot was classified as “appropriate”, and there-
fore excluded from our lapse measure, if 1) the “start-" and the
“end-zone” overlapped with one or more target flat-spots; 2) the
RMS error between the target and the response during the event
was less than 15.0 mm; 3) the duration of the event was <6.0 s.
The RMS error threshold in “2” was necessary for cases where a
clearly “inappropriate” tracking flat-spot coincided with two or
more target flat-spots. Careful visual inspection of the tracking
data confirmed that an RMS error threshold of 15.0 mm was suf-
ficiently sensitive to detect these flat-spots without introducing
false positives. The duration of the longest contiguous target
flat-spot was 5.0 s, so any tracking flat-spots longer than 6.0 s
were considered inappropriate.

The measure performed well and missed only the early stages
of a few clear lapses. These included cases where the video
rating did not indicate a lapse was occurring yet the response
cursor drifted incoherently. An example from a typical subject
is shown in Fig. 1.

C. EEG-Based Lapse Detection

Epochs exhibiting clear electrode pop were marked as artifact
using a simple algorithm which detected a change of greater
than 0.4 mV in EEG amplitude within a single sample (3.9
ms). Standard longitudinal bipolar montage derivations were
then calculated and used for further analysis. Signals from all
derivations were divided into sequential, non-overlapping 1-s
windows. Power spectral density across each window was cal-
culated using the covariance method to form a fortieth-order au-
toregressive (AR) model. The covariance method was selected
as it is resistant to noise and works well for short data sequences
[19]. The model order was selected by iteratively increasing the
order until ¢, 6, a, and 3 band spectral peaks were clearly de-
fined based on 10 min random samples of a single EEG deriva-
tion from all subjects. The high model order selected reflects
our requirement for sufficient frequency resolution to discrimi-
nate between the standard EEG bands. Investigation with linear
classifiers confirmed that a fortieth-order AR model provided
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Fig. 1. Typical tracking behavior and identified lapses from the middle of a subject’s first session. The tracking target (black line) and response (dashed line) are
shown below rectangles indicating lapse events. The black outer border of the rectangles indicate a lapse interval as identified by our algorithm. The dark gray
upper bars indicate video lapses and the light gray lower bars indicate inappropriate response flat-spots; a lapse was marked when either or both of these were
identified. In the example, the first lapse is identified from video alone. This was because our algorithm did not classify the tracking flat-spot as inappropriate, since
both the 2 s start- and 1.3 s end-zones of the flat-spot overlapped with a low velocity target.

better discrimination then lower order AR models. The loga-
rithm of the mean power in 7 standard frequency ranges was
then calculated for each derivation: delta (0.1 < f < 4 Hz),
theta (4 < f < 8 Hz), alpha (8 < f < 13 Hz), low beta
(13 < f < 18 Hz), high beta (18 < f < 36 Hz), gamma
(36 < f < 44 Hz), and higher (f > 44 Hz). This selection
was based on preliminary work indicating standard wide fre-
quency-bands provided increased robustness and inter-subject
generalization compared with narrower frequency bands. These
values were then converted to z-scores, normalized by the first
minute of EEG data from each subject, session, and derivation.
Where principal components analysis (PCA) was applied, the
resulting 112 element feature vector (7 bands x 16 derivations)
was used as input. The target was set to +1 when a lapse was
present and —1 otherwise.

All classifiers were implemented using PDP++ [26]. The
TDL-Linear networks had two layers and a linear activation
function in the output unit. The TDL-MLP and LSTM networks
had three layers with a linear bypass from input to output and a
sigmoidal activation function in their output units. Each LSTM
hidden unit consisted of a single memory cell. Sequential
on-line training was used except when a sample was identified
as containing EEG artifact. In this case the LSTM network
weights were not updated and the internal states of all memory
cells were reset. MLP networks were trained using back-prop-
agation with momentum, and LSTM networks were trained
using a mixture of real-time recurrent learning (RTRL) and
back-propagation through time (BPTT), as described in [24].
Higher-order training algorithms are unavailable in PDP++
but the training of our best TDL-MLP network was repeated
using the Matlab implementation of the Levenberg-Marquadt
algorithm. The resulting classifier was very similar, though
convergence occurred in fewer iterations.

Data from all 8 subjects who had clear video lapses were used
to train and test the networks. Performance was evaluated using
several metrics. We calculated the area under the receiver oper-
ating curve (AUC-ROC) and the area under the precision recall
curve (AUC-PR) using the ROCR package [27]. These measures
are independent of operating point and both were considered
when selecting the best classifier [28]. We also report the phi
correlation coefficient () [29] for the mean optimum threshold
based on the training set when applied to the test set, sensitivity
(sn = TP/[TP 4 FN], where TP and FP are the proportions
of true and false positive samples respectively, and TN and FN
are the true and false negative sample proportions), specificity
(sp = TN/[TN + FN]), and precision (TP/[TP + FP]).

Classifier performance was assessed with leave-one-out
cross-validation, in which the data from one subject was set
aside and used to test a network trained using the remaining
data. This was done once for each of our 8 subjects. The entire
8-fold cross-validation was then repeated three times with
different initial random weights. Results reported here are
means across those cross-validation repetitions. Paired t-tests
were used to compare the performance of different detectors.
All networks employed the same learning rate of 1 = 0.0001.
Where over-fitting was detected and could not be eliminated
by pruning the model structure, we report results using weight
decay regularization [30].

To facilitate comparison of our results with those of systems
with lower temporal resolution, we also smoothed our binary
detector output using the same exponential filter applied by Jung
et al. to generate a “local-error rate” estimate [12]. The filter was
applied to both the target and the output of the neural network.
The filter comprised an exponential moving window in which
the gain decreased from 1.0 to 0.1 over 93.4 s, giving a half-life
of 27.4 s.

III. RESULTS

A. Lapse ldentification

A lapse was marked whenever a video lapse event and/or an
inappropriate tracking flat-spot was identified. By considering
inappropriate tracking flat-spots we improved identification of
the start and end of some lapses by several seconds compared
with using the video alone (see Fig. 1.). Video lapse events
occurred surprisingly frequently at 65.1 £+ 16.8 (mean + SE)
events per hour, while the combined lapse measure gave 72.5 £+
16.9 lapses per hour. The difference in these rates was caused
by inappropriate flat spots unaccompanied by video events, and
probably reflects the conservative criteria used to identify video
lapses. The duration of video-only lapse events was 4.0 &= 0.7
s, while the duration of combined lapse events was 4.4 + 0.7 s
reflecting the fact that video and tracking events typically over-
lapped.

B. Multichannel Analysis

Assuming over-fitting can be avoided, best performance is
likely to be achieved using information from all channels. To
limit the number of features with which the classifier models
must work, we applied PCA to the log-power spectral data
from all 16 bipolar derivations. 80% of the input variance was
accounted for by the top 11 of 112 components and 90% by the
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TABLE I
LAPSE DETECTION PERFORMANCE FOR TDL-LINEAR NETWORK WITH 30 PRINCIPAL COMPONENTS INPUT

Input Window Length (s) AUC-PR AUC-ROC
mean + SE mean + SE

1.0 0.335 + 0.088 0.759 + 0.054

2.0 0.376 + 0.099 0.777 + 0.055

3.0 0.391 + 0.102 0.785 + 0.054

4.0 0.397 + 0.104 0.788 + 0.053

5.0 0.393 + 0.104 0.791 + 0.052

6.0 0.390 + 0.104 0.794 + 0.051

top 30. To confirm these additional 19 components contained
information useful for lapse identification separate linear clas-
sification models were fitted with 11 and 30 input components.
Classification performance was inferior using only 11 features
(AUC — PR = 0.29 £ 0.07, AUC — ROC = 0.72 £ 0.04)
compared to 30 features (AUC —PR = 0.34 £ 0.09,
AUC — ROC = 0.76 £ 0.06). Consequently, we decided to
continue our initial analysis using 30 components.

To provide a baseline for assessing neural network classi-
fier performance, we investigated two-layer linear perceptron
networks with tapped delay-line inputs. Table I shows leave-
one-out cross-validation results for TDL-Linear networks with
input windows between 1.0 and 6.0 s. Since the EEG log-power
spectrum is updated at 1 Hz, this corresponds to between 1 and
5 delay-line taps. Hence, an input window of 1.0 s provides only
the most recent spectrum estimate, with no history. The mean
AUC-PR of the network output was larger with a 2-s than a
1-s input window (paired t-test; p = 0.0093) and with a 4-s
than a 2-s window (p = 0.033), but did not differ when the
window was extended from 4.0 s to 6.0 s (p = 0.31). These
results show that temporal information is able to improve de-
tector performance but the slight trend to a lower AUC-PR for
windows longer than 4 s indicates over-fitting may be an issue
even for linear networks with tapped delay line inputs. Best per-
formance was achieved with a 4-s input window (AUC — PR =
0.40 £ 0.10, AUC — ROC = 0.79 £ 0.05).

An LSTM recurrent neural network with 1 unit in the hidden
layer and a linear bypass connection was subsequently trained
until full convergence, but gave poorer performance compared
to that of the TDL-Linear networks (AUC — PR = 0.2940.08,
AUC — ROC = 0.74 &+ 0.04) due to as over-fitting. To ad-
dress this, we employed weight decay regularization [31],
iteratively increasing the weight decay constant by factors of
10 until performance stopped improving (which occurred at
A = 0.01). This led to an AUC — PR = 0.43 £ 0.09 and
an AUC — ROC = 0.81 % 0.04. Adding further units to the
hidden layer of the LSTM network did not improve classifier
performance, and the LSTM classifier had lower mean RMS
error than the best linear classifier (0.25 vs 0.26, p = 0.018).
This indicates the lapse classification problem exhibits mildly
nonlinear EEG log-power spectrum dynamics.

We also investigated the performance of TDL-MLP net-
works. With a single unit in the hidden layer the window length
was increased until performance differed from linear. Perfor-
mance was worse with a window length of 2 s compared with 1
s so weight decay regularization was added and the procedure
repeated. AUC-PR and AUC-ROC were lower than for our best
LSTM result with one to three windows, but did not differ with

a 4 s or longer input windows (AUC — PR = 0.41 £ 0.11,
AUC — ROC = 0.79 £ 0.05). Adding additional units to the
hidden layer did not improve performance of the TDL-MLP
networks, further emphasizing that the problem is only mildly
nonlinear.

Because over-fitting had a strong influence on our results,
we repeated the analysis using only the top 11 components,
explaining 80% of the variance in the input data. Fitting an
LSTM network with a single unit in the hidden layer resulted
in a network that performed better than the equivalent network
with 30 components as input (AUC — PR = 0.32 £ 0.08,
AUC — ROC = 0.75 & 0.04), indicating that less over-fitting
had occurred, but did not perform better than TDL-Linear with
4 s input window. Adding weight decay improved the results
slightly but performance remained worse than the equivalent
LSTM network with 30 components as input (AUC — PR =
0.40 £ 0.09, AUC — ROC = 0.80 £ 0.03).

Overall, the PCA results showed that adding temporal in-
formation improves classification performance and that adding
nonlinear elements only provides a slight improvement. It
should be noted that the training procedure for the LSTM
network was simpler, as we did not need to iterate over a range
of input window lengths.

C. Limited Channel Subset Analysis

The 16-channel analysis was intended to give an indication of
the best performance we could obtain from the available data.
With lapse data from only 8 subjects, and PCA unable to yield
fewer than 30 features while retaining greater than 90% vari-
ance, the resulting classifiers either over-fit the data or discard
an unacceptable proportion of the input variance. Consequently,
some doubt remained as to whether optimum performance had
been achieved.

Since one aim was to build a portable lapse detector, we also
wanted to minimize the size and complexity of the detector
unit. To achieve this we aimed to reduce the number of EEG
derivations and keep the electrodes clustered as close together
as possible. Consequently, we tried reducing the input features
by simply limiting the number of input derivations.

To select the best EEG derivations we fitted linear classifi-
cation models to data from each derivation in isolation. These
results are shown in Table II.

These show a trend to better classification performance
from more posterior derivations. Best performance was
achieved with P4-O2, so we started by fitting an LSTM
model to data from this derivation alone. Since the model
only has 7 inputs there is substantially less risk of over-fitting
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LEAVE-ONE-OUT CROSS-VALIDATION RESULTS. LINEAR CLASSIFIERS TRI&}ZIS%;IITH LOG POWER SPECTRAL DATA FROM EACH DERIVATION INDIVIDUALLY
Channel AUC-PR AUC-ROC
mean + SE mean + SE
Fp1-F7 0.091 + 0.031 0.478 + 0.038
F7-T3 0.114 + 0.031 0.556 + 0.048
Tg-Ts 0.185 + 0.039 0.660 + 0.032
T5-01 0.232 + 0.067 0.722 + 0.031
Fp2 - F8 0.091 + 0.030 0.482 + 0.037
F8-T4 0.107 £ 0.043 0.558 £+ 0.037
T4 -T6 0.162 + 0.049 0.649 + 0.037
T6 - O2 0.274 + 0.071 0.741 + 0.034
Fp1-F3 0.101 £ 0.034 0.466 + 0.046
F3-C3 0.142 + 0.038 0.586 + 0.035
C3-P3 0.214 + 0.054 0.678 + 0.036
P3-01 0.254 + 0.058 0.745 £ 0.026
Fp2-F4 0.0864 + 0.03 0.431 + 0.038
F4-C4 0.141 £ 0.040 0.572 + 0.047
Cq4-P4 0.225 + 0.060 0.677 £ 0.039
P4-02 0.285 + 0.065 0.754 + 0.030
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Fig. 2. Example of LSTM lapse detector performance. (a) Detector output (gray line) and target (black line). (b) Corresponding tracking behavior with target

(black line) and response (gray line).

compared with the 30 component models assessed previ-
ously. This was confirmed as the network with a single
LSTM unit in the hidden layer performed substantially better
than the simple linear model for P4-O2 shown in Table II
(AUC — PR =0.35£0.07, AUC — ROC = 0.8240.02), and
the RMS error over the test set did not increase during training.
With 2 units in the hidden layer we again observed over-fitting
(AUC — PR =0.33 £ 0.07, AUC — ROC = 0.82 + 0.02).

The next best derivation based on the linear classifier anal-
ysis (Table II) were T6-02, according to AUC-PR, and P3-01,
according to AUC-ROC, though these derivations did not differ
from each other in either statistic (p > 0.05). Consequently, we
decided to train a detector with P3-O1 and P4-O2 as input chan-
nels because they are in different hemispheres and did not share
areference electrode, so seemed less likely to contain redundant
information. Training a linear classifier gave AUC — PR =
0.30£0.06 and AUC — ROC = 0.78+0.02, while and a single
hidden unit LSTM unit network gave AUC — PR = 0.36 £
0.07, AUC — ROC = 0.8340.02, which was a slight improve-
ment over the single derivation case. There was evidence of
over-fitting, so we repeated the analysis and added weight decay,
giving AUC — PR = 0.4140.08, AUC — ROC = 0.84+0.02.
This was our best overall classification result.

The analysis was repeated with the best four channels, P4-02,
P3-01, T6-O2 and T5-O1, which gave a very similar result
(AUC — PR = 041 £ 0.07, AUC — ROC = 0.83 £ 0.03).
The 2-derivation classifier is preferred as it is more economical
in terms of electrode usage (four electrodes versus eight).

To confirm the advantage for the 2-derivation LSTM clas-
sifier over a simple linear system, the linear delay analysis
was repeated with two channels. The same pattern emerged
as in the PCA analysis (Table I), with best performance being
achieved with a 4-s input window (AUC — PR = 0.39 £ 0.08,
AUC —ROC = 0.82 £ 0.03). Compared with this classi-
fier, the 2-derivation LSTM classifier had a larger AUC-ROC
(p = 0.021), higher phi coefficient (p = 0.0063), and lower
RMS error (p = 0.036), but no difference on AUC-PR. This
classifier also bettered our best 30 component, multichannel
linear and LSTM classifiers in AUC-ROC and RMS error
(p < 0.05 in both cases) but not in AUC-PR.

D. Classifier Performance

Having selected our best classifier model, we characterized
its overall performance using several methods. Fig. 2. shows a
typical output from the LSTM network over a 6.7-min period
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Fig 3. (a) Mean ROC curve. (b) Mean Precision—recall curve. On both graphs
vertical bars indicate standard error.

from a subject 42 min into the second session. Fig. 3 shows a
full ROC and precision-recall curves for this detector.

To assess classification performance without tuning to in-
dividual subjects we calculated an optimal threshold based
only on the training data and applied this to the test data. To
avoid bias, an optimum threshold based on phi correlation was
calculated for each subject in the training set and the mean op-
timum threshold was then applied to the test data. This showed
a moderate overall phi correlation (mean ¢ = 0.38 % 0.05,
range 0.152-0.621). The system was moderately sensitive
(mean s, = 0.63 £ 0.05, range 0.409-0.875) and highly spe-
cific (mean s, = 0.89+£0.02, range 0.732-0.946) but exhibited
relatively poor precision (mean precision = 0.33 +0.06, range
0.05-0.68), particularly for those subjects who lapsed only a
few times during their two hours. Low precision is tolerable in
a lapse detection system, as false alarms have low cost and are
preferable to missed lapses.

Our system operates on a much shorter time scale than other
similar systems in the literature. For comparison, we applied
a 93.6-s exponential moving window to the binary network
output and target to give an indication of performance under
less stringent temporal resolution requirements. Smoothing
the network output resulted in substantially higher correlation
with the smoothed target than for the unsmoothed results
(mean r £ SE = 0.61 + 0.09, range 0.23 to 0.91). Smoothing
the output yielded a very strong correlation for three of the
eight subjects (r > 0.8).

IV. DISCUSSION

We have reported results from the first system capable of de-
tecting lapses in responsiveness in real-time and with second-
scale temporal resolution. The system operates continuously
and requires only 2 bipolar channels of EEG, which we have
shown performs similarly to a system using 16 bipolar chan-
nels. We showed that using temporal information prior to a lapse
improves detector performance. LSTM has the ability to de-
tect patterns at arbitrary time-scales although comparison with
TDL-MLP and TDL-Linear networks suggests essentially all
the information for detection is contained within a 4.0-s window
prior to a lapse. While current lapse detection performance is
encouraging, we consider that the system is not yet sufficiently
reliable for general use.

Our method for identifying lapses strikes a compromise
between conflicting requirements for temporal resolution and
simplicity. Other researchers have used simpler behavioral

measures based on resultant tracking error [12] to judge alert-
ness. The nature of our task prevented us using tracking error
alone but, with full synchronous video of the face available,
we were able to achieve acceptable temporal resolution. Inter-
and intra-subject variation in tracking ability makes setting a
reliable threshold on tracking error difficult and necessitates
quite severe temporal smoothing of the error to achieve a mean-
ingful metric. The nature of our 1-D driving-like tracking task
made simple tracking error particularly inappropriate, as low
tracking error can occur by chance when the target happens to
move close to the response cursor. Nevertheless, we were able
to achieve approximately second scale resolution by conserva-
tively identifying lapses in the video and augmenting these with
a simple measure based on tracking behavior—inappropriate
tracking “flat-spots.”

This is the first reported application of the promising
LSTM recurrent neural network [24] to EEG analysis. Unlike
TDL-MLP, LSTM networks do not employ a fixed memory
representation and can learn complex temporal relationships
over arbitrary time scales. The LSTM architecture employs
continuous internal states, which should allow then to represent
more complex systems than discrete-state Hidden Markov
Models as applied to the related sleep-staging problem [32],
[33]. LSTM networks also overcome the “vanishing gradient”
problem affecting most other recurrent neural network archi-
tectures when required to learn patterns over long time-lags.
Given their ability to detect temporal patterns we were surprised
to find that LSTM networks did not detect lapses from EEG
any better than a relatively simple TDL-MLP network with
a 4-s input window. This suggests EEG-log power spectrum
patterns on longer time-scales are not useful for improving
detector performance. We emphasize, however, that this study
employed a limited parametrization of the EEG signal (relative
log power in fixed bands at 1-s sampling interval). We intend to
continue to explore the application of LSTM to EEG analysis
with alternative parametrizations of the EEG. In particular, we
believe that by increasing the sampling rate, the system may
be able to resolve and use subtler temporal patterns occurring
within the 4-s window prior to a lapse.

Several previous studies have looked at using EEG to detect
lapses. Sommer et al. [3] used learning vector quantization to
discriminate clear behavioral microsleeps from clear non-mi-
crosleeps in a night driving simulator. They achieved excel-
lent classification rates (90.4%) by averaging the power spec-
trum over a long time window (8-s duration, starting 4 s before
an event). In their design, data from all subjects were lumped
together so that the performance figure disproportionately re-
flected those subjects who lapsed most frequently. In particular,
by selecting only clear examples of lapses and attentive respon-
siveness, and ignoring the intermediary states, the discrimina-
tion task is made substantially easier. The clearest lapses, where
the eyes close and the head drops forward, are more likely to be
accompanied by EEG microsleep which, being clearly visible in
the EEG, is easier to detect. These limitations need to be consid-
ered in interpreting their performance result. Other recent sys-
tems have focused on distinguishing low and high arousal levels
as distinct from lapse episodes [20], [21].

Jung et al. [12] showed it is possible to use EEG log-power
spectra applied to an MLP neural network to estimate alert-
ness for an auditory vigilance task. They smoothed the missed
stimulus time series using a 93.4-s long exponential moving
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window to derive a local error rate metric. Their system was
able to estimate the local error rate with acceptable accuracy
based on data from 2 EEG electrodes. While their results were
promising, the detector was individualized (requiring training
before it could be applied to a different individual) and had rel-
atively limited temporal resolution. Their detector employed a
static neural network, leaving open the possibility that temporal
patterns in the power spectrum might be used to improve per-
formance. Our results suggest their results could be improved
by modeling log-power spectrum dynamics.

One of our aims was to design a detector able to generalize
well to new subjects. For this reason, we formed a single be-
tween-subjects model with wide frequency bands to encourage
generalization. The accuracy of within-subjects models, tuned
to the idiosyncratic EEG rhythms of each subject, is likely to be
superior but could not be used in a device without an extensive
“training mode”. A useful hybrid approach might be to auto-
matically tune the algorithm to individuals, perhaps using unsu-
pervised algorithms to identify subject specific spectral peaks.
Alternatively, a better between-subjects model could be formed
using a “stacked” approach, building many well tuned, narrow
spectral band within-subject models, then forming a second-
level between-subjects models to identify commonalities.

Eye-blink artifacts are not filtered out in our system, as
we found the extra complexity was not warranted. Indepen-
dent components analysis (ICA) was briefly investigated for
eye-blink artifact removal [34], but despite the extra compu-
tational effort involved, removing eye blinks did not improve
classifier performance. Consequently, we believe eye blink-ar-
tifacts, while present, do not strongly influence the reported
results. Muscle artifacts were not removed from the EEG data
and, consequently, the system may be using correlated changes
in EMG activity to enhance lapse identification. While visual
inspection showed little EMG activity in the parietal-occipital
derivations, further investigation is required to properly address
the influence of EMG activity on our results.

Efforts to interpret EEG concomitant with lapses tend to
highlight confusion over the relationship between clinical EEG
based estimates of cortical arousal and corresponding behavior
[18], [35]. Clinical sleep staging [36] provides a global mea-
sure of the brain’s level of arousal but sleep stage is only
weakly correlated with behavior, particularly in the transitional
stages between alertness and sleep [18]. This may be related
to the apparent anatomical and functional independence of
the arousal and attentional systems [16], [17], [35]. While
responsiveness is generally better during high cortical arousal,
there is evidence that attentional networks can operate at very
low levels of arousal, perhaps even during apparent EEG sleep
[37]. Maintenance of attention, and hence performance, during
low arousal seems to depend on compensatory activation of
anatomy common to the arousal and attention systems in the
thalamus [38]. In an fMRI study, Portas er al. [38] showed
increased activation of the thalamus when attention was main-
tained despite a state of low arousal. They suggested this may
be related to the subjective experience of greater mental effort.
We speculate that some lapses may be interpreted as a rapid
disengagement of sustained attentional networks due to sudden
relaxation in the compensatory activity of the thalamus [17].
Conversely, some lapses may also be caused by fatigue specific
to attentional networks, regardless of the state of arousal. In
support of this, we observed occasional tracking lapses that
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were not accompanied by signs of low arousal in the video.
These may represent a distinct class of “attention-only” lapses.

While we do not include analysis of the characteristics of
EEG-power fluctuations associated with lapses here, analysis
of data from the same study is included in another recent paper
[39]. The paper showed that lapses in this task are associated
with increased power and positive correlations in the delta,
theta, and alpha bands and decreased power in the beta, gamma,
and higher bands. The finding of stronger correlations in the
lower frequency bands is consistent with findings from similar
studies [10], [12], and the well established association between
slowing of the EEG rhythms and sleep-like states [36].

Our results suggest a way forward in the development of an
EEG-based lapse detection system. Since temporal information
on the scale of 4 s is useful in detecting lapses, our future work
will focus on this time-scale and attempt to identify EEG dy-
namics that reliably herald an imminent lapse for all subjects.
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