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An episode of complete failure to respond during an attentive task accompanied by behavioural signs of sleep is
called a behaviouralmicrosleep.Weproposed a combination of high-resolution EEG and an advancedmethod for
time-varying effective connectivity estimation for reconstructing the temporal evolution of the causal relations
between cortical regions when microsleeps occur during a continuous visuomotor task. We found connectivity
patterns involving left–right frontal, left–right parietal, and left-frontal/right-parietal connections commencing
in the interval [−500;−250]msprior to the onset ofmicrosleeps anddisappearing at the end of themicrosleeps.
Our results from global graph indices derived from effective connectivity analysis have revealed EEG-based
biomarkers of all stages of microsleeps (preceding, onset, pre-recovery, recovery). In particular, this raises the
possibility of being able to predict microsleeps in real-world tasks and initiate a ‘wake-up’ intervention to avert
the microsleeps and, hence, prevent injurious and even multi-fatality accidents.

© 2015 Elsevier Inc. All rights reserved.
Introduction

During extended attention-demanding tasks, subjects frequently fail
to respond to certain stimuli. Three different types of failures can occur:
response error (incorrect response), slowed response (increased
reaction time), and absence of any response. An episode of complete
failure to respond—lapse of responsiveness (‘lapse’)—accompanied by
behavioural signs of drowsiness and slow-eye-closure is known as a be-
havioural microsleep (‘microsleep’) (Peiris et al., 2006). The occurrence
of microsleeps to people working in sectors requiring high vigilance,
such as car and truck drivers, locomotive drivers, airline pilots, air traffic
controllers, health professionals, and process control workers, can have
serious/fatal consequences (Akerstedt, 2000; Krahl et al., 2010; Léger
et al., 2014; Summala et al., 1999). For this reason, technology able to
detect microsleeps soon after their onset—or, better still, prior to their
er, Control and Management
iosto 25, 00185 Rome, Italy.
Santa Lucia, Via Ardeatina 306,
occurrence—and initiate wake-up warnings, has become an important
objective towards helping minimize the occurrence of such accidents.

Early detection and prediction of microsleeps suggest a strong need
for the investigation of their neurophysiological correlates.

Wehave conducted several studies, based on behavioural, functional
magnetic resonance imaging (fMRI), and/or electroencephalographic
(EEG) data, to determine the neuronal processes underlying
microsleeps (Davidson et al., 2007; Innes et al., 2013; Jones et al.,
2010; Peiris et al., 2006, 2011; Poudel et al., 2014). Multiple behavioural
cues, including visuomotor responsiveness, eye-closure, head-nodding,
and facial video, have been used to identify microsleeps. fMRI studies
have revealed a consistent decrease in bilateral thalamic activity associ-
ated with loss of arousal (Portas et al., 1998), transition to sleep
(Kaufmann et al., 2006), slowed reactions after sleep deprivation
(Chee et al., 2008), and microsleeps (Poudel et al., 2014). Decreased
activity in the posterior cingulate gyrus and medial frontal cortex, and
increased activity in occipito-parietal and frontal areas, are associated
with loss of vigilance (Olbrich et al., 2009) and microsleeps (Poudel
et al., 2008, 2009, 2013, 2014).

EEG studies have shown increased spectral power in the delta,
theta, and alpha bands, and decreased spectral activity in the beta,
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gamma, and higher bands during drowsiness (Jap et al., 2009; Lin
et al., 2005a; Cajochen et al., 1999; Jung et al., 1997). However,
there are few correlations between lapses and changes in power
spectra (Peiris et al., 2006).

Among the techniques available for the neurophysiological char-
acterization of microsleeps, fMRI has provided the best results in
terms of 3-D spatial resolution and localization (Poudel et al., 2008,
2009) while EEG is more desirable in terms of its high temporal res-
olution (Davidson et al., 2007; Peiris et al., 2006, 2011; Poudel et al.,
2010). EEG seems to have the most potential for early detection and
prediction of microsleeps in a real-world environment, due to a com-
bination of its high temporal resolution and feasibility, portability,
and wearability.

fMRI/EEG studies conducted until now have provided insights in
the localization of the cerebral activities associated to the microsleeps,
characterizing the spectral content of such activations. However, a
description of the temporal evolution of the cerebral phenomena
underlying microsleeps, a separate characterization of the mechanisms
at the basis of onset and recovery from microsleeps and, most impor-
tant, a representation of the cerebral circuits (groups of areas communi-
cating each other) involved in such phenomenon are still missing.
For this reason, we proposed a combination of high-resolution EEG
techniques (Babiloni et al., 2001) and advanced methods for time-
varying effective connectivity estimation (Milde et al., 2010) with
the aim:

- to improve knowledge on the cerebral mechanisms underlying
microsleeps, disentangling different neurophysiological aspects
correlated with their the onset and ending;

- to provide biological markers of microsleeps to be used in their
early-detection/prediction.

Our approach has allowed us to improve the low spatial resolution of
EEG by reconstructing the cortical sources of EEG activity and provide a
time–frequency description of the cerebral networks established be-
tween different cerebral areas during the occurrence of a microsleep.
Estimation of effective connectivity allows us to go beyond results
derivable from spectral analysis (Poudel et al., 2014) by providing infor-
mation on the interaction between different brain areas during each
stage of microsleeps (preceding, onset, pre-recovery, recovery). This
goes beyond the simple hypothesis of involvement of specific areas in
the process bymaking assumptions on the structure of the neural circuit
(effective connectivity) and, more importantly, about its timing.

Effective connectivity is defined as the simplest cerebral circuit de-
scribing the causal relations observed experimentally between distinct
signals recorded from different cerebral sites (Friston, 1994). Among
the different estimators defined in the context of effective connectivity,
we selected those based on the concept of Granger Causality (Granger,
1969) which, unlike Structural Equation Modeling (McIntosh, 1998)
and the Dynamic Causal Model (Friston et al., 2003), does not require
any a priori knowledge on the connectivity structure and thus can be
used when no specification about the connectivity linkages is available
(exploratory tools) (Sato et al., 2009). Partial Directed Coherence
(PDC) is a Granger-Causality-based spectral estimator providing the
directed influences between any given pair of signals in a multivariate
data set (Baccalá and Sameshima, 2001). Several studies have demon-
strated the higher accuracy of approaches based on the use of multivar-
iate models built on original time-series (Kus et al., 2004), being the
bivariate approach affected by a high number of false positives due to
the impossibility of the method in discarding a common effect on a
couple of signals of a third one acquired simultaneously (Blinowska
et al., 2004). PDC is also of particular interest because it can distinguish
between direct and indirect connectivity flows in the estimated connec-
tivity pattern better than the other multivariate Granger-Causality
approaches (Astolfi et al., 2007). The original definition of PDC estimator
is based on the hypothesis of stationarity of signals included in the
estimation process. As microsleeps are inherently non-stationary
phenomena, their characterization requires a time-varying adaptation
of PDC, based on the Kalman filter (Milde et al., 2010), which has been
recently introduced to follow the temporal evolution of time-varying
brain networks.

Thus, the state of the artmethodologies for increasing spatial resolu-
tion of EEG signals and reconstructing the temporal evolution of
cerebral networks were used to reach the aims of this study.

Material and methods

Participants

Twenty right-handed volunteers (10 male/10 female, mean age
29.3 years (21–45 years)) participated in this study. They had no history
of neurological, psychiatric, or sleep disorders. They were asked to
refrain from consuming any stimulants or depressants, such as alcohol,
caffeine, and nicotine, during the4 hour prior to the session. Participants
had to report a usual time to bed between 10 and 12 pm and a usual
time in bed from 7.0 to 8.5 h. Their sleep habits were monitored during
the 6 days and 5 nights prior to the experimental session by way of
a sleep diary and actigraphy (Actiwatch, Mini Mitter Inc., Bend OR,
USA). Ethical approval for the study was obtained from the New
Zealand Upper South B Regional Ethics Committee.

Experimental tasks

Subjects, comfortably lying in a fMRI scanner and wearing a 60-
electrodes EEG cap, performed a continuous 2-D tracking task, which
was extended, monotonous, and non-stimulating task, and, hence, fa-
vours the occurrence of microsleeps even when non-sleep-deprived
(Buckley et al., 2014; Innes et al., 2013; Peiris et al., 2006; Poudel
et al., 2008, 2014). Experimental sessions were conducted in post-
prandial time (1:30 pm or 2:30 pm), with the aim of facilitating the
occurrence of microsleeps. Each participant performed a two-block
experiment, comprising a 10-min cued eye-closure task (baseline peri-
od), used for simulation of microsleep-like behaviour, and a 50-min
continuous random visuomotor tracking task (microsleeps period).
In the continuous tracking task, subjects had to manoeuvre a
finger-based joystick (Current Designs, Philadelphia, PA, USA) to pursue
a 2-D random target moving continuously on a computer screen
(Poudel et al., 2013). Baseline period was designed as an event-related
task with an interstimulus time of 12 s, used to pseudo-randomly
present 3 s cues for eye-closure and stopping during visuomotor track-
ing (see Fig.1a and 1b). Each cue was presented 24 times during the
experiment. The participants were instructed to close and stop tracking
for ‘Stop+Close’ cues and just stop tracking for ‘Stop’ cues. Participants
were familiarized with the tracking task and instructed to control the
joystick position so that the response disc was as close as possible to
the centre of the moving target at all times. See elsewhere for further
details on the experimental design (Poudel et al., 2013, 2014).

Behavioural, EEG and fMRI recordings

Participants performed the tracking task inside an MRI scanner (GE
Signa 3.0 T). Joystick response, eye-video, EEG, and fMRI data were
recorded synchronously. Video of the right eye was captured using a
Visible Eye™ system (Avotec Inc., Stuart FL, USA) mounted on the
head-coil of the MRI scanner. The video was recorded on a PC at 25
fps (350 x 280 px) using a video-capture card and custom-built video-
recording software.

Continuous EEG was acquired using an MRI-compatible Maglink
EEG cap, SynAmps2 amplifiers, and Scan 4.4 software (Compumedics
Neuroscan, Charlotte, NC, USA). The Maglink cap has 64 EEG electrodes
placed according to an extension of the 10–20 international system, a
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Fig. 1. a–b) Scheme of the two time windows (a: on-phase and b: off-phase) considered in the experiment for behavioural microsleeps events (red) and baseline (green) conditions.
c) Graphical representation of the cortex model and regions of interest (ROIs). The model is the Colin template, MNI Institute. ROIs considered in study included the Brodmann Area
(ba): 19L/R, 7L/R, 5L/R, 8L/R, 9/46L/R, 10L/R.
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reference electrode between Cz and Pz, and a ground electrode anterior
to Fz. Quick-cell inserts were placed in electrode cavities and soaked
with electrolyte solution (0.3 ml) to create a conductive column from
the scalp to the electrode. Continuous vertical electrooculogram
(VEOG) was acquired by placing electrodes above and below the left
eye. Data was acquired at 10 kHz, with a low-pass filter at 2 kHz.

The fMRI side of the study is not discussed further in this paper. Full
details on the structural MRI and fMRI methodology can be seen
elsewhere (Poudel et al., 2014).
Identification of microsleeps

Weusedwell-established behavioural rating criteria to identify indi-
vidual episodes of microsleeps (Peiris et al., 2006; Poudel et al., 2012,
2014). Briefly, a custom-built SyncPlayer™ programme was used to
replay synchronized eye-video, VEOG, and tracking target (x and y), re-
sponse (x and y), speed, and tracking error. Any episodes of flat tracking
(zero response speed) of 0.5–15 s duration accompanied by behavioural
signs of drowsiness and full or partial (N80%) slow-eye-closures were
marked as microsleeps. The response position, speed, and error signals
were used to mark the onset and end of flat tracking responses. Eye-
video was used as a cue to mark the onset and end of flat tracking
responses.

A minimum inter-microsleep interval of 500 ms was required to
ensure that a microsleep's onset is not overlapped with the end of the
previous microsleep event. Only microsleeps with a duration ≥2 s
were included in the study, in order to avoid overlapping of neural
mechanisms associated with the onset of a microsleep with those
associated with end of a microsleep.
EEG analysis

Signal pre-processing
Clean EEG was obtained from the continuous artefact-laden EEG

collected in the scanner by removing echo-planar gradient artefacts
using template subtraction (Allen et al., 2000) and cardio-ballistic
artefacts by independent component analysis (ICA) (Briselli et al.,
2006).

EEG data were then downsampled to 100 Hz and band-pass filtered
(1–45 Hz) to limit the frequency content of acquired signals to the
bands of interest. ICA was applied to remove horizontal and vertical
eye movements(Hoffmann and Falkenstein, 2008). The analysis was
performed on two different time intervals, segmented according to
the beginning and the end of the microsleep, respectively. Specifically,
EEG traces were segmented into two time windows defined as
[−500; 750] ms (ON-phase) and [−750; 500] ms (OFF-phase) relative
to the onset and the end of microsleep, respectively (Fig. 1a,b). The
ranges of these two temporal windows were defined on the basis of a
statistical analysis performed on the distributions achieved for
microsleep duration and inter-microsleep interval among all the
subjects involved in the experiment. The same segmentation was
applied to baseline data (Fig. 1a,b). Residual artefacts were rejected
according to a semi-automatic procedure based on the identification
of a threshold for the maximum allowed amplitude for EEG signals
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(±80 μV). All trials in which 2 or more channels exceeded such a
threshold were excluded from the analysis.

Cortical waveform reconstruction
The activity of cortical sources was reconstructed, starting from EEG

signals acquired at scalp level, by means of the weighted minimum-
norm solution for the associated linear inverse problem (Babiloni
et al., 2001). The transformation from scalp to cortical domain was per-
formed by means of a realistic head model available from the Montreal
Neurologic Institute (Holmes et al., 1998). Then, by averaging the
contribution of different sources, the waveforms of 12 cortical regions
of interest (ROIs) (Brodmann Area (ba): 19L/R, 7L/R, 5L/R, 8L/R, 9/46L/
R, 10L/R) (Fig. 1c) were derived. Such ROIs were selected on the basis
of the fMRI results reported by Poudel et al. (2014).

Connectivity analysis and statistical validation
The estimation of cerebral networks underlying microsleeps was

performed by means of time-varying Partial Directed Coherence
(Astolfi et al., 2006, 2008; Baccalá and Sameshima, 2001), a spectral
multivariate estimator based on Wiener–Granger causality theory
(Granger, 1969). The order of the Multivariate Autoregressive model
(MVAR) used in the estimatewas set to 16. The amount of data available
for the estimate guaranteed the accuracy of the process. The number
of data observations for each subject was, in fact, much higher than
the number of parameters to be estimated in a network comprising
12 nodes.

The time-varying approachwas used in the present work in order to
follow the time evolution of the estimated circuits during the
microsleeps onset and ending. In particular, the reconstructed cortical
waveforms were subjected to time-varying effective connectivity esti-
mation via the General Linear Kalman Filter algorithm (Milde et al.,
2010; Toppi et al., 2012a). This approach provided accurate sample-
by-sample connectivity values within the considered time intervals.
High accuracy in the connectivity estimates plus high temporal resolu-
tion were ensured by the choice of GLKF forgetting factors equal to
0.3, as suggested by Milde et al. (2010). Selection of these values for
the two forgetting factors ensured high temporal resolution in describ-
ing all transitions in connectivity patterns occurring in considered EEG
epochs lasting 1.5 s. Connectivity patterns elicited during microsleeps
were statistically contrasted against those achieved in the baseline, to
exclude the effects due to the interruption of tracking task and to the
eye-closure. The statistical threshold for PDC estimates was obtained
as the 95th percentile of baseline PDC distribution, corrected formultiple
comparisons by the False Discovery Rate (Benjamini and Yekutieli,
2001). The significant connectivity values were then averaged in four
frequency bands, defined according to the individual alpha frequency
(Klimesch, 1999). In particular, we considered two frequency bands:
theta [IAF-6; IAF-2] Hz, and alpha [IAF-2; IAF + 2] Hz, where IAF =
9.4 ± 0.3 Hz. Beta and gamma bands were excluded from the analysis
due to a high number of artefacts and low signal to noise ratio, respec-
tively.We then averaged the sample-by-sample estimates in time inter-
vals defined according to themicrosleep event. In particular, the periods
[−500; 750] ms relative to the onset (ON-PHASE) and the periods
[−750; 500] relative to the end (OFF-PHASE) of microsleeps were
divided into five intervals of equal duration (250 ms) (see Fig. 2
and Fig. 3). Average PDC values in 250-ms time intervals took into
account inter-subject variability in the dynamics of brain circuits
activated during microsleeps. Such inter-subject variability, typical of
physiological processes such as underlying microsleeps, prevented our
exploration of the hypothesis that the temporal evolutions of connectiv-
ity networks are aligned both within and between healthy subjects.

Secondly, the reduction of the number of points in which statistical
comparisons between real and random networks were performed
(i.e., 6 points corresponding to 6 time intervals instead of the 150 corre-
sponding to the data samples included in the EEG epochs) ensured
more accurate and sensitive results due to not being affected by
family-wise error rate. Moreover, under-sampling of the estimated pat-
terns smoothed the trends achieved for graph indices, hence reducing
the randomoscillations of their values and providingmore stable values
for statistical analysis.

Statistical group analysis of connectivity patterns
To summarize the results achieved on single participants and to

obtain the network characterizing microsleep events, we performed
a group analysis consisting of a statistical comparison between
microsleeps and baseline networks, computed along the population
(paired t-test, significance level 5%). Such comparison was repeated
for each frequency band and for the two microsleeps phases (ON and
OFF), separately. False Discovery Rate correction was applied in order
to reduce the occurrence of false positives. Such group analysis allowed
to achieve the group statistical patterns showed in Fig. 2 and Fig. 3,
where we reported only the connections differing in the population
from the baseline.

Graph theory analysis
To describe and quantify the connectivity patterns obtained by time-

varying PDC, we computed a number of indices derived from graph
theory applied to the brain networks. The statistical approach here
adopted for the validation of connectivity networks allowed to extract
adjacency matrices (describing the internal structure of the network
being investigated) for the computation of graph indices, avoiding the
alterations of the real topological properties of the networks that may
arise applying empirical approaches as demonstrated by Toppi et al.
(2012b).

The adjacencymatrix is amathematical representation of a network,
used in graph to extract salient indices characterizing network proper-
ties. The generic ijth entry of a directed binary adjacency matrix is
equal to 1 if there is an effective link directed from the jth to the ith signal
and is equal to 0 if no links exist. The adjacency matrix can be built by
comparing each connectivity value Aij with its corresponding threshold
value τij. In particular:

Gi j ¼ 1→ Ai j ≥τi j
0→ Ai jbτi j

�
; ð1Þ

where Gij and Aij represent the entry (i, j) of the adjacency matrix G and
the connectivity matrix A, respectively, and τij is the corresponding
threshold. Different approaches have been developed for evaluating
the threshold values, most of them based on qualitative assumptions
aiming at fixing the edge density in the network or the degree of
somenodes or atmaximizing small-world properties of the investigated
networks. In this study we used a statistical approach in which the
threshold τij corresponds to the 95th percentile (corrected by False
Discovery Rate for multiple comparisons) of PDC distribution achieved
in the baseline condition. The use of a statistical threshold for the extrac-
tion of the adjacency matrix has been demonstrated superior to an
empirical approachby avoiding alterations to real topological properties
of investigated networks (Toppi et al., 2012b).

In the present study, we considered two sets of indices, the first
describing integration and segregation properties of the investigated
networks (global indices), the second characterizing the involvement
and the role of specific ROIs (local indices).

Global indices
Characteristic path length—defined as:

L ¼ 1
n

X
i∈N

Li ¼
1

n n−1ð Þ
X
i; j∈N
i≠ j

di j ; ð2Þ



Fig. 2. a–c) Statistical group patterns of connectivity from N = 10 subjects during the ON-phase in theta (panel a) and alpha (panel c) bands. Each network is related to a specific time
interval defined according to the microsleep onset: (−500;−250) ms, (−250; 0) ms, (0; 250) ms, (250; 500) ms, (500; 750) ms (BM—behavioural microsleep). Connectivity patterns
are represented on the realistic cortical model used for the analysis, which is seen from above, with the nose pointing to the bottom of the figure. Each connection between two cortical
regions is represented by means of an arrow, whose colour and diameter code for the corresponding PDC value averaged in the population. The cortical regions of interest (ROIs) are
highlighted with different colours (see Figure 1c for ROIs labels). b–d) Graphical representation of in-degree and out-degree indices computed for each ROI. Patterns are referred to the
intervals defined in panels a and c. Circles colour and diameter code for the degree of the corresponding ROI (in-degree in red, out-degree in blue).
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where Li is the average distance between node i and all other nodes and
dij is the distance between node i and node. N represents the number of
nodes in the graph. The Characteristic Path Length is also defined as the
average shortest path length in the network. The shortest path length
(geodesic distance) between two nodes is the minimum number of
connections linking two regions (Sporns et al., 2004).



Fig. 3. a–c) Group statistical patterns of connectivity from N= 10 subjects during the OFF-phase in theta (panel a) and alpha (panel c) bands. Each network is related to a specific time
interval defined according to themicrosleep end: (−750;−500)ms, (−500;−250)ms, (−250; 0)ms, (0; 250)ms, (250; 500)ms (BM—behaviouralmicrosleep). Connectivity patterns
are represented on the realistic cortical model used for the analysis, which is seen from above, with the nose pointing to the bottom of the figure. Each connection between two cortical
regions is represented bymeans of an arrowwhose colour and diameter code for the corresponding PDC value (averaged in the population, see colour bar). The cortical regions of interest
(ROIs) are highlightedwith different colours (see Fig.1c for ROIs labels). b–d)Graphical representation of in-degree and out-degree indices computed for each ROI. Patterns are referred to
the intervals defined in panels a and c. Circles colour and diameter code for the degree of the corresponding ROI (in-degree in red, out-degree in blue).
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Global efficiency—defined as:

Eg ¼ 1
N N−1ð Þ

X
i≠ j

1
di j

; ð3Þ
whereN represents the number of nodes in the graph and dij the geode-
sic distance between i and j.

It is defined as the average of the inverse of the geodesic
length and represents the efficiency of the communication
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between all the nodes in the network (Latora and Marchiori,
2001).

Local efficiency—defined as:

El ¼
1
N

XN
i¼1

Eg Sið Þ ; ð4Þ

where N represents the number of nodes in the graph and Si the sub-
graph achieved by deleting the ith row and the ith column from the
original graph.

It is the average of the global efficiencies computed on each sub-
graph belonging to the network and represents the efficiency of
communication between all nodes around node i in the network
(Latora and Marchiori, 2001).

Clustering coefficient—defined as:

C ¼ 1
n

X
i∈N

Ci ¼
1
n

X
i∈N

ti

kouti þ kini
� �

kouti þ kini −1
� �

−2
X

j∈N
Gi jGji

; ð5Þ

where ti represents the number of triangles involvingnode i, k i
in and k i

out

are the number of incoming and outgoing edges of nodes i respectively,
and Gij is the entry ij of adjacency matrix G.

It describes the intensity of inter-connections between the neigh-
bours of a node (Watts and Strogatz, 1998). It is defined as the fraction
of triangles around a node or the fraction of a node's neighbours that are
neighbours of each other (Fagiolo, 2007).

Small-Worldness—a network G is defined as a Small-World network
if LG ≥ Lrand and CG ≫ Crand, where LG and CG represent the characteristic
path length and the clustering coefficient of a generic graph and Lrand
and Crand represent the corresponding quantities for a random graph.
On the basis of this definition, a measure of Small-Worldness of a
network can be defined as

SW ¼
CG
�
Crand

LG
�
Lrand

: ð6Þ

A network has the property of small worldness if SW N 1.
It is also defined as a measure of the level of organization in a net-

work (Watts and Strogatz, 1998). In this paper we used the formulation
of (Humphries and Gurney, 2008).

To be validated against the null case, the values achieved for global
indices characterizing the connectivity networks (local efficiency,
clustering coefficient, Small-Worldness) were statistically compared
(independent samples t-test, p b 0.05) with those computed on 50 ran-
dom graphs generated by imposing the same number of connections of
the corresponding real networks, randomly shuffled among all possible
positions in the network. Such an approach provided assurance that
the differences in graph indexes found between different phases of
the microsleeps were not due to differences in the density of the corre-
sponding estimated networks.

Local indices. Density—defined as

k ¼ 1
N N−1ð Þ

XN
i¼1

XN
j¼1

Gi j

0
@

1
A � 100 ; ð7Þ

where N is the number of nodes in the network and Gij represents the
entry (i, j) of the adjacency matrix G.

It is defined as the percentage of existing connections in a network
over the total. The density index can also be computed on particular
sub-networks extracted from the complete network. In the present
work, we computed the density index in cortical regions located in the
anterior part of the brain (anterior density) or right hemisphere (right
density). In particular, for the computation of anterior density and
right density indices we considered anterior areas to comprise ba10L,
ba8L, ba9/46L, ba10R, ba8R, and ba9/46R, and right hemisphere areas
to comprise ba10R, ba8R, ba5R, ba7R, ba19R, and ba9/46R.

Degree—defined as

wf ¼
X

j∈N; j≠ f

G f j þ
X

i∈N;i≠ f

Gif ; ð8Þ

where gij represents the entry ij of the adjacency matrix G.
The degree of each node is the number of links connected directly to

that node. In directed networks, the in-degree of a specific brain region
is the number of inward links and the out-degree is the number of out-
ward links (Sporns et al., 2004).

The values achieved for global indices (local efficiency, clustering
coefficient, Small-Worldness) were statistically compared (indepen-
dent samples t-test, p b 0.05) with those computed on 50 random
graphs generated by imposing the same number of connections of the
corresponding real networks (van Wijk et al., 2010).

Results

Behavioural microsleeps

Twenty subjects were involved in the study, among which 14 had
frequent microsleeps (≥36 during the 50 min of recording) and, of
these, 10 had reasonably good 64-channel EEG (the other 4 had too
many serious artefacts). Thus, we report here the results obtained
from these 10 subjects (6 males/4 females, mean age 30.4 years). They
had an average of 89.0 microsleeps (36–188) with a mean average
duration of 3.6 s (1.3–6.3 s).

Connectivity analysis

Time-varying connectivity patterns elicited during the ON-phase in
the group of subjects are shown in Fig. 2a and 2c, for theta and alpha
bands, respectively (see Methods for details about the estimation of
time-varying connectivity and the statistical group analysis). As for
the theta band, the cortical patterns in Fig. 2a reveal a connectivity
network, statistically different from the baseline condition, commenc-
ing 500 ms prior to the onset of the microsleep. From 250 ms before
the microsleep onset we see a pattern which reinforces during the
microsleep. In particular, we found two connectivity patterns, one com-
posed by fronto-parietal connections, mainly involving right-parietal/
left-frontal areas starting in the interval [−500; −250]ms before
microsleep onset and one involving right-parietal/right-frontal areas
250 ms before microsleep onset. A close communication within frontal
areas (left and right hemispheres) commences in the interval [−500;
−250] ms before microsleep onset and persists during the microsleep,
whereas a strong inter-connection between parieto-occipital areas
occurs immediately following the microsleep onset.

In order to highlight the role of each cortical region in the elicited
networks, we have also represented the in-degree and out-degree indi-
ces of each ROI on the same cortexmodel (seeMethods for details about
the degree computation). The degree analysis results for the ON-phase
are shown in Fig. 2b and 2d, for theta and alpha bands. In particular,
results in theta (Fig. 2b) points out a role of right parieto-occipital
areas, mainly ba7R, as main target of information flows (high in-
degree) and a role of left frontal areas as main driver of the network
(high out-degree). This is kept for all the microsleep duration. More-
over, ba10R shows a role as main target of information flows in the
interval [−250; 500]ms according to themicrosleep onset. Taken all to-
gether, these results highlight the existence of a fronto-parietal network
directed from bilateral frontal regions (mainly left) to right parieto-
occipital cortical areas. Such network is established before and during
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the microsleep event. Results in alpha band confirm the same patterns
and the corresponding role of considered ROIs (see Fig. 2c–d).

The results of the group analysis performed, as described inMethods
section, on connectivity patterns elicited during the OFF-phase in theta
and alpha bands are shown in Fig. 3a–3c. The cortical networks resulting
in the period [−750; 0]ms according to the endmicrosleep confirm the
pattern obtained after the microsleep onset (right-parietal/left-frontal
areas and right-parietal/right-frontal areas). Moreover, in the interval
[−250; 0] ms before the end of microsleep, the connection between
ba9/46_L and ba10_R disappears.

Fronto-parietal connections persist up to 250 ms beyond the end of
the microsleep and then slowly disappear. The degree analysis results
(Fig. 3b–3d) point out an involvement of left frontal areas (ba9/46L,
ba10L) similar to the one obtained during the ON-phase. Such role is
gradually reduced toward the end of themicrosleep until its disappear-
ance. A similar behaviour is found for ba7_R.
Graph theory analysis

Local indices
To further investigate the properties of the networks obtained by the

connectivity analysis, specific graph theory indices are computed (see
Methods for mathematical details about the graph indices adopted).
Fig. 4a,c shows an increase of the anterior density and right density
indices along the five time intervals analysed during the ON-phase.
The same indices decreased in the window around the end of a
microsleep in the OFF-phase (Fig. 4b,d).
Global indices
Fig. 5 shows the results of a statistical comparison between the local

efficiency index (see Online Methods) computed during microsleeps
onset and conclusion, and correspondent random networks, in the
theta band. In particular, significant differences between real and
random networks resulted in the 0–250-ms interval following the
microsleep onset (Fig. 5a) with a higher local efficiency of the
microsleep network with respect to random networks. A substantial
decrease in the local efficiency index can be seen toward the end of
the microsleep (Fig. 5b). This index is significantly higher than that of
random networks until ~250 ms prior to the end of the microsleep.
Fig. 4. Time-varying trend (mean ± SD) of anterior areas density index (panels a and b) and r
theta band during the onset (panels a and c) and the end (panels b and d) of microsleeps even
onset and the end of microsleep (same intervals reported in Figs. 2, 3). The microsleep time wi
white.
Results related to the clustering coefficient index are reported in
Fig. 6, and show significantly higher values for real networks with re-
spect to the random ones in all of the intervals, with an increase along
themicrosleep onset. In contrast, a decreasing trend can be seen during
the OFF-phase. Significant differences between microsleep and random
networks are observed during the microsleep and disappear immedi-
ately after.

Finally, results related to the Small-Worldness index are reported in
Fig.7, and show a trend similar to the clustering coefficient.

Similar results for all the indices here reportedwere obtained for the
alpha band.

Discussion

This paper is the first to report on changes in time and frequency
characteristics of the information flow between multiple cortical areas
during spontaneous behavioural microsleeps. This could be achieved
by the use of advanced methods for the estimation of time-varying
effective connectivity in conjunction with the knowledge about the
physiological correlates of microsleeps from previous studies.

Spatial characterization of microsleeps

The current EEG data were collected simultaneously with fMRI
(Poudel et al., 2014). Results of fMRI analysis performed on this experi-
ment and reported elsewhere (Poudel et al., 2014) revealed decreased
activation associatedwithmicrosleeps in several brain regions bilateral-
ly, including the midbrain, thalamus, posterior cingulate cortex, and
occipital cortex, and small clusters in the right prefrontal cortex and cer-
ebellum. At the same time, fMRI revealed increased activation in several
cortical areas, particularly in parietal regions encompassing the bilateral
postcentral, superior parietal, and supramarginal cortices. Although
fMRI has provided immensely valuable insight into the 3-D spatial attri-
butes of microsleeps (Poudel et al., 2014), its relatively long sampling
interval (2.5 s) seriously limits its ability to reveal spatiotemporal
aspects of neural activity related to microsleeps. In contrast, the high
temporal resolution of EEG, together with the powerful multivariate
analysis of connectivity, goes a long way to fill this gap by identifying
time-resolved information flow between different key areas in the
cortex.
ight hemisphere density index (panels c and d) computed on the networks elicited in the
ts. Average values (N = 10) computed for the five time intervals defined according to the
ndow is marked in grey. The periods preceding and following microsleeps are reported in



Fig. 5. Statistical comparison between local efficiency index (mean ± SD) computed on
microsleeps (star markers) and corresponding values computed for random networks
(square markers) in the theta band, during the onset (panel a) and end (panel b) of
microsleep events. Average values (N= 10) computed for the five time intervals defined
according to the onset and the end ofmicrosleep (same intervals reported in Figs. 2,3). The
microsleep time window is marked in grey. The periods preceding and following
microsleep events are highlighted inwhite. The light grey circles indicate a significant dif-
ference between real and random networks (p b 0.05).
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Spectral characterization of microsleeps

Aprevious study (Peiris et al., 2006) showed thatmicrosleeps during
an extended continuous visuomotor task, similar to the one we used in
the current study, are associated with increased power and positive
correlations in the delta, theta, and alpha bands and decreased power
in the beta, gamma, and higher bands, even if the correlations between
EEG band power and definite microsleeps are low. Other studies have
shown a correlation between theta activity and drops in performance
on a pursuit tracking task (Poudel et al., 2010) and a simulated driving
task (Lin et al., 2005). The theta and alpha bands,moreover, are involved
in cerebral processes related to alertness, attention and their loss due to
pathological or fatigue phenomena (Chua et al., 2014; Song et al., 2014;
Wascher et al., 2014). The connectivity analysis performed in the
present study was therefore focused on theta and alpha bands.
Fig. 6. Statistical comparison between the clustering index computed on microsleeps
(mean ± SD; star markers) and corresponding values computed for random networks
(square markers) in the theta band, during the onset (panel a) and end (panel b) of
microsleep events. Same representation of the previous figure.
Connectivity analysis

In contrast to the studies focusing on changes in the EEG spectral
power during lapses, the focus of the present studywas on determining
time–frequency changes in causal connections between cortical areas.
By comparison with baseline connectivity during alert performance,
we revealed characteristic connectivity patterns in the theta and alpha
bands arising immediately following and, importantly, prior to the
onset of a microsleep.

We focused on both themicrosleep onset and its transition to awak-
ening. As for the microsleep onset, we can observe a characteristic
connectivity pattern establishing prior to the behavioural signs of
microsleeps occurrence and persisting for the entire duration of the
event. As for the transition to awakening, characteristic changes in
connectivity patterns were observed prior to, and following, the behav-
ioural end of microsleeps. These changes clearly reflect the neural
processes and mechanisms (in terms of information flow) underlying
recovery from microsleeps.

Our connectivity results showhow the areas identified by fMRI stud-
ies as involved in microsleep processes (Poudel et al., 2014) communi-
cate with each other before, during, and after microsleeps. To our
knowledge, such description of the circuit underlying the process of
microsleeps is unprecedented in literature, as well as the definition of
markers, based on brain networks properties, able to track the process
of microsleep in time with the resolution of milliseconds.

Three sub-networks were mainly associated with microsleeps:

1) Left-frontal/right-frontal—this network is associatedwith the period
of 500 ms preceding the microsleep, persists for the duration of the
event and reduces toward the end of microsleep. The involvement
of frontal areas in microsleeps indicates a residual activity of these
areas which usually deactivate during non-REM sleep, as demon-
strated by PET (Achermann et al., 2001; Maquet et al., 1997). The in-
crease of anterior density index along the temporal evolution of
microsleep events supports this finding.

2) Right-parietal/left-frontal—this network, too, appears in the interval
[−500;−250]ms before the event onset, persists for the duration of
the microsleep and characterizes both the beginning and the end of
the event. The presence of an increase of fronto-parietal network is
an important feature which allows the distinction between
microsleeps and all the other levels of sleep. In fact, several neuroim-
aging studies have demonstrated the reduction of fronto-parietal
connections, until their complete disruption, in accordance with
the level of sleep depth (Horovitz et al., 2008; Sämann et al., 2011;
Spoormaker et al., 2012). Network modularity (a measure of func-
tional segregation) has been found to increase during deeper sleep
stages highlighting the interruption of communication between
frontal and parietal areas (Tagliazucchi et al., 2013).

3) Right-parietal/right-frontal—this sub-network appears in the inter-
val [−250; 0] ms before microsleep onset and persists for the dura-
tion of the event. The strong involvement of the right hemisphere
before and during the microsleep event, in the theta band, could be
attributed to the loss of attention during microsleep, being such
hemisphere associated to this important cognitive function
(Asplund et al., 2010; Corbetta and Shulman, 2002).

Subsequent analysis of the connectivity network features by graph
analysis allowed the synthesis of all the information reported in the
estimated networks and characterization of their main properties. In
particular, we found an increase in the Small-World index associated
with the temporal evolution of the microsleep event. This feature of
microsleep networks is in agreement with results reported by Ferri



Fig. 7. Statistical comparison between Small-Worldness computed onmicrosleeps (mean±SD; starmarkers) and corresponding values computed for randomnetworks (squaremarkers)
in the theta band, during the onset (panel a) and end (panel b) of microsleep events. Same representation of the previous figures.
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and colleagueswhoused graph theory to examine functional connectiv-
ity from EEG recordings of spontaneous activity in sleep. In particular,
they found a Small-World-like network in sleep in theta and alpha
bands (Ferri et al., 2007, 2008). The increase of local efficiency during
microsleep onset and its decrease at the end of the event are consistent
with networks associated with sleep, maintaining an optimal and
efficient functional structure (Koenis et al., 2013). The increase of
the clustering coefficient along microsleeps can be interpreted as a
modification of the hierarchical organization of large-scale networks
into smaller independent modules. Such result is consistent with the
dynamics of effective connectivity and the emergence of functional
clusters while recording spontaneous EEG activity during sleep
(Dimitriadis et al., 2009).

The time-varying approach led to identification and temporal
characterization of the networks associated with the occurrence of
and recovery from microsleeps. Probably of greatest real-world impor-
tance is the presence of changes in connectivity patterns seen up to
500 ms prior to microsleeps. That there are characteristic changes in
brain activity preceding microsleeps, when one is struggling to counter
the overpowering homeostatic urge of the brain to take a rest/nap from
the current active task, is not surprising. In fact, Davidson et al. (2007),
using a long short-term memory (LSTM) recurrent neural network,
showed that information in the EEG spectra up to ~4 s prior to a
microsleep can be used to improve microsleep detection. This raises
the possibility of being able to use multi-channel EEG to predict the
onset ofmicrosleeps and, hence, initiate, say, auditory or vibratory stim-
uli to arouse the user and prevent the occurrence of themicrosleep and,
in turn, potentially prevent a injurious/fatal/multi-fatality lapse of
responsiveness in a vehicle-driver, pilot, air-traffic controller, anaesthe-
tist, machine operator, or military personnel. Although we were able to
reveal connectivity changes up to 500 ms preceding the onset of
microsleeps, this does not exclude the possibility of changes having oc-
curred even earlier, as we had somewhat arbitrarily chosen aminimum
inter-microsleep-interval of 500 ms in our study. Further studies are
needed to systematically investigate the dimension of the temporal
window in which such microsleeps could be predicted. While
preliminary, and needing replication in a larger sample, the EEG-based
findings from this paper, together with findings from fMRI-based stud-
ies (Poudel et al., 2014), contribute substantially to our understanding
of the neural mechanisms underlying the often fatal phenomena of
microsleeps.

In conclusion, the application of advancedmethodologies for cortical
sources reconstruction, time-varying connectivity estimation, and
graph theory analysis has led to improve the understanding of neuro-
physiological basis of microsleep events. In fact, this combination of
methodologies allowed the spatial limitations of EEG technique to be
minimized while maximizing the benefits of its high temporal resolu-
tion, so as to provide a spatio-temporal characterization of microsleep
events. In summary, microsleep networks are characterized by an in-
volvement of frontal and fronto-parietal sub-networks. In addition,
the networks are asymmetric in favour of the right hemisphere, show
Small-World properties, and tend to create clusters. The high temporal
resolution of EEG and thus of the time-varying approach for effective
connectivity estimation allowed us to follow the temporal evolution of
microsleep events and to find a set of neurophysiological features that
could potentially be used as predictors of behavioural microsleeps.

Acknowledgments

Thedata analysed in this paperwas collected for a projectwhichwas
funded by a New Zealand Lottery Health Research grant (251144), a
University of Otago postgraduate scholarship, and a Christchurch
Neurotechnology Research Programme scholarship. LA and JT are sup-
ported by a fund by the Italian Ministry of Education, Project FIRB
2013 (Fondo per gli Investimenti della Ricerca di Base-Futuro in
Ricerca)—RBFR136E24 and by the University of Rome Sapienza
“Progetti di Ateneo per la Ricerca Scientifica anno 2014”.

References

Achermann, P., Finelli, L.A., Borbély, A.A., 2001. Unihemispheric enhancement of delta
power in human frontal sleep EEG by prolonged wakefulness. Brain Res. 913,
220–223. http://dx.doi.org/10.1016/S0006-8993(01)02796-2.

http://dx.doi.org/10.1016/S0006-8993(01)02796-2


431J. Toppi et al. / NeuroImage 124 (2016) 421–432
Akerstedt, T., 2000. Consensus statement: fatigue and accidents in transport operations.
J. Sleep Res. 9, 395.

Allen, P.J., Josephs, O., Turner, R., 2000. A method for removing imaging artifact from
continuous EEG recorded during functional MRI. NeuroImage 12, 230–239. http://
dx.doi.org/10.1006/nimg.2000.0599.

Asplund, C.L., Todd, J.J., Snyder, A.P., Marois, R., 2010. A central role for the lateral prefron-
tal cortex in goal-directed and stimulus-driven attention. Nat. Neurosci. 13, 507–512.
http://dx.doi.org/10.1038/nn.2509.

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccalà, L.A., de Vico Fallani, F., Salinari, S.,
Ursino, M., Zavaglia, M., Babiloni, F., 2006. Assessing cortical functional connectivity
by partial directed coherence: simulations and application to real data. IEEE Trans.
Biomed. Eng. 53, 1802–1812. http://dx.doi.org/10.1109/TBME.2006.873692.

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccala, L.A., de Vico Fallani, F., Salinari, S.,
Ursino, M., Zavaglia, M., Ding, L., Edgar, J.C., Miller, G.A., He, B., Babiloni, F., 2007.
Comparison of different cortical connectivity estimators for high-resolution EEG
recordings. Hum. Brain Mapp. 28, 143–157. http://dx.doi.org/10.1002/hbm.20263.

Astolfi, L., Cincotti, F., Mattia, D., De Vico Fallani, F., Tocci, A., Colosimo, A., Salinari, S.,
Marciani, M.G., Hesse, W., Witte, H., Ursino, M., Zavaglia, M., Babiloni, F., 2008.
Tracking the time-varying cortical connectivity patterns by adaptive multivariate
estimators. IEEE Trans. Biomed. Eng. 55, 902–913. http://dx.doi.org/10.1109/TBME.
2007.905419.

Babiloni, F., Carducci, F., Cincotti, F., Del Gratta, C., Pizzella, V., Romani, G.L., Rossini, P.M.,
Tecchio, F., Babiloni, C., 2001. Linear inverse source estimate of combined EEG and
MEG data related to voluntary movements. Hum. Brain Mapp. 14, 197–209.

Baccalá, L.A., Sameshima, K., 2001. Partial directed coherence: a new concept in neural
structure determination. Biol. Cybern. 84, 463–474. http://dx.doi.org/10.1007/
PL00007990.

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate inmultiple testing
under dependency. Ann. Stat. 29, 1165–1188.

Blinowska, K.J., Kuś, R., Kamiński, M., 2004. Granger causality and information flow in
multivariate processes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 050902.

Briselli, E., Garreffa, G., Bianchi, L., Bianciardi, M., Macaluso, E., Abbafati, M., Grazia
Marciani, M., Maraviglia, B., 2006. An independent component analysis-based
approach on ballistocardiogram artifact removing. Magn. Reson. Imaging 24,
393–400. http://dx.doi.org/10.1016/j.mri.2006.01.008.

Buckley, R., Helton, W., Innes, C.R., Dalrymple-Alford, J., Jones, R., 2014. Sustained atten-
tion lapses and behavioural microsleeps during tracking, psychomotor vigilance,
and dual tasks. Sleep 37, A51–A52 (Abstract Supplement).

Cajochen, C., Khalsa, S.B., Wyatt, J.K., Czeisler, C.A., Dijk, D.J., 1999. EEG and ocular corre-
lates of circadian melatonin phase and human performance decrements during
sleep loss. Am. J. Physiol. 277, R640–R649.

Chee, M.W.L., Tan, J.C., Zheng, H., Parimal, S., Weissman, D.H., Zagorodnov, V., Dinges, D.F.,
2008. Lapsing during sleep deprivation is associatedwith distributed changes in brain
activation. J. Neurosci. Off. J. Soc. Neurosci. 28, 5519–5528. http://dx.doi.org/10.1523/
JNEUROSCI.0733-08.2008.

Chua, E.C.-P., Yeo, S.-C., Lee, I.T.-G., Tan, L.-C., Lau, P., Cai, S., Zhang, X., Puvanendran, K.,
Gooley, J.J., 2014. Sustained attention performance during sleep deprivation associ-
ates with instability in behavior and physiologic measures at baseline. Sleep 37,
27–39. http://dx.doi.org/10.5665/sleep.3302.

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention
in the brain. Nat. Rev. Neurosci. 3, 201–215. http://dx.doi.org/10.1038/nrn755.

Davidson, P.R., Jones, R.D., Peiris, M.T.R., 2007. EEG-based lapse detection with high
temporal resolution. IEEE Trans. Biomed. Eng. 54, 832–839. http://dx.doi.org/10.
1109/TBME.2007.893452.

Dimitriadis, S.I., Laskaris, N.A., Del Rio-Portilla, Y., Koudounis, G.C., 2009. Characterizing
dynamic functional connectivity across sleep stages from EEG. Brain Topogr. 22,
119–133. http://dx.doi.org/10.1007/s10548-008-0071-4.

Fagiolo, G., 2007. Clustering in complex directed networks. Phys. Rev. E Stat. Nonlinear
Soft Matter Phys. 76, 026107.

Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J., 2007. Small-world network organi-
zation of functional connectivity of EEG slow-wave activity during sleep. Clin.
Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 118, 449–456. http://dx.doi.org/10.
1016/j.clinph.2006.10.021.

Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J., 2008. The functional connectiv-
ity of different EEG bands moves towards small-world network organization
during sleep. Clin. Neurophysiol. 119, 2026–2036. http://dx.doi.org/10.1016/j.
clinph.2008.04.294.

Friston, K.J., 1994. Functional and Effective Connectivity in Neuroimaging: A Synthesis.
Human Brain Mapping 2 (1–2), 56–78. http://dx.doi.org/10.1002/hbm.460020107.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19,
1273–1302.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37, 424–438.

Hoffmann, S., Falkenstein, M., 2008. The correction of eye blink artefacts in the EEG: a
comparison of two prominent methods. PLoS One 3, e3004. http://dx.doi.org/10.
1371/journal.pone.0003004.

Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C., 1998. Enhancement of
MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22,
324–333.

Horovitz, S.G., Fukunaga, M., de Zwart, J.A., van Gelderen, P., Fulton, S.C., Balkin, T.J., Duyn,
J.H., 2008. Low frequency BOLD fluctuations during resting wakefulness and light
sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29, 671–682. http://dx.
doi.org/10.1002/hbm.20428.

Humphries, M.D., Gurney, K., 2008. Network “small-world-ness”: a quantitative method
for determining canonical network equivalence. PLoS One 3, e0002051. http://dx.
doi.org/10.1371/journal.pone.0002051.
Innes, C.R.H., Poudel, G.R., Jones, R.D., 2013. Efficient and regular patterns of nighttime
sleep are related to increased vulnerability to microsleeps following a single night
of sleep restriction. Chronobiol. Int. 30, 1187–1196. http://dx.doi.org/10.3109/
07420528.2013.810222.

Jap, B.T., Lal, S., Fischer, P., Bekiaris, E., 2009. Using EEG spectral components to assess
algorithms for detecting fatigue. Expert Syst. Appl. 36, 2352–2359. http://dx.doi.
org/10.1016/j.eswa.2007.12.043.

Jones, R.D., Poudel, G.R., Innes, C.R.H., Davidson, P.R., Peiris, M.T.R., Malla, A.M., Signal, T.,
Carroll, G.J., Watts, R., Bones, P.J., 2010. Lapses of responsiveness: characteristics,
detection, and underlying mechanisms. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. 2010, 1788–1791. http://dx.doi.org/10.
1109/IEMBS.2010.5626385.

Jung, T.P., Makeig, S., Stensmo, M., Sejnowski, T.J., 1997. Estimating alertness from the EEG
power spectrum. IEEE Trans. Biomed. Eng. 44, 60–69. http://dx.doi.org/10.1109/10.
553713.

Kaufmann, C., Wehrle, R., Wetter, T.C., Holsboer, F., Auer, D.P., Pollmächer, T., Czisch, M.,
2006. Brain activation and hypothalamic functional connectivity during human
non-rapid eye movement sleep: an EEG/fMRI study. Brain J. Neurol. 129, 655–667.
http://dx.doi.org/10.1093/brain/awh686.

Klimesch,W., 1999. EEG alpha and theta oscillations reflect cognitive andmemory perfor-
mance: a review and analysis. Brain Res. Brain Res. Rev. 29, 169–195.

Koenis, M.M.G., Romeijn, N., Piantoni, G., Verweij, I., Van der Werf, Y.D., Van Someren,
E.J.W., Stam, C.J., 2013. Does sleep restore the topology of functional brain networks?
Hum. Brain Mapp. 34, 487–500. http://dx.doi.org/10.1002/hbm.21455.

Krahl, P.L., Jankosky, C.J., Thomas, R.J., Hooper, T.I., 2010. Systematic review of military
motor vehicle crash-related injuries. Am. J. Prev. Med. 38, S189–S196. http://dx.doi.
org/10.1016/j.amepre.2009.10.024.

Kus, R., Kaminski, M., Blinowska, K.J., 2004. Determination of EEG activity propagation:
pair-wise versus multichannel estimate. IEEE Trans. Biomed. Eng. 51, 1501–1510.
http://dx.doi.org/10.1109/TBME.2004.827929.

Latora, V., Marchiori, M., 2001. Efficient behavior of small-world networks. Phys. Rev. Lett.
87, 198701.

Léger, D., Bayon, V., Ohayon, M.M., Philip, P., Ement, P., Metlaine, A., Chennaoui, M., Faraut,
B., 2014. Insomnia and accidents: cross-sectional study (EQUINOX) on sleep-related
home, work and car accidents in 5293 subjects with insomnia from 10 countries.
J. Sleep Res. 23, 143–152. http://dx.doi.org/10.1111/jsr.12104.

Lin, C.T., Wu, R.C., Jung, T.P., Liang, S.F., Huang, T.Y., 2005. Estimating driving performance
based on EEG spectrum analysis. EURASIP J. Appl. Signal Process. 19, 3165–3174.

Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Péters, J.M., Luxen, A., Franck, G., 1997.
Functional neuroanatomy of human slow wave sleep. J. Neurosci. Off. J. Soc. Neurosci.
17, 2807–2812.

McIntosh, A.R., 1998. Understanding neural interactions in learning and memory using
functional neuroimaging. Ann. N. Y. Acad. Sci. 855, 556–571.

Milde, T., Leistritz, L., Astolfi, L., Miltner, W.H.R., Weiss, T., Babiloni, F., Witte, H., 2010. A
new Kalman filter approach for the estimation of high-dimensional time-variant
multivariate AR models and its application in analysis of laser-evoked brain poten-
tials. NeuroImage 50, 960–969. http://dx.doi.org/10.1016/j.neuroimage.2009.12.110.

Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., Hegerl, U., 2009. EEG-
vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage
45, 319–332. http://dx.doi.org/10.1016/j.neuroimage.2008.11.014.

Peiris, M.T.R., Jones, R.D., Davidson, P.R., Carroll, G.J., Bones, P.J., 2006. Frequent lapses of
responsiveness during an extended visuomotor tracking task in non-sleep-deprived
subjects. J. Sleep Res. 15, 291–300. http://dx.doi.org/10.1111/j.1365-2869.2006.
00545.x.

Peiris, M.T.R., Davidson, P.R., Bones, P.J., Jones, R.D., 2011. Detection of lapses in respon-
siveness from the EEG. J. Neural Eng. 8, 016003. http://dx.doi.org/10.1088/1741-
2560/8/1/016003.

Portas, C.M., Rees, G., Howseman, A.M., Josephs, O., Turner, R., Frith, C.D., 1998. A specific
role for the thalamus inmediating the interaction of attention and arousal in humans.
J. Neurosci. Off. J. Soc. Neurosci. 18, 8979–8989.

Poudel, G.R., Jones, R.D., Innes, C.R.H., Davidson, P.R., Watts, R., Signal, T., Bones, P.J., 2008.
Functional-MRI correlates of cued slow-eye-closure and task non-responsiveness
during visuomotor tracking. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
IEEE Eng. Med. Biol. Soc. Conf. 2008, 4122–4125. http://dx.doi.org/10.1109/IEMBS.
2008.4650116.

Poudel, G.R., Jones, R.D., Innes, C.R.H., Watts, R., Signal, T.L., Bones, P.J., 2009. fMRI
correlates of behavioural microsleeps during a continuous visuomotor task. Conf.
Proc. IEEE Eng. Med. Biol. Soc. 2009, 2919–2922. http://dx.doi.org/10.1109/IEMBS.
2009.5334486.

Poudel, G.R., Innes, C.R.H., Bones, P.J., Jones, R.D., 2010. The relationship between behav-
ioural microsleeps, visuomotor performance and EEG theta. Conf. Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. 2010, 4452–4455. http://dx.doi.org/10.1109/IEMBS.
2010.5625956.

Poudel, G.R., Innes, C.R.H., Jones, R.D., 2012. Cerebral perfusion differences between
drowsy and nondrowsy individuals after acute sleep restriction. Sleep 35,
1085–1096. http://dx.doi.org/10.5665/sleep.1994.

Poudel, G.R., Innes, C.R.H., Jones, R.D., 2013. Distinct neural correlates of time-on-task and
transient errors during a visuomotor tracking task after sleep restriction. NeuroImage
77, 105–113. http://dx.doi.org/10.1016/j.neuroimage.2013.03.054.

Poudel, G.R., Innes, C.R.H., Bones, P.J., Watts, R., Jones, R.D., 2014. Losing the struggle to
stay awake: divergent thalamic and cortical activity during microsleeps. Hum. Brain
Mapp. 35, 257–269. http://dx.doi.org/10.1002/hbm.22178.

Sämann, P.G., Wehrle, R., Hoehn, D., Spoormaker, V.I., Peters, H., Tully, C., Holsboer, F.,
Czisch, M., 2011. Development of the brain's default mode network fromwakefulness
to slow wave sleep. Cereb. Cortex N. Y. N 1991 21, 2082–2093. http://dx.doi.org/10.
1093/cercor/bhq295.

http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0010
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0010
http://dx.doi.org/10.1006/nimg.2000.0599
http://dx.doi.org/10.1038/nn.2509
http://dx.doi.org/10.1109/TBME.2006.873692
http://dx.doi.org/10.1002/hbm.20263
http://dx.doi.org/10.1109/TBME.2007.905419
http://dx.doi.org/10.1109/TBME.2007.905419
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0040
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0040
http://dx.doi.org/10.1007/PL00007990
http://dx.doi.org/10.1007/PL00007990
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0050
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0050
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0320
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0320
http://dx.doi.org/10.1016/j.mri.2006.01.008
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0325
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0325
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0325
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0330
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0330
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0330
http://dx.doi.org/10.1523/JNEUROSCI.0733-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.0733-08.2008
http://dx.doi.org/10.5665/sleep.3302
http://dx.doi.org/10.1038/nrn755
http://dx.doi.org/10.1109/TBME.2007.893452
http://dx.doi.org/10.1109/TBME.2007.893452
http://dx.doi.org/10.1007/s10548-008-0071-4
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0090
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0090
http://dx.doi.org/10.1016/j.clinph.2006.10.021
http://dx.doi.org/10.1016/j.clinph.2006.10.021
http://dx.doi.org/10.1016/j.clinph.2008.04.294
http://dx.doi.org/10.1016/j.clinph.2008.04.294
http://dx.doi.org/10.1002/hbm.460020107
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0105
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0105
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0110
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0110
http://dx.doi.org/10.1371/journal.pone.0003004
http://dx.doi.org/10.1371/journal.pone.0003004
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0120
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0120
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0120
http://dx.doi.org/10.1002/hbm.20428
http://dx.doi.org/10.1371/journal.pone.0002051
http://dx.doi.org/10.3109/07420528.2013.810222
http://dx.doi.org/10.3109/07420528.2013.810222
http://dx.doi.org/10.1016/j.eswa.2007.12.043
http://dx.doi.org/10.1109/IEMBS.2010.5626385
http://dx.doi.org/10.1109/IEMBS.2010.5626385
http://dx.doi.org/10.1109/10.553713
http://dx.doi.org/10.1109/10.553713
http://dx.doi.org/10.1093/brain/awh686
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0160
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0160
http://dx.doi.org/10.1002/hbm.21455
http://dx.doi.org/10.1016/j.amepre.2009.10.024
http://dx.doi.org/10.1109/TBME.2004.827929
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0180
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0180
http://dx.doi.org/10.1111/jsr.12104
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0190
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0190
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0195
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0195
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0200
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0200
http://dx.doi.org/10.1016/j.neuroimage.2009.12.110
http://dx.doi.org/10.1016/j.neuroimage.2008.11.014
http://dx.doi.org/10.1111/j.1365-2869.2006.00545.x
http://dx.doi.org/10.1111/j.1365-2869.2006.00545.x
http://dx.doi.org/10.1088/1741-2560/8/1/016003
http://dx.doi.org/10.1088/1741-2560/8/1/016003
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0225
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0225
http://refhub.elsevier.com/S1053-8119(15)00780-6/rf0225
http://dx.doi.org/10.1109/IEMBS.2008.4650116
http://dx.doi.org/10.1109/IEMBS.2008.4650116
http://dx.doi.org/10.1109/IEMBS.2009.5334486
http://dx.doi.org/10.1109/IEMBS.2009.5334486
http://dx.doi.org/10.1109/IEMBS.2010.5625956
http://dx.doi.org/10.1109/IEMBS.2010.5625956
http://dx.doi.org/10.5665/sleep.1994
http://dx.doi.org/10.1016/j.neuroimage.2013.03.054
http://dx.doi.org/10.1002/hbm.22178
http://dx.doi.org/10.1093/cercor/bhq295
http://dx.doi.org/10.1093/cercor/bhq295


432 J. Toppi et al. / NeuroImage 124 (2016) 421–432
Sato, J.R., Takahashi, D.Y., Arcuri, S.M., Sameshima, K., Morettin, P.A., Baccalá, L.A., 2009.
Frequency domain connectivity identification: an application of partial directed
coherence in fMRI. Hum. Brain Mapp. 30, 452–461. http://dx.doi.org/10.1002/hbm.
20513.

Song, K., Meng, M., Chen, L., Zhou, K., Luo, H., 2014. Behavioral oscillations in attention:
rhythmic α pulses mediated through θ band. J. Neurosci. Off. J. Soc. Neurosci. 34,
4837–4844. http://dx.doi.org/10.1523/JNEUROSCI.4856-13.2014.

Spoormaker, V.I., Gleiser, P., Czisch, M., 2012. Frontoparietal connectivity and hierarchical
structure of the brain's functional network during sleep. Sleep Chronobiol. 3, 80.
http://dx.doi.org/10.3389/fneur.2012.00080.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development and
function of complex brain networks. Trends Cogn. Sci. 8, 418–425. http://dx.doi.
org/10.1016/j.tics.2004.07.008.

Summala, H., Häkkänen, H., Mikkola, T., Sinkkonen, J., 1999. Task effects on fatigue symp-
toms in overnight driving. Ergonomics 42, 798–806. http://dx.doi.org/10.1080/
001401399185298.

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Borisov, S., Jahnke, K.,
Laufs, H., 2013. Large-scale brain functional modularity is reflected in slow electroen-
cephalographic rhythms across the human non-rapid eye movement sleep cycle.
NeuroImage 70, 327–339. http://dx.doi.org/10.1016/j.neuroimage.2012.12.073.
Toppi, J., Babiloni, F., Vecchiato, G., De Vico Fallani, F., Mattia, D., Salinari, S., Milde, T.,
Leistritz, L., Witte, H., Astolfi, L., 2012a. Towards the time varying estimation of
complex brain connectivity networks by means of a General Linear Kalman Filter
approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6192–6195. http://dx.doi.org/10.
1109/EMBC.2012.6347408.

Toppi, J., De Vico Fallani, F., Vecchiato, G., Maglione, A.G., Cincotti, F., Mattia, D., Salinari, S.,
Babiloni, F., Astolfi, L., 2012b. How the statistical validation of functional connectivity
patterns can prevent erroneous definition of small-world properties of a brain
connectivity network. Comput. Math. Methods Med. 130985. http://dx.doi.org/10.
1155/2012/130985.

VanWijk, B.C.M., Stam, C.J., Daffertshofer, A., 2010. Comparing brain networks of different
size and connectivity density using graph theory. PLoS One 5. http://dx.doi.org/10.
1371/journal.pone.0013701.

Wascher, E., Rasch, B., Sänger, J., Hoffmann, S., Schneider, D., Rinkenauer, G., Heuer, H.,
Gutberlet, I., 2014. Frontal theta activity reflects distinct aspects of mental fatigue.
Biol. Psychol. 96, 57–65. http://dx.doi.org/10.1016/j.biopsycho.2013.11.010.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks. Nature
393, 440–442. http://dx.doi.org/10.1038/30918.

http://dx.doi.org/10.1002/hbm.20513
http://dx.doi.org/10.1002/hbm.20513
http://dx.doi.org/10.1523/JNEUROSCI.4856-13.2014
http://dx.doi.org/10.3389/fneur.2012.00080
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1080/001401399185298
http://dx.doi.org/10.1080/001401399185298
http://dx.doi.org/10.1016/j.neuroimage.2012.12.073
http://dx.doi.org/10.1109/EMBC.2012.6347408
http://dx.doi.org/10.1109/EMBC.2012.6347408
http://dx.doi.org/10.1155/2012/130985
http://dx.doi.org/10.1155/2012/130985
http://dx.doi.org/10.1371/journal.pone.0013701
http://dx.doi.org/10.1371/journal.pone.0013701
http://dx.doi.org/10.1016/j.biopsycho.2013.11.010
http://dx.doi.org/10.1038/30918

	Time-�varying effective connectivity of the cortical neuroelectric activity associated with behavioural microsleeps
	Introduction
	Material and methods
	Participants
	Experimental tasks
	Behavioural, EEG and fMRI recordings
	Identification of microsleeps
	EEG analysis
	Signal pre-processing
	Cortical waveform reconstruction
	Connectivity analysis and statistical validation
	Statistical group analysis of connectivity patterns
	Graph theory analysis
	Global indices


	Results
	Behavioural microsleeps
	Connectivity analysis
	Graph theory analysis
	Local indices
	Global indices


	Discussion
	Spatial characterization of microsleeps
	Spectral characterization of microsleeps
	Connectivity analysis

	Acknowledgments
	References


