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Purpose of review

Abnormalities of oculomotor control accompany the pathological changes underlying many
neurodegenerative diseases. Clinical examination of eye movements can contribute to differential
diagnosis, whereas quantitative laboratory measures can provide detailed insight into the disease process.
In this review of eye movements in neurodegenerative disease, we summarise recent empirical findings and
conceptual advances.

Recent findings

Oculomotor researchers continue to be particularly prolific in studying Parkinson’s disease but there is also
substantial activity in Alzheimer’s disease and spinocerebellar ataxia. Interesting findings have been
reported in Huntington’s, motor neuron disease, and glaucoma. Most studies report laboratory-based
investigations but useful progress in clinical description continues to be made.

Summary

Eye movements remain an active field of investigation across a variety of neurodegenerative conditions.
Progress continues to be made at the clinical level as well by using laboratory techniques.
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INTRODUCTION

The control of eye movement involves extensive
networks of cerebral regions, spanning brainstem
to neo-cortex. Therefore, regardless of whether a
neurodegenerative process is relatively focal (as in
glaucoma) or widespread (e.g. the dementias),
effects are therefore likely to be evident in altered
oculomotor performance.

Saccades (rapid eye movements) in particular
can provide a reliably measurable analogue of the
wider effects of a neurodegenerative disease. The
review by Gorges et al. [1

&

] provides excellent
graphical examples of eye movement recording
measures, using Parkinson’s and progressive supra-
nuclear palsy (PSP) cases. For example, saccades in
Parkinson’s are often hypometric [2

&&

], reflecting the
hypokinesia seen in limb and hand movements.
Later in the disease, even simple reactive saccades
to a target show prolonged latencies, indicative of
advanced cognitive impairment (Fig. 1) [3]. The
antisaccade task (‘look away from, rather than at,
the target’) is more complicated, and hence recruits
more extensive cortical areas. Increased errors (look-
ing at the target) can be found even in early Parkin-
son’s [4] or prior to the onset of Alzheimer’s [5],
suggestive of early frontal-cortical deterioration.
ht © 2016 Wolters Kluwe
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Mobile eye tracking technology is now also enabling
insights into oculomotor control in more natural-
istic tasks (e.g. Fig. 2).
PARKINSON’S DISEASE

Diederich et al. [7
&&

] propose a fascinating model, in
which visual dysfunction in Parkinson’s might
explain not only hallucinations of presence and
passage, but also impairments of saccades and pur-
suit (although not so readily, vergence and upgaze)
and even hypomimia. The affected pathways are
proposed to be those that also mediate blindsight,
rather than the primary visual pathways, so that
such people with Parkinson’s are ‘blind to blind-
sight’. Although the model is built mainly upon
analogy, the authors propose testable hypotheses,
r Health, Inc. All rights reserved.
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KEY POINTS

� Oculomotor networks, derived from resting-state BOLD
MRI, provide an alternative to traditional task-evoked
functional MRI and could track progressive neocortical
degeneration.

� Oculomotor neurons, selectively preserved in MND,
have distinctive protein signatures. This discovery
should improve our understanding of the
neurodegenerative process and may provide
therapeutic targets.

� Oculomotor findings are frequent across the many
SCAs, but none are specific enough to
be pathognomic.

� Saccadic abnormalities may be markedly more
prevalent in PCA than in typical forms of Alzheimer’s
disease.

Neuro-ophthalmology and neuro-otology
and we look forward to seeing if this creative
account leads to empirical confirmation.

Trade-off between speed and accuracy of move-
ment is a fundamental principle of motor control.
Reward, however, can simultaneously improve
 Copyright © 2016 Wolters Kluwer 
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FIGURE 1. Laboratory measures of eye movements in respo
manipulation of oculomotor performance in neurodegenerative co
fixated stimulus disappears 200 ms before the onset of the next ta
reduced saccade latencies and an increased rate of ‘express’ sac
visually guided saccades [3], control study participants showed th
with a typical value of 180 ms). This was constant across the age
cognitive functioning (PDN) did not differ from controls. Patients w
prolonged latency (15 ms, P<0.03) compared with a mean-aged
(12 ms/decade). Patients with dementia (PDD) showed both a 54
(P<0.0001), and a strong age-related prolongation of 30 ms/de
disease duration. PDD, Parkinson’s disease dementia; PD-MCI, mi
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‘speed’ (expressed as both reduced latency and
increased peak velocity) and precision of saccades
[8]. In Parkinson’s, dopaminergic dysfunction
causes both motor impairment and reduced reward
sensitivity. Prolonged latencies and slow move-
ments in Parkinson’s might be an adaptive mech-
anism to reduce motor performance variability in
the presence of an increased cost for controlling
internal noise [8]. The quantitative nature of this
model makes it well suited to generate further
testable motor control hypotheses, in Parkinson’s
and beyond.

Studies of the effect of dopaminergic therapy
on saccades have been contradictory. This might
be because the direction of effects is task-specific.
For example, treatment prolongs reactive saccade
latencies, whereas memory-guided latencies
improve because of medication altering the balance
between the direct and indirect basal ganglia
pathways [9]. But in a small study of patients with
levodopa-induced dyskinesia, reactive saccade
latencies clearly ‘decreased’ [10], with the authors
describing this effect and the increased rate of
express saccade production as ‘superior colliculus
dyskinesias’. Although not representative of all
Health, Inc. All rights reserved.
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teaspoon...
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... well before the
sugar begins to drop.

... then makes an
anticipatory saccade
to the cup...

FIGURE 2. Mobile eye tracking technology allows
investigation of oculomotor strategies in real-world tasks.
Above are scene images from a head-mounted SMI HED
200 Hz gaze tracker. The cross shows the current gaze
location of a man with Parkinson’s disease mild cognitive
impairment during part of a tea-making task in our
laboratory. The coordination between hand movements and
their associated supporting gaze movements was largely
preserved in this group while performing this activity [6].
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patients, this group may present an avenue to
examine dopaminergic dysregulation of oculomo-
tor responses [11].

Parkinsonian gait impairments can be amelio-
rated by providing visual cues such as stripes on the
ground orthogonal to the direction of motion.
Vitorio et al. [12

&

], using simultaneous gaze and gait
recordings, found that the stripes act as external
targets for both gaze and feet. Classification of ocu-
lomotor events during gait tasks poses technical
challenges such as the eyes not being stationary
during fixations, because of vestibulo-ocular com-
pensation. Stuart et al. [13] describe a candidate
saccade detection algorithm, tested in a Parkinson’s
gait study, which attempts to overcome these
challenges.

Antoniades et al. [4] found that standard anti-
saccade errors and other executive function
measures could discriminate early drug-naive
patients from controls. The sample was of nontre-
mor dominant patients, however, who may be
particularly prone to early cognitive impairment.
de Boer et al. [14], meanwhile, found antisaccade
performance to be normal in Parkinson’s. Increasing
the cognitive complexity, however, by adding a
simultaneous ‘antitapping’ instruction, did reveal
impairments. Gorges et al. [2

&&

] detected most of
the accepted oculomotor impairments in a Parkin-
son’s sample (prolonged saccadic latency, reduced
gain of saccades and pursuit, increased fixational
instability and antisaccade errors). From resting-
state blood-oxygen-level dependent (BOLD) MRI
 Copyright © 2016 Wolters Kluwe
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data, they then constructed six functional networks,
each seeded from a known oculomotor area.
Measures of functional connectivity in most of
these networks correlated with oculomotor per-
formance, consistent with progressive neocortical
degeneration in the course of the disease. Such
resting-state connectivity analyses are a useful
addition to traditional task-evoked functional MRI.

Owing to manganese toxicity, ingestion of the
homemade stimulant ephedrone can lead to a
severe, rapidly progressive parkinsonism. Bonnet
et al. [15

&

] found that eye movement impairments
were similar to those of idiopathic Parkinson’s but a
distinguishing feature was relative slowing of hori-
zontal saccade velocity.

Vergence eye movements are impaired clinically
in Parkinson’s. Hanuska et al. [16] showed quantitat-
ively that fast vergence movements in Parkinson’s
have increased latency. Convergence was otherwise
normal, but divergence was slowed and hypometric.
Such impaired vergence may contribute to reduced
acuity and blurred vision in Parkinson’s.

A current controversy is whether hitherto-
unrecognized ocular tremor might provide a diag-
nostic sign of Parkinson’s. Whether the phenom-
enon is real [17,18] or artefactual [19,20] continues
to be debated [21

&

].
PROGRESSIVE SUPRANUCLEAR PALSY

Palsy of voluntary vertical gaze is the classic sign
distinguishing PSP from other forms of parkinson-
ism. Anderson [22] provides a video tutorial on
detecting this clinically, emphasising the hierarch-
ical process of the examination. There are a number
of PSP mimics. Erro et al. [23] present a case study of
a man with a PSP-like presentation but eventually
diagnosed with cerebral autosomal dominant arte-
riopathy with subcortical infarcts and leukoence-
phalopathy. Fragile X-associated tremor/ataxia
syndrome (FXTAS) can also present similarly to
PSP, with additional oculomotor abnormalities
[24]. In presymptomatic FXTAS gene carriers, the
antisaccade task revealed impaired inhibitory con-
trol, indicative of early cognitive impairment [25].
ALZHEIMER’S DISEASE

Microsaccades, tiny, horizontal rapid eye move-
ments that interrupt periods of fixation, occur at
an elevated rate in Alzheimer’s [26

&&

]. Human micro-
saccades are generally horizontal but Kapoula et al.
[27

&&

] found obliquely-oriented microsaccades to be
more common in mild–moderate Alzheimer’s and
in amnestic mild cognitive impairment (MCI) than
in controls. The phenomenon, although subtle,
r Health, Inc. All rights reserved.
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shows promise as an objective marker of early dis-
ease that does not require compliance with a com-
plicated cognitive task.

When reading, information from the current
word and the wider context influences upcoming
eye movements. For example, saccades are larger
when made towards words that are somewhat
predictable from their context, compared with
saccades towards less predictable words. When read-
ing, saccade amplitudes in Alzheimer’s were gener-
ally hypometric and showed no beneficial
modulation by predictability [28], even when the
entire sentence – a well known proverb – was
predictable [29]. People with Alzheimer’s took
longer to read a text, made more fixations, were
more likely to reread words, and were much less
likely to adaptively skip small and uninformative
words [30].

Difficulties in disengaging attention can be
examined in the laboratory by comparing saccades
with a target that appears 200 ms after the previously
fixated stimulus has disappeared (the ‘gap’ task,
which reduces latencies) to those when the pre-
viously fixated target remains visible (the ‘overlap’
task, which induces longer latencies). Crawford
et al. [31

&&

] reported that compared with controls,
latencies in Alzheimer’s were longer overall but the
magnitude of the overlap effect was similar. In both
groups, however, overall latencies decreased slightly
at 12-month follow-up, indicating a practice effect
even over this timeframe. Crawford et al. recom-
mend that eye tracking measures be quantified as a
profile of z-scores as in standard neuropsychological
test batteries, so that rather than focussing on
specific measures, abnormality in an individual is
judged by how many scores exceed a threshold.
Peltsch et al. [5] advocate a similar approach but
found that a minimum number of trials exist to
yield stable estimates, particularly for antisaccade
error measures.
POSTERIOR CORTICAL ATROPHY

Posterior cortical atrophy (PCA) is an atypical var-
iant of Alzheimer’s, in which visuospatial and visuo-
motor impairments predominate initially [32,33].
Oculomotor abnormalities (primarily saccadic) were
detected in 80% of PCA cases, compared with just
17% of typical Alzheimer’s, and 5% of controls
[26

&&

]. Only 33% of the PCA cases showed clinically
apparent deficits, highlighting the sensitivity of
laboratory measures. Saccades were of smaller
amplitude than in Alzheimer’s, with a greater over-
lap (or ‘sticky fixation’) effect. People with PCA are
less able to appropriately switch between oculomo-
tor strategies when examining photographic scenes
 Copyright © 2016 Wolters Kluwer 
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for a particular purpose (such as to search for an
object, or to describe the scene) [34]. Rather, their
fixations were driven by low-level image features
rather than task instructions. Oculomotor control
whilst reading was also substantially worse than in
typical Alzheimer’s [35].

When asked to look at which of two scenes
contains an animal, healthy observers can make
saccades to the target image with very low latencies
[36]. This rapid categorization ability involves the
frontal eye field, part of the dorsal attentional net-
work that is disrupted by Alzheimer’s [37]. Whether
detecting animals [37] or making other distinctions
(e.g. natural vs. urban scenes, indoor vs. outdoor)
[38], Alzheimer’s patients made less accurate judg-
ments, whereas lower-level oculomotor parameters
(latencies and amplitude) were normal. In PCA,
there was even greater impairment relative to
Alzheimer’s when selecting animals presented
within a scene rather than in isolation [33]. People
with PCA appeared to benefit less from contextual
information and might have impaired figure/
ground separation.
THE PREDEMENTIA PERIOD

Although the concept of MCI as a predementia state
remains controversial, visuomotor impairments can
precede the development of the pathognomic mem-
ory deficits of both amnestic MCI and Alzheimer’s
disease, and so oculomotor investigations may be
useful tools in predicting conversion to dementia
[39]. Groups with amnestic MCI and Alzheimer’s
were similarly impaired on antisaccade performance
[5]. Short-latency antisaccade errors correlated nega-
tively with Stroop task scores in MCI and controls,
indicating that these might be oculomotor and
neuropsychological measures of similar underlying
inhibitory difficulties.

The right frontal eye field is a node in a cerebral
network supporting the antisaccade task that is
particularly vulnerable to neurodegeneration. A
hyperactive BOLD signal in this region correlated
with worse antisaccade performance even in healthy
elderly study participants, indicating that it may be
an early marker of cognitive decline [40

&

].
SPINOCEREBELLAR ATAXIA AND
CEREBELLAR DISEASE

The cerebellar ataxias have a wide variety of over-
lapping presentations but a comprehensive review
by Rossi et al. [41

&&

] brings some order to the field,
summarizing 1062 papers covering 12 141 patients
with 30 autosomal dominant forms of the disease.
Phenotypic descriptions, including eye movement
Health, Inc. All rights reserved.
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features, continue to be useful in classifying newly-
found genotypes. In a prospective multicentre US
study of clinical eye movement features of 301
patients with SCA 1, 2, 3, and 6 [42

&&

], frequencies
of specific oculomotor abnormalities varied across
subtypes, but none were pathognomic. Slow
saccades were rare in SCA 6, whereas nystagmus
and pursuit abnormalities were common. In SCA
2, nystagmus and saccadic dysmetria were rare. The
lack of dysmetria may result from saccades being so
slow that they become nonballistic. That is, their
durations are so prolonged that, in response to
visual feedback, their trajectories are able to be
corrected midflight [43,44]. SCA 1 and 3 had did
not have characteristic oculomotor features.

Expression of these disorders varies across popu-
lations: SCA 2 being most common in India, SCA 3
in Western countries [45]. In 45 genetically con-
firmed cases from eastern India, oculomotor abnor-
malities revealed typical distinctions between SCA
1, 2, 3, 6, and 12 [45]. The prevalence of slow
saccades was not, however, useful in distinguishing
SCA subtypes 1, 2, 3 and 6 among a sample of 83
Thai patients [46]. In 35 people with SCA 7 from the
Haryana region of India, in addition to the charac-
teristic retinal degeneration, slow saccades occurred
in 85% [47].

In an oculomotor implementation of the Trail
Making Task, seven patients with SCA 2 had per-
formance impaired by low saccadic velocity,
whereas in six with late onset cerebellar ataxia,
saccadic dysmetria was more relevant [48]. Matsuda
et al. [49], studying pure cerebellar ataxia (SCA 6 and
31), note that cerebellar impairment can lead to a
‘dysmetria of cognition’ additional to the more
familiar motor impairments. For example, patients
took longer than controls to complete a visual
search task that required a systematic, serial scan-
ning strategy. When these patients viewed simple
drawings, the area they scanned was abnormally
large [50], in contradistinction to their earlier find-
ings in Parkinson’s, where the explored area was
smaller than normal [51]. Falcon et al. [52] con-
ducted MR imaging in 14 people with SCA 6
mutations, performing free visual exploration.
Cerebral cortex activation was normal but cerebellar
activation was abnormal and associated with symp-
tom severity. As disease severity progressed, func-
tional connectivity between cortical and cerebellar
regions became markedly abnormal. Reorganization
of connections between cortical visual and oculo-
motor regions, even at preclinical stages, led the
authors to question the purely cerebellar character-
ization of this subtype.

Owing to a founder effect, the prevalence of SCA
2 is extremely high (180/100 000) in Holguı́n, Cuba.
 Copyright © 2016 Wolters Kluwe
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Rodrı́guez-Labrada et al. [53
&

] investigated the anti-
saccade task in 41 symptomatic patients. They
showed for the first time that increased error rates
and prolonged latencies were related to CAG repeat
size. Antisaccade performance was also impaired
in 37 presymptomatic SCA 2 mutation carriers
(>32 repeats) [54

&

] and correlated inversely with
projected time to ataxia onset. Saccadic slowing,
meanwhile, was slight and evident in only 16%.
Thus, high-level cognitive oculomotor impairment
might actually be an earlier indicator and marker of
the disorder than basic saccade dynamics.
HUNTINGTON’S DISEASE

Rees et al. [55] contend that cerebellar involvement
in Huntington’s should be given more consider-
ation. From structural MRI of 22 Huntington’s
disease patients, they demonstrated cerebellar
morphological and diffusion abnormalities that
correlated with motor performance, including
saccade initiation. In a postmortem investigation
of eight patients, Rüb et al. [56] found neuronal
inclusions in the brainstem were more widespread
than previously documented, and correlated with
the saccadic and vestibulo-ocular impairments.
These changes were independent of the more
characteristic striatal degeneration. They conclude
that Huntington’s is a multisystem degeneration
that has commonalties with several SCAs.

Grabska et al. [57] examined saccades in the
juvenile variant of Huntington’s, in which onset
occurs prior to age 21. Although the clinical pres-
entation is distinctively dominated by bradykinesia
and rigidity rather than chorea, saccadic impair-
ments (prolonged latency, decreased velocity, and
amplitude) were similar to those seen in adult-onset
Huntington’s.
MOTOR NEURON DISEASE

Oculomotor control is relatively spared in motor
neuron disease (MND) but is still of research
relevance. For example, eye tracking devices are
often used as an assistive communication and con-
trol technology in advanced stages. Hwang et al.
[58] showed that these improve self-reported quality
of life for patients and reduce caregiver burden
because of improved patient autonomy and
patient-caregiver communication.

Selective sparing of brainstem oculomotor
nuclei provides potential insight into understand-
ing the disease. In an impressive series of postmor-
tem studies of tissue from both mouse models and
MND patients, Comley et al. [59

&&

] found distinct
protein signatures which distinguished vulnerable
r Health, Inc. All rights reserved.
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Table 1. Reviews published during the period

General scope:

Ocular motor disorders (review of then-current papers only) [21&]

Ocular motor abnormalities in neurodegenerative disorders (historical coverage) [67&]

Alterations of eye movement control in neurodegenerative movement disorders (historical coverage) [1&]

The definitive text, The Neurology of Eye Movements by Professors John Leigh and David Zee, was updated to its 5th edition in 2015
[68&&]. This is a comprehensive and authoritative resource for everyone interested in the clinical and scientific investigation of
oculomotor control, including in neurodegenerative conditions

Disease specific:

Eye movements in Alzheimer’s disease [69]

Oculo-visual changes and clinical considerations affecting older patients with dementia [70]

Eye movement analysis and cognitive processing: detecting indicators of conversion to Alzheimer’s disease [39]

The potential utility of eye movements in the detection and characterization of everyday functional difficulties in mild cognitive
impairment [71]

Saccadic eye movements in Parkinson’s disease [72]

The measurement of visual sampling during real-world activity in Parkinson’s [66]

Visual signs and symptoms of multiple system atrophy [73]

Supranuclear eye movement disorders [74]

The neuropathology of Huntington’s disease: classical findings, recent developments, and correlation to functional neuroanatomy [75&&]

Autosomal dominant cerebellar ataxias: a systematic review of clinical features [41&&]

Rapid eye movement sleep behaviour disorder and neurodegeneration [64]

Two studies in 2014 utilized deep brain stimulation to study eye movements in Parkinson’s [76,77], for which we refer the reader to
another review in this issue [78]

Neuro-ophthalmology and neuro-otology
and resistant neurons. Preexisting protein
expressions of vulnerable neurons are dynamically
regulated by the disease process, placing those cells
at further risk. These findings have clear implica-
tions for identifying disease-modifying targets.
GLAUCOMA

Glaucoma is a neurodegenerative disease, with dis-
ease effects spreading transynaptically beyond the
retina to affect central visual pathways [60]. Crabb
et al. [61] examined eye movement scanpaths during
free viewing of television, which were sufficiently
distinctive in people with glaucoma to distinguish
them from controls via automated analysis. People
with glaucoma also show abnormally small eye
movements while reading [62]. People with glau-
comatous visual field loss can potentially adopt
compensatory strategies, when reading such as
making more frequent saccades or shifting fixation
toward a preserved but eccentric, nonfoveal, retinal
location [63].
RAPID EYE MOVEMENT SLEEP
BEHAVIOUR DISORDER

There is a strong link between rapid eye movement
sleep behaviour disorder (RBD) and subsequent neu-
rodegeneration. The interested reader is directed to
 Copyright © 2016 Wolters Kluwer 
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Howell and Schenk [64] for a broad overview. We
have not attempted to cover the vibrant literature in
this field, as few of these studies focus directly on
oculomotor phenomena per se. An exception is the
extensive clinical study by Kim et al. [65

&&

], who
hypothesized that the pathological brainstem
changes in RBD could result in nystagmus and ocu-
lar flutter. Nystagmus, although not uncommon in
multiple system atrophy [17], has not generally been
noted in Parkinson’s disease. In the largest pub-
lished oculomotor study in Parkinson’s of which
we are aware, they assessed 202 patients, 116 of
whom also had clinically probable RBD. The pro-
portion of RBD patients who had clinically evident
brainstem or cerebellar-like oculomotor findings
(24%) was 3.6 times higher than in those without
RBD. Though possible explanations include the
potential coexistence of other disorders, this surpris-
ing observation deserves further exploration.
CONCLUSION

Oculomotor control remains a vibrant field of
research across multiple neurodegenerative con-
ditions. New observations are still being made at
the level of clinical description, such as the reported
association between RBD and nystagmus [65

&&

] and
improved description of conditions that appear to
be expressed differently in varying national and
Health, Inc. All rights reserved.

Volume 29 � Number 1 � February 2016



Eye movements in neurodegenerative diseases MacAskill and Anderson
ethnic populations [45–47]. Objective eye tracking
recordings are moving beyond measuring responses
to simple jumping targets (Fig. 1) to encompass
activities such as reading [28], walking [12

&

], or other
real-world tasks [66] (Fig. 2). The utility of focused,
artificial laboratory tasks remains relevant, however,
in testing and generating fundamental theories
of motor control in general, and the effects of
specific neurodegenerative diseases [8]. Readers
who wish to learn more about specific disorders,
or the field in general, are referred to a number of
other reviews that have appeared during the last
18 months (Table 1).
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