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Abstract
Objective. One of the most widely used approaches in electroencephalography/
magnetoencephalography (MEG) source imaging is application of an inverse technique (such as
dipole modelling or sLORETA) on the component extracted by independent component analysis
(ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse
technique alone is that it can identify and localize multiple concurrent sources. Among inverse
techniques, the minimum-variance beamformers offer a high spatial resolution. However, in
order to have both high spatial resolution of beamformer and be able to take on multiple
concurrent sources, sensor-space ICA + beamformer is not an ideal combination. Approach. We
propose source-space ICA for MEG as a powerful alternative approach which can provide the
high spatial resolution of the beamformer and handle multiple concurrent sources. The concept
of source-space ICA for MEG is to apply the beamformer first and then singular value
decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA
both in simulation and real MEG. The simulations included two challenging scenarios of
correlated/concurrent cluster sources. Main Results. Source-space ICA provided superior
performance in spatial reconstruction of source maps, even though both techniques performed
equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli
were also used to compare performance of sensor-space ICA and source-space ICA. We have
also proposed a new variant of minimum-variance beamformer called weight-normalized
linearly-constrained minimum-variance with orthonormal lead-field. Significance. As sensor-
space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that
source-space ICA has superior spatial performance, it is expected that source-space ICA will
supersede its predecessor in many applications.

Keywords: beamformer, MEG, independent component analysis, localization, time-course
reconstruction

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetoencephalography (MEG) records magnetic activities
produced by electrical currents in the brain. Compared with
electroencephalography (EEG), MEG provides a better spatial
resolution due to magnetic fields being less affected by skull
and scalp. Both MEG and EEG have millisecond temporal
resolution, which is an important advantage over other pop-
ular brain functional imaging techniques such as fMRI and

PET. In localization of brain sources via EEG and MEG, a
fundamental problem is that the number N of scanning points
(voxels) in the 3D source-space (brain) is much greater than
the number M of sensors. A major focus of inverse techniques
applied to MEG and EEG is how to best handle this problem.
Some of the earlier inverse techniques such as dipole fitting
[1–3] rely on major assumptions, such as the source of
interest for a given time window is the dominant source and,
if not, the number of dominant sources are known in advance.
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Such assumptions may not be true, plus dipole fitting is not
able to show distributed sources. Another widely used inverse
technique is minimum-norm spatial filters [4–6]. Compared
with dipole fitting, they can estimate distributed sources and
do not rely on an assumed number of the sources for a given
MEG/EEG record. Another versatile approach to source
imaging in EEG and MEG is minimum-variance filters
(beamformers) [7–11]. Compared with minimum-norm filters,
minimum-variance beamformers utilize the covariance matrix
of the sensor signals and have been shown to be superior in
spatial resolution to minimum-norm filters [12–14]. However,
all of the above inverse methods are based on magnitude of
the sources, i.e., they are successful when the desired sources
are strong in relative to the background activity or noise.
Conversely, they struggle to detect multiple concurrent
sources, especially weaker sources. To overcome this lim-
itation, approaches such as independent component analysis
(ICA) and principal component analysis (PCA) have been
applied to separate sources during an epoch of MEG or EEG
and localize each source individually via an inverse method.
ICA is a blind source separation technique which aims to
separate P mutually statistically independent, zero mean,
sources from M linearly combined signal mixtures [15]. In
EEG and MEG, ICA has been extensively used for compo-
nent extraction of event related potentials (ERPs) [16–21] and
for artifact removal [22–24]. Examples of ICA application in
inverse problem are ICA + dipole fitting [17] and ICA +
minimum-norm filter (sLORETA) [19]. These are both
examples of ICA applied on the sensor-space EEG. Recently,
source-space ICA for EEG source imaging [25] was pro-
posed. In this approach, singular value decomposition (SVD)
and ICA are applied to the source-space data matrix, gener-
ated via minimum-variance beamforming (beamformer
+ SVD+ ICA). The superiority of this approach was
demonstrated over beamforming alone and ICA + dipole
fitting, in terms of spatial resolution and ability to detect
multiple concurrent sources. However, no direct comparison
between ICA+beamformer and beamformer+SV-
D+ICA and it is not clear to what extent the order of
application of ICA and beamformer can change source ima-
ging performance, both spatially and temporally. In the cur-
rent study, we proposed and evaluated the application of
source-space ICA to MEG, with some simplifications and
necessary modifications to the procedure of source-space ICA
of EEG. Here we have used the orthonormal lead-field rather
than x, y, and z lead-field, as the rank of the lead-field matrix
via spherical modelling is always 2. We have also proposed a
variant of the minimum-variance beamformer with unit-noise
gain and a simpler equation compared to that of the weight-
normalized minimum-variance (WNMV) beamformer [9].
The simulations includes distributed and correlated sources.
We have also applied source-space ICA to the real MEG for
localization of brain sources time-locked to visual stimuli. In
this paper, the comparison is between beamformer+SV-
D+ICA and ICA+beamformer (i.e., source-space ICA
versus sensor-space ICA). Throughout this paper, plain italics
indicate scalars, lower-case boldface italics indicate vectors,
and upper-case boldface italics indicate matrices.

2. Methods

2.1. Problem formulation

As for EEG [25], the MEG signal for K time samples
= ¼B b b bt t t t, , , ,K1 2

T( ) [ ( ) ( ) ( )] on M sensors, at time point
t can be written as

ò h= +b L r q r r rt s t t, d , 1( ) ( ) ( ) ( ) ( ) ( ) ( )

where =L r l r l r l r, ,x y z( ) [ ( ) ( ) ( )] is a ´M 3 lead-field
matrix which shows the sensitivity of scalp sensors in three
orthogonal directions (x, y, z) to the source signal rs t,( )
located at =r r r r, ,x y z

T[ ] (mm) with a moment of
=q r r r rq q q, ,x y z

T( ) [ ( ) ( ) ( )] (A. m), and h t( ) is the additive
noise. The reconstructed time-course,

=s r r r rt s t s t s t, , , , , , ,x y z
Tˆ ( ) [ ˆ ( ) ˆ ( ) ˆ ( )] for a given location r

to the vector spatial filter can be written as

=s r W r bt t, , 2Tˆ ( ) ( ) ( ) ( )
where =W r w r w r w r, ,x y z( ) [ ( ) ( ) ( )] is a ´M 3 matrix of the
vector spatial filter coefficients. One way to obtain a
tomographic map for all brain locations (voxels), for a given
EEG/MEG segment, is to estimate the power in each voxel

x

= =

Î Î W
x x x xp r w r Cw r r

r

s t

x y z

, ,

, , ; , 3

T 2( ) ( ) ( ) ˆ ( )
( )

where á ñ... is the ensemble average, Ω is the locations of the
3D scanning grid covering the whole brain (source-space),
and C is the covariance matrix

=C b bt t . 4T( ) ( ) ( )

The lead-field matrix computed using the spherical head
model (which is very popular for MEG) for every voxel has a
rank of 2 [2, 26]. Therefore, using SVD we can reduce the
size of the lead-field to ´M 2. The SVD of L r( ) can be
written as

S=L U V , 5T ( )
where U and V T are M×M and 3×3 unitary matrices
respectively and S is an ´M 3 diagonal matrix with the
diagonal elements being the singular values on descending
order. As the rank of the lead-field is 2, the third diagonal
element of theS is 0. To reduce the size of the lead-field, the
first two column vectors of U, corresponding to the two
principal orientations (POs), can be used as the new lead-field
(orthonormal lead-field)

¢ = = ¢ ¢ ¢ Î ´R⎡⎣ ⎤⎦L r u r u r l r l r L r, , , .

6

M
1 2 PO1 PO2

2[ ]( ) ( ) ( ) ( ) ( ) ( )
( )

( )

2.2. Beamformer

There are several variants of minimum-variance beamformers
[12], in which the weight matrix is derived based upon dif-
ferent constraints. In the case of source-space ICA it is
necessary for the beamformer to have a uniform white-noise
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spatial map (in other words, unit-noise gain constraint). This
means that the beamformer must satisfy the constraint

=W r W r I, 7T ( ) ( ) ( )
where I is the identity matrix. Using the normalized lead-field
for the well known linearly-constrained minimum-variance
(LCMV) beamformer does not result in a normalized white-
noise spatial map [14] and the neural activity index (NAI) is
needed to compensate this [7, 10]. However, the WNMV
beamformer proposed by [9] (also known as Borgiotti–
Kaplan) satisfies the constraint of a normalized white-noise
spatial map. Conversely, compared with LCMV, the weight
matrix equation for the WNMV beamformer is more
complicated and uses the second order of the inverse
covariance matrix which, from our experience, can result in
numerical issues (e.g., imaginary elements may appear for the
second order of the inverse covariance matrix). Therefore, it is
preferable to avoid the WNMV beamformer when alternatives
are available. Here we derive a new version of the minimum-
variance beamformer, which is as simple as LCMV but still
has a normalized white-noise spatial map. This beamformer is
based on normalization of the weight vectors of LCMV and
therefore we abbreviate it as WNLCMV. Similar to [7], the
weight matrix for LCMV beamformer is

=
-

-
W r

C L r
L r C r L r

, 8LCMV

1

T 1
( ) ( )

( ) ( ) ( )
( )

and the WNLCMV beamformer is obtained by normalizing
the LCMV weight vectors

= -

-

-

-

-

-

⎡
⎣
⎢⎢
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⎦
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w
w

w
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which satisfies the constraint of equation (7) and has a
uniform white-noise spatial map. Using the spherical head
model and orthonormal lead-field of equation (6) for LCMV,
the WNLCMV can be written as

= -

-

-

-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥W r

w
w

w
w

, , 10WNLCMV
LCMV PO1

LCMV PO1

LCMV PO2

LCMV PO2
( ) ( )

where PO1 and PO2 refers to two POs. Using this WNLCMV
beamformer for source imaging, one does not need to use the
NAI and can estimate the power at each voxel for an epoch of
data by

=r W r b b W rs t tr t t, , 11T T{ }ˆ ( ) ( ) ( ) ( ) ( ) ( )

where =W W .WNLCMV The magnitude time-series of each
voxel via WNLCMV beamformer is obtained via

=

= +

r W r b b W r

r r

s t tr t t

s t s t

,

, , , 12

T T

PO1
2

PO2
2

{ }∣ ˆ ( ) ∣ ( ) ( ) ( ) ( )

ˆ ( ) ˆ ( ) ( )
which is also simpler than the equation for the NAI as used by
[7] and [10].

2.3. Source-space ICA (beamforming + SVD + ICA)

Compared with the EEG version with its x, y, and z time-
courses for each voxel, source-space ICA for MEG has only
two time-courses, corresponding to the two POs (PO1 and
PO2) obtained following the SVD of the lead-field. Therefore,
the reconstructed source-space data matrix Î ´RS N K2ˆ ( ) for
all N voxels and K time samples via the WNLCMV is

=

"
"
"
"

# # % #
"

⎛
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S
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s t s t s t
s t s t s t
s t s t s t

s t s t s t

, , ,
, , ,
, , ,
, , ,

, , ,

. 13

K

K

K

K

N N K N

PO1 1 1 PO1 2 1 PO1 1

PO2 1 1 PO2 2 1 PO2 1

PO1 1 2 PO1 2 2 PO1 2

PO2 1 2 PO2 2 2 PO2 2

PO2 1 PO2 2 PO2

ˆ

ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( )
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We then apply SVD to the data matrix to first reduce the size
of the data matrix and then separate the spatial and temporal
subspaces,

S=S U V , 14Tˆ ( )

where U and V T are ´N N2 2 and K×K unitary matrices
respectively and S is a ´N K2 diagonal matrix with its
diagonal elements being the singular values in descending
order. For dimensional reduction, Ŝ is decomposed as

S
S

S S

=

= + = +

⎛
⎝⎜

⎞
⎠⎟⎡⎣ ⎤⎦S U U V V

U V U V S S

0
0

, 15

D UD
D

UD
D
T

UD
T

D D D
T

UD UD UD
T

D UD

[ ]ˆ

ˆ ˆ ( )

where SD
ˆ is the desired subspace of the source-space data

matrix and SUD
ˆ is the undesired subspace containing noise

only. SD contains the first ¢M singular values and -¢M M.
Therefore, to define ¢M , the rank test for the data matrix was
used, ¢ = SM rank .( ˆ) ICA is applied on the temporal
subspace, S= Î ¢´RY V Y, ,M K

D D
T ( ) and it estimates the

independent components and the unmixing matrix

=S HY, 16¯ ( )

where Î ¢´ ¢RH M M( ) is the unmixing matrix, S̄ is the matrix
of independent components and the ith row of
= ¢S s s s, ,..., M1 2

T¯ [¯ ¯ ¯ ] is the time-series of the ith independent
component. The tomographic maps of ¢M identified compo-
nents in S̄ can be obtained by multiplication of the spatial
subspace Î ´ ¢RU N M

D
2( ) by the mixing matrix -H 1

= -G U H , 17D
1 ( )

where the ith column of = Î¢ ´ ¢RG g g g, ,..., M
N M

1 2
2[ ] ( )

shows the 3D map for the ith row of S.¯ However, for each
location r, the column vector gi has 2 coefficients (PO1 and
PO2) corresponding to the vector beamformer

=

´ ¼

= ¼ ¢

- - - -

-

g r r r r

r

g g g g

g

i M

, , , ,

, ,

1, , . 18

i i i i i

i N

PO1 1 PO2 1 PO1 2 PO2 2

PO2
T

[
]

( ) ( ) ( ) ( )
( )

( )
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To obtain a single value for each location, vector addition is
applied onto orthogonal values

= +

= ¼
- -r r rg g g

n N

,

1, 2, , , 19
i n i n i nPO1

2
PO2

2∣ ( ) ∣ ( ) ( )
( )

and

= ¼ = ¢g r r rg g g i M, , , , 1, 2 ,..., .

20
i i i i N1 2

T[ ]ˆ ( ) ( ) ( )
( )

The tomographic map of the ith component in S,¯ i.e., s ,ī is
obtained by projecting the vector gî to the 3D scanning grid.
The location of the voxel in the source-space with maximum
intensity for the ith component is

= = ¼r rg n Nargmax , 1, 2, , . 21r i nmax n ( )( ) ( )

2.4. Sensor-space ICA (ICA + beamforming)

In this approach, similar to that of [17] and [19], ICA is
applied to the sensor data B t( ) and then the inverse technique
is applied to the columns of the mixing matrix corresponding
to the time-courses of interest

¢ =S HB, 22( )
where Î ´RH M M( ) is the unmixing matrix, ¢ Î ´RS M K( ) is
the matrix of independent components and the ith row of
¢ = ¢ ¢ ¢S s s s, ,..., M1 2

T[ ] is the time-series of the ith independent
component. Assuming Z is the tomographic map of the ith
identified component in ¢S , the intensity at r for the
tomographic map of ith identified component in ¢S can be
obtained by multiplication of the ith column of the -H 1 by the
beamformer weight matrix W

=
+

=

-
-

-
-

z r
w r h

w r h

n N

,

1, 2 ,..., . 23

n
n i

n i

WNLCMV PO1
T 1 2

WNLCMV PO2
T 1 2

( )
( )( )

( )

( )
( )

To calculate the beamformer weight matrix, when the input
signal is only the vector of the mixing matrix (single point
input data), instead of inverse covariance matrix ( -C 1), the
regularized inverse covariance matrix ( g+ -C I 1( ) ) must be
used, as the rank of the mixing vector is 1. We used
g l= 0.001 1 as the regularization factor, and l1 is the largest
eigenvalue of C [9]. The regularized inverse increases the
SNR of the beamformer [8, 27, 28] but leads to higher
interference from other sources close to the source of interest
signal and reduces the spatial resolution.

3. Simulated and real MEG sources

The background MEG for simulated sources was real MEG
from three healthy subjects, recorded during the resting state
in another study [29]. The 275-channel CTF MEG system
(MEG International Series Ltd, Coquitlam, BC, Canada) was
used at a sampling frequency of 6000 Hz and band-pass fil-
tered at 1–45 Hz. The single-layer spherical head model,

implemented in FieldTrip toolbox [30], was used for the
computation of the lead-field. The conductivity ratio of skull
to soft tissue was 0.0125. Infomax [31] was applied for ICA.
The 3D scanning grid divides the brain into 4040 voxels, each
of 8×8×8 mm. Performance was estimated via the cor-
relation between the maps provided by source-space ICA and
sensor-space ICA and ground truth. As source-space ICA
involves application of SVD and ICA post-beamforming, we
also refer to it as beamforming+SVD+ICA, and we refer
to sensor-space ICA as ICA+beamforming. The aim is
evaluate how the change in the order of application of these
two techniques (ICA and beamforming) can alter the outcome
of source imaging.

3.1. Simulated MEG sources

3.1.1. Concurrent sources. Here we undertook two
simulations: (1) two sinusoidal cluster sources concurrently
active for 3 s at 6 Hz and at 10 Hz, (2) two sinusoidal cluster
sources concurrently active for 3 s with both at 10 Hz. The
second simulation is the worst case scenario for the
beamformers as the two sources are 100% correlated.
Furthermore, we repeated the two simulations with different
SNRs and orientations of the sources superimposed on
background MEG from three healthy subjects. There were
seven samples of the simulated cluster sources with SNR
from 0.13 to 3.00 and eight orientations for each of the cluster
sources corresponding to 180° change in orientation.
Therefore, each of these two simulations was repeated
´ ´ =7 8 3 168 times. Each cluster comprised 45 voxels

( ´ ´5 3 3). The center of the two cluster sources are at
[−22, −14, 32]mm and [20, −58, 32]mm (MNI
coordinates).

The motivation for this simulation is due to the
differences observed in the source imaging via source-space
ICA compared with sensor-space ICA for the real MEG of
subjects with visual stimulation. As we will show in the
section 4 for real MEG, even though ICA identified similar
time-courses for both techniques, localizations via these two
techniques for some of the components were significantly
different. In order to identify which approach estimates the
correct source localization, we conducted this simulation with
concurrently active cluster sources.

3.1.2. Quantitative performance measurement. In this
simulation, a single sinusoidal (10 Hz) source was evaluated
under poor SNRs and different depths and orientations. The
SNR of the simulated source was set 0.01–0.35 (ten SNR
samples). The orientation of the source was also varying from
0° to 180° around z axis (seven orientation samples). And the
depth of the source was from ∼10mm to ∼110mm (eight
depth samples) corresponding to [0, 0, 2]mm to [0, 0,
98]mm locations. The diameter of the spherical head model
was 110mm. This simulation was performed on the
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background from three subjects. Therefor, this simulation is
repeated 1680 times.

3.2. Real MEG sources

To demonstrate and compare the application of source-space
ICA for localization and time-course reconstruction of real
MEG sources, real MEG data (CTF 275 channel) were
downloaded from the SPM website (www.fil.ion.ucl.ac.uk/
spm/data/mmfaces). The MEG data from two healthy sub-
jects comprise 168 visual event-related fields (ERF) from 84
faces and 84 scrambled faces. Only the 84 ERFs for the faces
were used in the current study. The covariance matrix for the
beamformer was calculated over the 84 concatenated ERFs
(84~×~800 ms), in line with other literature [24, 32–34]. To
identify the components of sensor- and source-space ICA
which have activity associated with the visual ERFs, the
components were averaged over 84 trials to obtain single-trial
components and then rectified. A Pearson correlation test was
then applied between the averaged rectified components and a
reference signal, to identify components with higher magni-
tudes during the 0–300 ms post-stimulus. The reference signal
was a rectangular pulse of magnitude 1 from 0 to 300 ms and
zero otherwise over the interval −200 to 600 ms; that is, 0 to
300 ms is tha window in which the sources of the visual ERFs
were expected to be substantially active). Components cor-
related with the reference signals were interpreted as sources
due to the visual stimulus.

4. Results

4.1. Simulated sources

For evaluation of the source maps obtained via sensor-space
ICA and source-space ICA for the simulated cluster sources,
Pearson correlation coefficients between the estimated maps
via the techniques and the ground truth were calculated and
provided as a measure of performance. Using this measure-
ment one should consider that both localization error and the
blurry images can reduce the correlation coefficient.

4.1.1. Two concurrent cluster sources with frequencies of 6 and
10 Hz. For each of the background activities of the three
subjects, this simulation was repeated 56 times, comprising 7
SNRs and 8 orientations. For source identification, in the case
of sensor-space ICA and source-space ICA, after each
iteration a Pearson correlation test was calculated between
the rectified time-course of the components and the rectified
reference signals (the actual 6 and 10 Hz source signals) and
the two time-courses which had the highest correlation
coefficients were considered to be the sources of interest and
their spatial maps were then estimated. The 56 maps were
then averaged and Pearson correlations calculated between
the ground truth and the averaged maps. Therefore, three
correlation coefficients were obtained corresponding to the
three backgrounds for each of the two techniques (table 1).
Figure 1 shows the source imaging result for the simulated

cluster sources on the background activity of subject 2. For
this simulation, source-space ICA had a higher performance
due to its higher spatial resolution, rather than accuracy of
localization, compared with the more blurry images from
sensor-space ICA. However, in the case of time-course
reconstruction, both techniques performed similarly and were
unable to separate the 6 and 10 Hz time-courses and, instead,
separated the subtraction and summation time-courses
(figure 2). This simulation, however, is a challenging
scenario as both time-courses were 100% concurrent, were
spatially close to each other, and had reasonably close
frequencies, which made it difficult for ICA to separate. As
two time-courses were identified by ICA, two spatial maps are
reported for this simulation, and the spatial map of each time-
course shows the map of two clusters (figure 1). For source-
space ICA, the spatial map of each time-course showed two
separate clusters (e.g., figure 1(b)), whereas for sensor-space
ICA only one time-course had two separate clusters, with the
other time-course resulting in merged clusters (e.g.,
figure 1(c)).

4.1.2. Two concurrent cluster sources with frequency of
10 Hz. This simulation was the same as the previous
simulation except for the two cluster sources being 100%
correlated (both active at the same time and of identical 10 Hz
sinusoidal waveform). As with the previous simulation,
following each source identification a Pearson correlation
test was performed between the rectified time-series of the
components and rectified reference signal (the actual 10 Hz
source signal). The time-course with the highest correlation
coefficient was considered as the source of interest and its
spatial maps then estimated. This means that for the ICA
approaches there will be one spatial map as there are two
sources with the same frequency and ICA was not able to
separate the time-courses of the two sources. Table 2 shows
the correlation coefficients obtained via the two techniques
for this simulation. Figure 3 shows the source imaging results
for the simulated cluster sources on the background activity of
subject 2. For this simulation, source-space ICA achieved a
higher performance compared to sensor-space ICA. Source-
space ICA was able to localize the posterior source but the

Table 1. Summary of results for two concurrent 6 and 10Hz
sinusoidal cluster sources.

Background from Source-space ICA Sensor-space ICA

Subject 1 r1=0.52 r1=0.31
r2=0.48 r2=0.20

Subject 2 r1=0.53 r1=0.30
r2=0.48 r2=0.22

Subject 3 r1=0.52 r1=0.27
r2=0.46 r2=0.25

Average r1=0.52 r1=0.29
r2=0.47 r2=0.22

Note: r1 and r2 are the averaged correlation coefficients obtained
from Pearson correlation test between ground truth and spatial maps
of components 1 and 2, respectively.
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Figure 1. Source imaging via source-space ICA and sensor-space ICA for two concurrent cluster sources of 6 Hz and 10 Hz. The center of the
two cluster sources are at [−22, −14, 32]mm and [20, −58, 32]mm (MNI coordinates). The background MEG was from subject 2. The
Pearson correlation coefficients between the ground truth and the maps are provided in table 1.

Figure 2. A example of sensor-space ICA on separation of the 6 and 10 Hz cluster sources. Both approaches were unable to separate the two
time-courses with each reconstructed time-course being a mixture (subtraction and summation of the two original time-courses). Source-
space ICA also showed the same behaviour.
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frontal cluster was incorrectly estimated to be between the
two actual clusters. Sensor-space ICA incorrectly estimated
them to be a single source between the two clusters.

4.1.3. Quantitative performance measurement. Result of this
simulation is obtained after 1680 times iteration of a
simulated source (10 Hz) under varying SNR (ten samples
from 0.01 to 0.35), eight depths (distance from 2 to 98 mm
from the center of the sphere), and seven samples of the
orientations (from 0° to 180° around z axis). The mentioned
simulation was performed on background MEG of three
subjects. Figure 4 shows the performance of the sensor-space
ICA and source-space ICA in terms of localization error in
mm. While overall localization error of source-space ICA
(5 mm as shown in figures 4(b) and (c)) is lower than sensor-
space ICA (1̃ 3 mm as shown in figures 4(b) and (c)), the
source-space ICA is also less affected by changes in
orientation and depth of the simulated source. Based on
figure 4(a) the source-space ICA achieves localization error of
less than 2mm when the SNR of the source becomes greater
than 0.10, whereas the localization error for sensor-space ICA
did not reach less than 10mm.

4.2. Real MEG with ERFs

For real MEG, two important steps—semi-averaging and
PCA—were considered before ICA. Semi-averaging was to
average each event three times, without reducing the number
of the events, i.e., after semi-averaging there were still 84
events to be given to the ICA approaches. So each of the 84
events was the average of itself and another two events from
the other events. This improves the SNR of the sources and
helps ICA to identify them as independent sources. Keeping
the number of events at 84 rather than reducing it to fewer
highly-averaged events is also another way to improve the
ICA separation power. Another important factor in ICA of
MEG is the rank of the MEG signal matrix. The rank test
showed that the MEG data matrix was full rank even after
semi-averaging of the events. However, the rank test may not
be accurate using the software. Therefore, we applied PCA
before ICA to reduce the number of components. We chose
70 components for PCA. By this approach, both sensor-space
ICA and source-space ICA were able to separate five time-
courses time-locked to the 0–300 ms post-stimuli, whereas
applying the raw MEG to the ICA resulted only in two time-
locked components. The average ERFs for the 274 channels
for two subjects are shown in figures 6(a) and (b). The left
column in figure 6 is for subject 1 and the right column for

subject 2. The time-courses of the five components identified
by sensor-space ICA and source-space ICA are shown in
figures 6(c) and (d). These time-courses are fully averaged but
the semi-averaged events were given to ICA. To identify the
components time-locked to the ERFs, the Pearson correlation
test was performed between the averaged rectified compo-
nents and the reference signal being high over 0–300 ms and
0 otherwise (figure 5). These five components
(IC IC IC IC IC, , , ,1 2 3 4 5) were consistent between the two
subjects. The corresponding topographies via sensor-space
ICA for each of these components are shown in figures 7 and
8. Both sensor-space ICA and source-space ICA separated
near identical time-courses for the same subject (figures 6(b)
and (c)). At the same time, the time-courses between two
subjects are also very similar, in particular components 1–3,
in terms of latency and shape. The peaks of these components
were at latencies of 80ms, 115ms, 150ms, 175ms, and
215ms for components 1–5 respectively. The topographic
maps of the components obtained via sensor-space ICA are
shown in figures 6(e)–(n). The topographic maps of compo-
nents 1–4, between two subjects, are also very similar. Note
that there were a few more components time-locked to the
ERFs with peaks later than 300ms, but here we only con-
sidered components with peaks at 0–300ms post-stimuli. The
time-courses shown in figures 6(b) and (c) are normalized and
adjusted to have their peaks at 1. Figure 7 shows the tomo-
graphic maps obtained via source-space ICA for the compo-
nents shown in figure 6. The tomographic maps of
components 1–3 are near identical as expected, as their time-
courses and topographic maps are similar. Component 1 is
bilateral in the occipital cortex, but is more dominant on the
right side (figures 7(a) and (b)). Component 2 has also a
bilateral structure and more dominant on the right side on the
right side of the occipital cortex (figures 7(c) and (d)). Other
regions associated with component 2 are the fusiform gyrus
and the temporal gyrus. Component 3 has a scattered structure
in the middle occipital cortex and bilaterally fusiform gyrus
(stronger on the right side) and close to brainstem (left side)
(figures 7(e) and (f)). This component has a peak at 150ms is
the well known M170 (N170 for EEG) with a latency of
150–200ms post stimuli. The pattern of the source activity
for component 4 is different between two subjects
(figures 7(g) and (h)): both have activation on the prefrontal
cortex (on the right side), but for subject 1 there is also a
strong activation in the middle occipital cortex which is not
evident for subject 2. Also, for subject 2 there is activity on
the left side which is not seen for subject 1. The source
structure associated with component 5 is located on the right
side of the prefrontal cortex (figures 7(i) and (j)). Figure 8
shows the tomographic maps obtained via sensor-space ICA
for the components shown in figure 6. The tomographic maps
of components 2 and 3 are similar (figures 8(c) and (d)), with
the other components having little similarity between two
subjects. Moreover, the tomographic maps of the component
obtained via sensor-space ICA is quite different from maps
obtained via source-space ICA. Sensor-space ICA provided
blurry maps with activation mostly in the central brain regions
which is not expected with ERFs. Such blurry and central

Table 2. Summary of results for two concurrent 10Hz sinusoidal
cluster sources.

Background from Source-space ICA Sensor-space ICA

Subject 1 r=0.29 r=0.24
Subject 2 r=0.28 r=0.20
Subject 3 r=0.29 r=0.25
Average r=0.29 r=0.23
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activation patterns are similar to the simulations on the cor-
related cluster sources in which the sensor-space ICA was
unable to separate the two cluster sources and instead merged
them (figures 1(c) and 3(c)). Only component 1 of subject 1
shows a bilateral activation pattern in the occipical lobe and
fusiform gyrus, where one would expect to see the sources
associated with face ERFs.

5. Discussion

A common challenge for source imaging techniques, such as
spatial filtering and dipole fitting, is concurrent sources. In
such cases, the dominant source is most likely to appear in the
map of source activity for a given EEG/MEG segment. ICA
can be used to separate the concurrent sources and then
inverse techniques, such as dipole fitting or minimum-norm
filters, can be applied to separate sources, as shown in ICA +
dipole fitting [17] and ICA + sLORETA [19]. For the case of
distributed sources, dipole fitting is not appropriate. Also,
minimum-norm techniques produce blurry source maps.
Minimum-variance beamformers have been shown to provide
higher spatial resolution than their minimum-norm counter-
parts. Therefore, it may appear that ICA+beamforming
(sensor-space ICA) can solve the problem for both distributed
sources and have a high spatial resolution. But using

beamformer for components separated by ICA means that the
rank of the covariance matrix (which is necessary for the
beamformer) is 1 and this results in low spatial resolution for
the beamformer, similar to the minimum-norm filters. Source-
space ICA is an approach which captures the high spatial
resolution of the beamformer and, at the same time, is able to
separate and localize multiple concurrent sources. Source-
space ICA: (1) applies the minimum-variance beamformer on
the MEG epoch to reconstruct the time-courses on the scan-
ning grid, (2) applies SVD for dimensional reduction and
separation of the spatial and temporal subspaces of the
source-space data matrix, (3) applies ICA on the temporal
subspace to separate the independent time-courses, and (4)
uses the mixing matrix of the ICA for the spatial subspace to
provide source localization maps of the independent compo-
nents. The advantage of this approach over the ICA+-
beamformer (sensor-space ICA) is that the spatial resolution/
accuracy of source-space ICA is superior due to the beam-
former being applied on the full-rank (or near full-rank)
sensor signal. Our approach used the orthonormal lead-field
and a new variant of the minimum-variance beamformer. The
orthonormal lead-field was obtained after SVD of the original
x, y, z lead-field, and then data reduction. The rank of the
lead-field calculated via the spherical model for MEG is
always 2, therefore, using the orthonormal lead-field reduces
the amount of the output of the vector beamformer from 3 to

Figure 3. Source imaging via source-space ICA and sensor-space ICA for two 100% correlated cluster sources of 10 Hz. The center of the
two cluster sources are at [−22, −14, 32]mm and [20, −58, 32]mm (MNI coordinates). The background MEG was from subject 2. The
Pearson correlation coefficients between the ground truth and the maps are provided in table 2.
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2. Compared with the WNMV beamformer [9], our
WNLCMV beamformer has a simpler equation and does not
use the inverse covariance matrix of order 2. Similar to
WNMV beamformer, the WNLCMV has a uniform white
noise spatial map. This was achieved by normalization of the
LCMV weight vectors. Our simulations have demonstrated
the advantage of source-space ICA over sensor-space ICA.
Simulations of single source reconstruction under poor SNRs
and varying depth and orientation proved that the source-
space ICA has a overall less localization error compared with
sensor-space counterpart (i.e., 5 mm versus 13 mm). On
simulation of concurrent sources we presented two scenarios
which are closer to real brain sources (rather than a single
point source): (1) two concurrent cluster sources, and (2) two
concurrent and correlated sources. These simulations were
performed with different orientations and magnitudes on the
MEG background activities of three subjects. In both simu-
lations, source-space ICA achieved higher performance in

terms of spatial resolution and ability to separate the two
cluster sources. Conversely, both techniques had similar
performance on temporal reconstruction of the cluster time-
courses. On the reconstruction of real MEG from two subjects
with visual stimuli, source-space ICA and sensor-space ICA
had near identical performances in terms of temporal recon-
struction. The topography of the components between two
subjects also showed similar maps. However, source mapping
via source-space ICA and sensor-space ICA was dramatically
different. The sources found via source-space ICA were
mostly concentrated on the cortical areas of the posterior,
temporal, and frontal areas. Some of these maps were
showing multiple cluster sources associated with one com-
ponent. On the other hand, sensor-space ICA was only able to
provide blurry maps for the components, and some of these
maps gave central regions of the brain as the origin of the
time-course. Face processing MEG and EEG have a well-
established brain activation pattern. Through the literature
[35–45] the fusiform gyrus and the temporal gyrus have been
shown to be the sources of the N170 and M170 of face
processing. A recent paper by Owen et al 2012 [46] on the
same MEG data used here, shows similar sources found via
our approach. They found three regions to be the sources of
ERFs of faces: (1) right side of occipital cortex (next to
sagittal line) with time-course maximum activity at latencies
of 90ms and 120ms, (2) one scattered source in occipital
cortex with the maximum activity occurring over
180–290ms, and (3) a bilateral source in the fusiform gyrus
(stronger on the right side) with maximum activity at
150–210ms post stimuli. In addition to these, we found the
temporal gyrus and prefrontal cortex, to be substantial

Figure 4. Performance of the source-space ICA and sensor-space ICA in terms of localization error with respect to the changes in magnitude
(figure (a)), depth (figure (b)), and orientation (figure (c)) of the simulated source. The vertical bars are mean 95% confidence interval.

Figure 5. A typical correlation coefficient plot for the independent
components separated by source-space ICA or sensor-space ICA.
Several components (1, 2, 6, 8, and 13) can be seen to have
correlation coefficients several times higher than other components.
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contributors to face processing. An extensive recent study of
face processing MEG [47], which includes data from 17
healthy control subjects as well as 14 patients, shows the right
inferior frontal gyrus to be activated at 250ms post stimuli,
which is similar to component 5 shown in figure 7. Another
recent study [48] on 24 healthy subjects showed that the right

fusiform gyrus and the right inferior occipital gyrus are the
sources of M170 for faces. Such sources can be seen on
component 3 in figure 7. The results of simulation and real
MEG analyses in this paper indicate that sensor-space ICA
(e.g., ICA+beamformer/sLORETA/dipole fitting) is not
optimal for source localization of multiple cluster sources,

Figure 6. Left column figures belong to subject 1 and the right column to subject 2. Average of 84 ERFs (faces) on 128 channels is shown in
figures (a) and (b). The independent time-courses, time-locked to the ERFs, obtained via source-space ICA and sensor-space ICA are shown
in figures (c) and (d). The topographic maps of the five independent components for each subjects obtained via sensor-space ICA are shown
in figures (e)–(n). The time-courses of the independent components obtained via sensor-space ICA and source-space ICA for each subject are
near identical, indicating the similar performance of the two techniques in time-course reconstruction. The topographic maps of the
components between two subjects for each independent component are also similar except for component 5.

10

J. Neural Eng. 13 (2016) 016005 Y Jonmohamadi and R D Jones



even though it is widely applied in the EEG and MEG lit-
erature. However, as mentioned earlier, sensor-space ICA
performs equally with source-space ICA for simulated single
point sources. Also, source-space ICA cannot replace sensor-
space ICA in estimating the topographic maps as the mixing
matrix of sensor-space ICA is optimal way for topographic
maps of components. Traditionally, ICA has been used for
extraction of ERPs and as an artefact removal tool on the
sensor-space signals. Care should be taken in application of
ICA and PCA for artefact removal before inverse modelling.
Some of the common artifacts removed by sensor-space ICA
are eye movements and eye-blinks. However, such artifacts
cover a wide area on the scalp and are highly overlapping
with some of the well-known brain sources such as frontal
theta rhythm. Removing such artifacts from sensor-signals via
ICA can also result in loss of some desired sources. Similarly,
removal of sensor-space components manipulates the spatial
signature of the remaining signals. Therefore, applying an

inverse model on the remaining signals can result in incorrect
localization of certain sources, dependent on how much
power is lost from such sources due to sensor-space compo-
nent removal. A trick to avoid losing desired source activity
due to sensor-space component removal is to band-pass filter
the original data and apply ICA artifact removal on the target
frequency bands and sum the artifact-removed band-passed
data. This works when the desired sources and artifacts are at
different frequencies. Conversely, although we have not
demonstrated directly, it is also possible to perform artifact
removal via source-space ICA. In this procedure, the inverse
technique is applied first and results in attenuation of the
artifacts which cannot be interpreted as brain sources in the
source-space data. However, due to leakage, some of the
powerful noises are still present in the source-space data, as
has been shown for eye artifacts [24], and power mapping
following inverse modelling will show such artifacts as brain
sources. But, by using ICA (and SVD) in the source-space,

Figure 7. Figures (a)–(j) are tomographic maps of the five components from the two subjects shown in figure 6. Left-column figures belong to
subject 1 and the right-column to subject 2. The maps of the first three components between two subjects are very similar, but components 4
and 5 of the two subjects have differences in patterns of activations. Maps are thresholded at 70% of the voxel with maximum intensity.
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such artifacts can be separated from the desired sources and
each component has an independent 3D map. We did this
when applying source-space ICA to ERFs from facial visual
stimuli when we accepted only components time-locked to
the stimuli, with remaining components considered to be
artifacts and background activity. Other versatile applications
of ICA are in connectivity analysis [49, 50] and joint-ICA
for extracting common information from two (or more) dif-
ferent functional brain recordings [51–54]. Here, we utilized
ICA in source-space and compared in with well established
sensor-space ICA for source-localization of MEG sources.
While we have determined how the order the application
of two conventional techniques (beamforming+ICA versus
ICA+ beamforming) can change the outcome in source-
localization, such comparisons could be extended to more
recent signal separation techniques, such as common spatial
pattern analysis [55–58] and tensor decomposition [59],

which have proven to be practical in brain–computer inter-
faces [60].
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