
Abstract—Lapses in visuomotor performance are often 
associated with behavioral microsleep events.  Experiencing a 
lapse of this type while performing an important task can have 
catastrophic consequences.  A warning system capable of 
reliably detecting patterns in EEG occurring before or during 
a lapse has the potential to save many lives.  We are developing 
a behavioral microsleep detection system which employs Long 
Short—Term Memory (LSTM) recurrent neural networks.  To 
train and validate the system, EEG, facial video and tracking 
data were collected from 15 subjects performing a visuomotor 
tracking task for 2 1-hour sessions.  This provided behavioral 
information on lapse events with good temporal resolution.  
We developed an automated behavior rating system and 
trained it to estimate the mean opinion of 3 human raters on 
the likelihood of a lapse.  We then trained an LSTM neural 
network to estimate the output of the lapse rating system given 
only EEG spectral data.  The detection system was designed to 
operate in real-time without calibration for individual subjects.  
Preliminary results show the system is not reliable enough for 
general use, but results from some tracking sessions encourage 
further investigation of the reported approach. 

I. INTRODUCTION

A short lapse in psychomotor performance at the wrong 
moment can have catastrophic consequences.  Errors caused 
by fatigue while driving, for example, have been estimated 
to account for 10% of serious traffic accidents in France [1].  
Fatigue has also been cited as a possible cause of the Exxon 
Valdez shipping disaster [2].  The early stages of fatigue are 
associated with gradual deterioration in perceptual, 
cognitive and sensorimotor performance [3, 4].  In deeper 
fatigue states it is common to observe sudden lapses of 
performance accompanied by behavioral features of sleep 
(head nodding, slow eye movements, loss of facial tone, 
partial or full eye closure [5]), followed rapidly by 
resumption of acceptable performance. These discrete 
events have been termed ‘lapses’, ‘microsleeps’, ‘blocks’ or 
‘gaps’ [6], and have been shown to be correlated with 
changes in the EEG spectrum [7-9].  We will call these 
events behavioral microsleeps, or simply lapses, to 
emphasize the behavioral nature of the phenomenon.   

While a relationship between EEG features and lapses 
has repeatedly been demonstrated [8-11], inter-subject 
reliability and temporal resolution are poor.  Miller [12] 
noted that truck drivers were able stay within their lane 
while exhibiting up to 15 s of apparent EEG sleep. This is 
less surprising given that the relationship between the early 
stages of EEG and behavioral sleep is known to be weak 
[13].

Jung et al. [14] showed it is possible to use EEG spectra 
to predict minute-scale variations in lapse probability for an 
auditory task with a multilayer perceptron neural network  
(MLP).  While the results were promising, inter-subject 
variability meant their detector needed to be individualized.  
Other recently developed systems have aimed to detect 
either drowsiness [15] or fatigue [16], as distinct from lapse 
events. 

We are developing a system intended to detect and 
predict lapses from EEG data with second-scale temporal 
resolution.  We intend the complete system to issue a 
warning indicating a lapse is imminent and trigger 
countermeasures to prevent further events occurring.  At 
present the system employs data from a visuomotor tracking 
task study for training and validation. 

Our system uses Long Short–Term Memory (LSTM) 
recurrent neural networks [20] to classify EEG feature 
vectors.  LSTM networks overcome the "vanishing 
gradient" problem affecting most other recurrent neural 
network architectures when required to learn patterns over 
long time-lags, and have never previously been applied to 
lapse detection or, as far as we are aware, EEG analysis.  In 
our system we train the neural network in a supervised 
manner using metrics derived from the behavioral data.  

We have also developed a novel sub-system for 
identifying lapses based on behavioral data.  The lapse 
identification system takes several behavioral metrics and 
uses an MLP network to derive an estimate of the 
probability of lapse once each second.  The MLP network is 
trained on human rating data and can be considered to 
mimic human rating behavior.   In this paper we report 
encouraging preliminary results for our lapse detection 
system. 

II. METHODOLOGY

A.  Tracking Study 
In a previous study 15 normal male volunteers aged 18–

36 years performed a visuomotor tracking task while we 
recorded EEG, video of facial features and tracking 
behavior (see [17] for full details).  Approval for the study 
was obtained from a local ethics committee.  Subjects were 
asked to keep a cursor as close as possible to a pseudo-
random target (0.164 Hz bandwidth) scrolling down a 
screen (17” monitor, located 136 cm from the eyes) at 21.8 
mm/s.  The cursor was located at the bottom of the screen so 
subjects had an 8-s preview of the scrolling target.  Subjects 
moved the cursor horizontally by rotating a steering wheel 

Detecting Behavioral Microsleeps using EEG and
LSTM Recurrent Neural Networks 

P. R. Davidson1, 2, R. D. Jones1, 2, 3, 4, M. T. R. Peiris1, 2, 4 

1Van der Veer Institute for Parkinson's and Brain Research, Christchurch, New Zealand 
2Medical Physics and Bioengineering, Christchurch Hospital, Christchurch, New Zealand 

3Medicine, Christchurch School of Medical and Health Sciences, University of Otago, Christchurch, New Zealand 
4Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand 

Proceedings of the 2005 IEEE
Engineering in Medicine and Biology 27th Annual Conference
Shanghai, China, September 1-4, 2005

0-7803-8740-6/05/$20.00 ©2005 IEEE. 5754



(39.5 cm diameter; gain = 1.075 mm/deg).  Angular position 
was sampled at 64 Hz.   All subjects tracked the same target 
signal, facilitating inter-subject comparison. A 25 Hz analog 
video camera, time locked to the tracking, recorded head and 
facial features of subjects during the task.  EEG and EOG 
data was recorded continuously during all sessions at 256 
Hz.  We recorded 16 channels of EEG from scalp electrodes 
placed according to the international 10-20 system, as well 
as horizontal and vertical EOG.   

Each subject attended two sessions, held on separate 
days (mean inter-session interval 17 days, range 7–50), in 
which they performed the tracking task continuously for one 
hour.  All sessions were held between 12.30 p.m. and 5.00 
p.m.  Cues such as time of day and remaining task time were 
not provided to subjects during the task.  They were asked to 
stay alert and perform to the best of their ability and, aside 
from blinks, to keep their eyes open as much as possible 
during the task. 

As part of the study, 30 hours of video were rated by a 
human expert (MP) who identified probable lapses, sleep, 
forced eye closure, distraction, and drowsiness with 1-s 
accuracy.  The video analysis revealed that 8 of 15 subjects 
lapsed at some time during the two sessions.  Of those that 
lapsed, the median rate was 44 lapses per hour.  We also 
calculated a lower bound estimate of lapse frequency using 
the tracking data: lapses identified on video that coincide 
with a completely stationary cursor.  The lower bound 
estimate gave a median count of 15 lapses per hour.   

B. Lapse Rating Study 
The video rating and lower bound estimates do not make 

optimal use of the behavioral data available.  Ideally, we 
require a metric with good temporal resolution indicating 
overall lapse likelihood given all available behavioral data.  
Since opinion on when a lapse is occurring varies between 
experts, we conducted a short study to establish the mean 
opinion of human experts on the overall probability of lapse 
given both the tracking data and video data. Ideally, multiple 
human raters would view video of subjects' faces 
simultaneously with their tracking response and rate their 
moment-to-moment lapse likelihood.  Previous experience 
showed this task would be extremely time consuming, 
amounting to month or more of work for each rater, and 
would need to be repeated on any new data collected.  
Consequently we had experts rate a subset of the data and 
built a "rating model" capturing their average opinion.  

Three human experts were asked to rate 12 minutes of 
data from one randomly chosen session from each subject.  
The 12 minutes were composed of the first 2 minutes of each 
session followed by the period between 30 and 40 minutes 
from the start of the session.  Raters were required to mark 
transitions between the levels of a 5-point scale capturing the 
degree of certainty that a lapse was occurring.  The levels of 
the scale were labeled 1 to 5 corresponding to ratings of 
Definitely Not Lapse, Probably Not Lapse, Unsure, Probable 
Lapse, and Definite Lapse.  Raters were required to make 
their judgment based on a combination of tracking behavior 
and the human video rating (previously carried out for the 
entire data set) displayed concurrently on a computer screen 

(Fig 1).  We intend to further automate this process in future.  
The rating software showed a 30 s window of data which 
could be paged through or moved forwards and backwards 
in 1 s increments.  The existing video rating was used as a 
proxy for metrics derived automatically and directly from 
the video data.  We are currently developing these using 
computer vision techniques.     

C. Automated Lapse Rating 
We developed a lapse rating model which generated an 

estimate of the mean human rating given tracking and video 
data.  In this task, lapses in tracking performance are most 
easily recognized as an extended period where the response 
cursor remains still while the target is moving (which we 
will call a flat-spot).  Interpretation is confounded by the 
error-deadzone behavior characteristic of human tracking 
[18], which results in step-like tracking responses, 
particularly in low-velocity regions of the target.  Other 
easily recognized lapse behavior is characterized by an 
erratic response incoherent with the target, leading to large 
tracking error.  The lapse rating model comprised a MLP 
neural network with one 3-neuron hidden layer and 3 inputs: 
the human video rating, the absolute tracking error and the 
output of a flat-spot detector.  The flat-spot detector 
activated whenever the cursor speed dropped below a fixed 
threshold (5x10-5 m/s).  Flat-spots shorter than 1.5 s were 
ignored and the output of the detector was scaled in 
proportion to the duration of the flat-spot.  The 7-level video 
rating data was mapped from the integer values used by the 
human expert to the posterior probability the lapse rating 
was greater than 3 given only the video rating.  These 
posterior probabilities were estimated using the same data 
set used to train the network.  

Data from the lapse rating study was used to train the 
neural network.   The training set comprised data from 7 
randomly selected subjects and data from a further 8 subjects 
were put aside for validation.  The MLP network was trained 
using Levenberg-Marquardt backpropagation (15 epochs, µ 
= 0.01), using the mean human rating as the target.  After 
finding suitable MLP parameters, the network output was 

Fig 1.  Interface used for lapse rating study.  Raters were required to judge 
whether a person was lapsing given 30 s epochs of the target (solid line), the 

response (dashed line) and the opinion of an independent rater who was 
only shown video of the subject's face (dot-dashed line).  Raters marked 

transitions between regions on a 5-point scale (lower part of display). 
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filtered using a bi-directional Gaussian filter (N = 60,  = 
2.5).  The filter output was then rescaled to fit the training 
target using linear regression. 

D. Lapse Detection 
 EEG data from two posterior differential channels P3-

O1 and P4-O2 were selected based on their good results in a 
preliminary investigation.  Epochs exhibiting clear electrode 
pop were marked as artifact using a simple algorithm which 
detected a change of greater than 0.4 mV in EEG amplitude 
within a single sample.  Both channels were then divided 
into sequential, non-overlapping 1-s windows.  Power 
spectral density across each window was calculated using 
the covariance method to form a 40th order AR model.  The 
covariance method was selected as it is known to work well 
for short data sequences [19].  The logarithm of the mean 
power in 7 frequency ranges was then calculated for each 
channel:  delta (0.1 < f  4 Hz), theta (4 < f  8 Hz), alpha (8 
< f  13 Hz), low beta (13 < f  18 Hz), high beta (18 < f 
36 Hz), gamma (36 < f  44 Hz), higher (f > 44 Hz).  These 
values were then converted into z-scores relative to the first 
minute of EEG data.  This gave a 14-element feature vector 
for each second of EEG data which we used as input to our 
neural network model.  The corresponding target was 
derived from the output of our rating model at the centre of 
the same 1-s time window.  A binary threshold of 3 was 
applied to the rating model output, which became 1 if the 
model indicated a lapse and 0 otherwise. 

Our system employed a Long Short-Term Memory 
(LSTM) dynamic neural network with forget gates [20].  We 
used a slightly modified version of the implementation 
included with PDP++ [21].  LSTM can learn patterns 
occurring in different time scales without specifying those 
timescales.  In this paper we describe results from a network 
containing 6 LSTM blocks with 3 memory cells per block.  
A linear bypass between input and output was also provided. 
The network was trained according to [20], except that the 
output error was scaled in proportion to the confidence of 
the rating model.  Confidence was estimated by finding the 
distance of the rating model output from 3 (the level 
corresponding to "not sure").  We used sequential online 
training, except that whenever a sample was identified as 
containing EEG artifact the weights were not updated and 
the internal states of all memory cells were reset.  The 
training set was presented to the network 150 times, and we 
used learning rate µ = 1×10-5 and momentum 0.9. 

8 of the 15 subjects in the study lapsed at least once and 
only their data was used to train and test the network.    To 
measure performance, we converted the continuous network 
output to a binary variable by applying a decision threshold.  

We selected the threshold giving maximum agreement 
between the network output and target across the training 
set.  Our measure of agreement between the two resulting 
binary time-series was the  coefficient.  is the Pearson 
correlation coefficient between two binary variables [22].  
We also report sensitivity (sn = TP / [TP+ FN], where TP 
and FP are the proportions of true and false positive samples 
respectively, and TN and FN are the true and false negative 
sample proportions), specificity (sp = TN / [TN + FN]) and 
positive predictive value (ppv = TP / [TP + FP]).  Overall 
performance was assessed with leave-one-out cross-
validation, in which the data from one subject was set aside 
and used to test a network trained using the remaining data.  
This was done once for each of our 8 subjects.  The entire 8-
fold cross-validation was then repeated 5 times with 
different initial random weights. Results reported here are 
means across those 5 cross-validation repetitions.  We 
assessed performance for each subject by calculating mean 
across both their sessions. 

III. RESULTS

A.  Lapse Rating Model Performance 
The lapse rating model output was strongly correlated 

with the mean human rating (phi correlation,  = 0.89; 
Spearman correlation,  = 0.81).  The strength of this 
relationship was similar to that between individual human 
ratings and the mean human rating (mean  = 0.93; mean 
= 0.84).  Fig. 3 shows a histogram comparing the 
frequencies of each rating level in the test set.  The mean 
rating and model rating were both quantized to the nearest 
rating level. The overall distribution is similar, with the 
model generating more Definitely Not Lapse categorizations 
(rating = 1) than the human raters.  There was good 
agreement (80%) in the Definite Lapse category.  Poorer 
agreement in Unsure and Possible Lapse categories (levels 3 
& 4) are probably largely miscategorizations into 
neighboring levels (judging by the good overall correlation).  
Fig. 4 shows an example of the behavior of the model on a 
typical epoch from the test set.  

B. Lapse Detector Performance 
Average agreement between the binary network output 

and the target (rating model output > 3) was moderate, 
though performance varied substantially between subjects 

Fig 2.  Rating model used to predict the mean expert rating based on 
tracking performance and video rating. 

Fig 3.  Histogram comparing mean human rating and model output on 
the test set.  The mean rating and model output were both quantized to 

the nearest rating level. 
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(mean  ± SE = 0.36 ± 0.06, range 0.19 to 0.63).  The 
system was moderately sensitive (mean sn = 0.48 ± 0.09, 
range 0.14 to 0.83), highly specific (mean sp = 0.93 ± 0.02, 
range 0.80 to 0.99) but exhibited poor positive predictive 
value (mean ppv = 0.39 ± 0.06, range 0.07 to 0.71).  Low 
ppv is tolerable in a lapse detection system, as false alarms 
have low cost and are preferable to missed lapses. 

It was notable that performance on some individual 
sessions was very good. The best session in the test set gave 

 = 0.76, sn = 0.89, sp = 0.89 and ppv = 0.81.  Fig. 5 shows a 
typical output of the network, prior to application of the 
detection threshold.  

IV. DISCUSSION

Our results show LSTM can be used to detect lapses, 
though the detector is not yet sufficiently reliable for general 
use. Some individual sessions showed reasonably good 
performance for reasons that are not clear. It could be that 
these sessions included a greater proportion of deep lapses, 
making them easier to detect.  As with other similar systems, 
our principal difficulty remains inter-subject variation in the 
EEG characteristics of behavioral microsleep.   In future we 
intend to identify EEG features facilitating good lapse 
identification with the aim of improving the reliability of the 
detector.  Work is also underway investigating more robust 
alternatives to the power spectrum for parameterizing the 
EEG, with the intention of improving inter-subject 
reliability. 
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Fig 4.  Typical performance of rating model based on a combination of a) 
tracking behavior, comprising target (solid line) and response (dashed line) 

and b) expert video rating.  c) The rating model output (dashed line) is 
close to the mean opinion of the human raters (solid line).  Time is shown 

relative to the start of the session. 

Fig 5.  Example of lapse detector performance.  a) Detector output (dashed 
line) and target (solid line) range between 1, indicating a definite lapse, and 

-1, indicating definitely not a lapse.  b) Corresponding tracking behavior 
with target (solid line) and response (dashed line). 
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