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Introduction

Over recent years, an increasing amount of research has 
been undertaken in the fields of workload monitoring [1], 
passive brain–computer interfaces [2], and augmented 
cognition [3]. Techniques for detecting lapses of respon-
siveness (~0.5–15 s [4]), particularly microsleeps, are also 
being developed [4–7] towards increasing transportation 
safety. Many of these applications require a system that can 
capture multiple biosignals and process them in real time to 
classify various cognitive states or events.

The Elapse platform [8] was developed to be such a sys-
tem, providing a common hardware and software platform 
to aid research in the above areas, particularly microsleep 
detection. It consists of two parts: a wearable device to cap-
ture biosignals and a software framework to process these 
signals. The device captures 16 channels of EEG, video of 
one eye at 60 fps, and head movement via a six-axis inertial 
measurement unit (IMU). The captured data is transmitted 
wirelessly to a remote computer running the signal process-
ing software. This signal processing software is the focus 
of this paper.

Requirements

Given the characteristics of the Elapse device, several 
requirements exist for the signal processing software. 
Firstly, and most obviously, it must support at least the 
types of signals that the device captures: EEG, video, and 
inertial data. The software should provide a single inte-
grated system for all stages of signal processing, from 
receiving/loading the biosignals, through feature extraction 
to classification and producing some output. This process-
ing must be done in real time so that biofeedback can be 
provided to the user. Finally, given that Elapse is intended 
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to be a research platform, the software should make it easy 
for users to implement their own signal processing algo-
rithms and to mix and match these at will. The software 
should also be able to save the raw data as it is captured and 
to reload this data at a later time to allow experimentation 
with different algorithms.

There is existing software that meets some of these 
goals, either as part of an integrated hardware and software 
solution or as standalone packages. These each have an 
emphasis on particular use-cases and have varying degrees 
of flexibility. A small sample of these systems are briefly 
reviewed here. Although it is by no means a complete list, 
it is representative of the range of what is available.

Existing platforms

The Biosignal Igniter Toolkit (BIT) [9] is a low-cost biosig-
nal acquisition and processing system aimed at educa-
tion and prototyping. The hardware portion of the system, 
known as BITalino [10], includes sensors for electromyo-
graphy (EMG), electrocardiography (ECG), electrodermal 
activity (EDA), and acceleration, all connected to a Blue-
tooth interface. The accompanying acquisition and visuali-
sation software, OpenSignals (previously SignalBIT [11]), 
receives data from the device, displays it in a graphical user 
interface (GUI), and saves it to disk. The stored data can 
then be replayed through the same software or processed 
with the BioSPPy toolbox. BioSPPy provides a library of 
common biosignal processing and feature extraction algo-
rithms, e.g., QRS complex detection for ECG. OpenSignals 
does not provide the ability to process incoming data using 
the BioSPPy functions during real-time operation, so pro-
cessing must be done offline. For its stated purpose of edu-
cation, this is an acceptable model, but it does not meet our 
requirement for real-time processing.

BiosignalsStudio [12] is a software framework for 
real-time acquisition and processing of biosignals. It 
receives data from some acquisition device, passes it 
through an arbitrary combination of signal processing 
and feature extraction modules, and sends the output to 
a display, a file, and/or external classification software. 
The software allows the user to construct any number 
of parallel streams, each reading data from one sensor, 
applying any number of operations to the data (e.g., fil-
tering, format conversion), and sending it to any number 
of outputs. This is a very flexible structure; for instance, 
input modules can be implemented to read data from 
directly connected sensors, from a wireless connection to 
a remote device, or from a file. The disadvantage of this 
system when implementing a complete biosignal-based 
application is that it does not include anything to do with 
classification. It is up to the user to implement a separate 
program for classification along with any necessary code 

to parse the output of BiosignalsStudio, and to take care 
of launching both programs and setting up the communi-
cation between them at run-time. This fails our require-
ment for a single integrated system.

G.tec, a manufacturer of EEG acquisition systems, 
offers software called g.HIsys [13] which provides a real-
time interface between their devices and the Simulink 
and LabView graphical programming environments. This 
makes the existing libraries of Simulink and LabView sig-
nal processing blocks available for use. They also produce 
g.RTanalyze, a library of Simulink blocks for biosignal 
processing, including filtering, power spectrum analysis, 
heart rate variability, linear discriminant analysis (LDA), 
and support vector machines (SVM). While the concept 
of integrating biosignal acquisition hardware with one 
of these platforms is useful, this particular software is, of 
course, only useful with g.tec’s hardware.

It may be feasible to apply existing multimedia process-
ing software to this problem domain. GStreamer [14], for 
example, is a library which allows the user to construct 
pipelines of media processing elements. In a typical video 
player application, this might consist of a file source ele-
ment followed by a demultiplexer to extract audio and 
video streams, decoder elements to decompress the byte 
streams, a video sink to display the video on screen, and an 
audio sink to play the audio through speakers. GStreamer 
can pass almost any type of data through the pipeline, 
representing everything simply as “buffers” with some 
associated metadata, so it could be equally applicable to 
biosignals as to audio/video. GStreamer also takes care of 
synchronising multiple data streams by the timestamp on 
each buffer. In practice, though, it is a reasonably complex 
framework and the effort required to conform to its API 
does not meet our requirement for users to be able to easily 
write their own plugins.

All of these existing systems meet some of the require-
ments of “Requirements” section but none of them meet 
all of the requirements. The Elapse framework uses some 
of the concepts from these systems and builds them 
into a complete framework for biosignal classification 
applications.

Materials and methods

At the centre of the Elapse software framework is a con-
figurable signal processing pipeline. The pipeline has five 
stages, illustrated in Fig.  1. This structure was designed 
to be as simple as possible while still providing the flex-
ibility necessary to encapsulate a wide variety of signal 
processing and classification algorithms for a variety of 
applications.
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Signal processing pipeline

First, there is a data source which is responsible for push-
ing data into the pipeline. This is typically done by receiv-
ing data over Wi-Fi as it is captured in real time by the 
Elapse device, although it could also load data from file. 
The data source produces multiple outputs, one per biosig-
nal type.

The next stage of the pipeline is a set of sample decod-
ers, one per signal type. Each sample decoder receives one 
byte stream from the data source and decodes it to produce 
meaningful data structures. For example, the video decod-
er’s task is to decode the H.264-compressed video stream 
from the device to produce a sequence of uncompressed 
images.

The output of each sample decoder is passed to a fea-
ture extractor—again, one for each signal type. The role of 
each feature extractor is to extract salient features from a 
sequence of samples. For example, an EEG feature extrac-
tor could calculate the power spectral density in a window 
of samples.

The fourth stage of the pipeline is the classifier. The 
classifier analyses the output of all of the feature extractors 
to identify the cognitive state of interest for the particular 
application. For the example of alertness monitoring, the 
output of the classifier could be whether the user is cur-
rently having a microsleep and how likely they are to have 
one in the next 5 min.

Finally, this information is passed to an output action 
which can take some action based on the classified state. 
Keeping with the example of alertness monitoring, the out-
put action could sound an alarm to rouse the user or trigger 
some safety mechanism.

Pipeline elements are loosely coupled and do not inter-
act directly with each other; all interactions between ele-
ments are mediated by a pipeline object. This is achieved 
by the use of Qt’s “signals and slots” mechanism. Qt [15] 
is a set of C++libraries for application development, 
including a GUI toolkit, support for dynamically loadable 

plugins, and high-level networking classes. Signals and 
slots are essentially the observer pattern [16]—a signal 
is an observable event and a slot is an event handler. Con-
nections from signals to slots can be managed at run-time 
and whenever a signal is emitted all connected slots are 
executed. Each of the pipeline elements implements one 
input slot and one output signal, with the exception of 
the data source, which only has output signals, and the 
output action, which only has an input slot. The signal-
to-slot connections between elements are made indirectly 
by enqueueing the signals in Qt’s event loop. This allows 
elements to use background worker threads internally to 
effectively exploit multi-core processors, while transpar-
ently ensuring that the input slot to the next element is 
always called from the main thread.

In parallel with the pipeline, a data sink observes the 
connections between all of the elements. The data sink is 
able to save any of the data passing between elements to 
disk in arbitrary formats.

Plugin system

All of the elements in the signal processing pipeline are 
provided by plugins. Plugins are discovered dynamically at 
run-time and the user is able to select which ones to use 
from a graphical dialog box. All of the elements in the 
pipeline can be replaced by custom versions implemented 
by the user, though defaults are provided. When using the 
software with the Elapse device there is no need to pro-
vide custom implementations for the first two stages of the 
pipeline—the data source and sample decoders—because 
the default implementation of these is tied to the device’s 
embedded software. It is up to the user to provide mean-
ingful implementations for the elements in the final three 
stages.

It is this plugin system in combination with the pipeline 
structure that makes the Elapse software a “framework”. To 
quote Pree [17, p. 152]:

Fig. 1  Object diagram of the Elapse signal processing pipeline. Arrows represent data flow between objects
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Application frameworks consist of ready-to-use and 
semi-finished building blocks. The overall architec-
ture is predefined as well. Producing specific applica-
tions usually means to adjust building blocks to spe-
cific needs by overriding some methods in subclasses.

The Elapse software provides the overall pipeline 
architecture and allows the user to load signal processing 
“blocks” from plugins to meet the needs of their applica-
tion. Currently, plugin hosts have been implemented for 
C++ and Python and support for Matlab is planned.

The plugin system has been designed to allow users to 
write plugins in multiple languages. Figure  2 shows the 
internal structure of the plugin management code. The 
plugin manager uses the abstract factory pattern [16] to 
create instances of classes provided by plugins. It contains 
a set of plugin hosts, each of which is capable of loading 
plugins implemented in one particular language. For exam-
ple, the NativePluginHost loads C++ shared libraries 
and instantiates C++ classes, while the PythonPlugin-
Host starts a Python interpreter and imports Python mod-
ules. Each plugin contains one or more implementations 
of the element base classes (e.g., FeatureExtractor, 
Classifier) along with some identifying metadata. For 
C++, the classes inherit directly from the Elapse base 
classes, but other languages require appropriate bindings 
(glue code) to translate to and from C++. To implement 
support for a new language, it is only necessary to provide 
a plugin host and bindings for the Elapse base classes, as 
the shaded region in Fig. 2 illustrates for Python.

By providing multiple interfaces to the Elapse frame-
work, it is possible for users to choose the most appropriate 
language for their application. If they want to interact with 
existing C/C++ libraries or require low-level control over 

memory management, they can implement their plugins in 
C++. If not, they can implement their plugins in Python 
and take advantage of the extensive collection of math-
ematical and signal processing functions provided by the 
NumPy and SciPy libraries [18], among others.

Methods

The following section describes each element of the signal 
processing pipeline in greater detail, including the inter-
faces between elements and the data types passed through 
the pipeline. Also, since the Elapse framework aims to pro-
vide everything except the actual signal processing, a set of 
default elements are provided which are described below.

The task of the data source is to receive or load data 
from some source and to pass that data to the rest of the 
pipeline via its output signals. The default data source 
receives data from the device over Wi-Fi. Whenever data 
is received the data source simply emits the received byte 
array via the output signal corresponding to the signal type, 
e.g., eegReady(bytes). The data source has no knowl-
edge of the meaning of the data that it receives; it exists 
solely to move blocks of bytes around.

The sample decoders take these blocks of data and 
produce meaningful samples. There is a sample decoder 
for each biosignal. All sample decoders emit subclasses 
of Sample (Fig.  3). Samples have a 64-bit timestamp 
containing the time at which the sample was captured in 
nanoseconds, generated by the data capture hardware on 
the device. Each biosignal has a corresponding subclass 
of Sample. An EegSample contains an array of floating-
point values, each representing one channel of EEG in 
microvolts, as well as a sequence number which is added 
by the EEG hardware driver for detecting dropped samples. 

Fig. 2  Class diagram of the 
Elapse plugin manager. Plugin-
Host is an abstract factory that 
instantiates classes provided 
by plugins. “Foo plugin” is 
implemented in C++ and “Bar 
plugin” in Python
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A VideoSample contains one frame of video as an 8-bit 
greyscale image. An ImuSample contains two three-axis 
values, one containing acceleration in m/s2 and the other 
angular velocity in °/s. While it is possible for the user to 
provide their own sample decoders in a plugin, there is no 
need for them to do so—the default decoders have been 
implemented to match their encoding counterparts in the 
device’s embedded software.

Unlike the data source and sample decoders, users must 
implement feature extractors specific to their application. 
Each feature extractor receives the samples emitted from 
a sample decoder and extracts features that are important 
for the particular application. From the user’s perspective 
a feature extractor has two properties, Twin and Tstep, and 
two methods, analyseSample() and analyseWin-
dow(). The window length Twin and step size Tstep define 
a sliding window of time; these values are the same for all 
feature extractors in the pipeline. The two methods allow 
the user to extract features both from individual samples 
and from a window of samples. For example, an imple-
mentation of a video feature extractor could implement 
an analyseSample() method that analyses a frame 
of video to locate the pupil and eyelids. An EEG feature 
extractor, on the other hand, would not need to implement 
this method since there are no features that can be extracted 
from a single sample of EEG. The feature extractor base 
class takes the result of the analyseSample() method 
and pushes it into an internal queue. Once a full window 
of samples has been received, the contents of this queue 
are passed to the analyseWindow() method. Users can 
implement this method to identify temporal features in the 
queued data. To continue with the earlier examples, the 
video feature extractor implementation could analyse the 
sequence of pupil and eyelid positions to count blinks and 
calculate the percentage of time that the eyes were closed. 

The EEG feature extractor could analyse the sequence of 
samples to calculate the power spectral density in each 
channel. The output of the analyseWindow() method 
is a FeatureVector—an array of floating-point values 
with the exact number and meaning of each left up to the 
person implementing the feature extractor. Once the feature 
vector has been emitted into the pipeline, the feature extrac-
tor base class removes all data within Tstep of the oldest 
sample in the internal queue, thus sliding the window to its 
next starting point. This feature extractor design hides all of 
the details of dealing with sample timestamps and window-
ing logic from the user, allowing them to simply implement 
one or two functions to do the actual signal processing.

Like the feature extractors, the user must implement 
a classifier specific to their application. From the user’s 
perspective a classifier has a single method: clas-
sify(). This method is passed a set of feature vectors 
for one window of time, one for each signal type. The 
user must override this method to implement a multi-
modal classifier which analyses the set of feature vectors 
to identify the cognitive state of the subject. This state 
may be almost anything according to the requirements 
of the application—attention, arousal, alertness, anxi-
ety, drowsiness, fatigue, vigilance, workload, boredom, 
excitement, etc. The output of the classify() method 
is a CognitiveState object which contains an array 
of floating point values. Much like for FeatureVec-
tors, the number and meaning of these values is left up 
to the user. Behind the scenes, the classifier base class 
takes care of synchronising the feature vector inputs. The 
output signals of all of the feature extractors are con-
nected to the classifier’s one input slot; the base class 
buffers the incoming feature vectors, inspects their times-
tamps, and calls the classify() method when the full 
set of feature vectors is available for one time window. 
This technique accounts for any differences in processing 
time required by the sample decoders and feature extrac-
tors for the different signal types. Once again, this hides 
the complexity of dealing with timing issues from the 
user and allows them to implement just their classifica-
tion algorithm.

The user may implement an output action to take some 
action based on the classified cognitive state. While the 
Elapse device is the interface from the real world to the 
analysis software, the output action is the interface from the 
software back to the real world. It is what makes a system 
based on this framework of practical benefit. Returning to 
the example of alertness monitoring for transportation, an 
output action could sound an alarm to alert the subject, or 
even trigger an adaptive cruise control system to prepare 
for emergency braking. Similarly, in a clinical environment 
a multi-modal physiological instrument could sound an 
alarm if abnormal events or state were detected.

Fig. 3  Class diagram for the types passed through the pipeline
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Finally, a default data sink is provided which saves each 
byte array emitted by the data source to disk along with 
the timestamp at which it was received. A corresponding 
data source element is also provided which can load the 
files saved by the data sink and, using the stored times-
tamps, “replay” the data through the pipeline again at the 
same rate. This is useful in a research context so that all of 
the raw data can be saved during a study. When it is later 
reloaded by the data source, it is exactly as if the device 
was operating in real time and so can be used for testing 
feature extractors and classifiers.

Users may implement their own data sinks to save data 
to any required format. The data sink observes the connec-
tions between all of the elements so it would be possible to 
create a sink that, for example, saves the decoded EEG to a 
Matlab file, the video frames to a video file, and the classi-
fier output to a text file. Data sinks also support the concept 
of capture info—arbitrary metadata associated with a cap-
tured data set. This could be as simple as the time and date, 
or as complex as the subject ID and test conditions for a 
research study. The user implementing the data sink is free 
to choose what capture info is required, if any, and how to 
save that information to disk.

User interface

The signal processing pipeline is wrapped up in a user-
friendly application to allow easy interaction with the 
software. In addition to the signal processing pipeline the 
application contains a GUI, support for controlling the 
device hardware, support for configuration files, and the 
plugin management code (see “Plugin system” section).

The GUI (Fig. 4) has two main purposes. The first is to 
allow the user to select which element classes to load from 
plugins to populate the pipeline. When the application is 
first launched it searches for available plugins and presents 
the user with a window to choose which elements to use. 
The user must select one implementation for each element 
in the pipeline. This selection is saved in the configura-
tion file and will be reloaded automatically in subsequent 
sessions.

The second purpose of the GUI is to monitor the opera-
tion of the signal processing pipeline as it runs. Elements 
may optionally implement a displayable interface which 
allows them to provide a GUI widget to the application. For 
example, the default EEG sample decoder provides a strip-
chart that plots the last several seconds of EEG data and the 
IMU decoder displays a 3D head in the same orientation 
as the subject’s head. User-implemented pipeline elements 
are free to implement the displayable interface to provide a 
graphical representation of their internal state. For exam-
ple, in Fig. 4 the eye video feature extractor that is being 
used provides a widget which displays the pupil boundary 
overlaid on the eye video. All of the widgets provided by 
displayable elements are shown in the main window of the 
application. These widgets can be rearranged within the 
window to suit the user’s preference.

The application also has a log window which displays 
messages from the code. The list of messages can be fil-
tered according to severity (e.g., debug, warning, error) and 
searched using regular expressions. This centralised log-
ging facility collects messages from the application itself, 
from the default elements, and from user-implemented ele-
ments. This is very useful for debugging.

Fig. 4  The Elapse framework’s user interface during data capture
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Results

To demonstrate the operation of the software, signal pro-
cessing plugins were implemented to detect simulated 
microsleep events. An experiment was carried out using 
these elements to demonstrate that it is possible to extract 
meaningful information from the captured data and process 
it through the Elapse framework.

The experiment was conducted with a single subject. 
The subject performed two tasks: the first, the ‘closed-eyes 
task’, was performed by looking at a fixed point in front of 
him while keeping his eyes open for 15 s, followed by clos-
ing his eyes for 15  s when prompted by an audible beep. 
This sequence was repeated three times. This task was 
designed to confirm that the software could detect changes 
in EEG spectral content during eye closure. In the second 

task, the ‘simulated sleep’ task, the subject performed exag-
gerated simulated microsleeps—closing his eyes slowly 
while drooping his head forwards, then quickly opening his 
eyes and jerking his head back upright. This was done three 
times, interspersed with 15  s periods of maintaining gaze 
on a fixed point. This second task was designed to cause 
measurable changes in all three of the signals—eye closure 
in the eye video, increased posterior alpha in the EEG, and 
forward head tilt from the IMU. Both tasks were done with 
the subject wearing the Elapse device (Fig.  5). The soft-
ware pipeline was configured with the feature extractors 
and classifiers described in “Simulated sleep task” section 
as well as a data sink that saved all of the raw data to disk.

Closed-eyes task

In the majority of people (~80%) an increase in posterior 
alpha activity occurs during restful wakefulness with the 
eyes closed compared to with eyes open [19]. Figure  6 
shows a spectrogram of the EEG captured at O1 during 2.5 
periods of alternating eyes open and closed. The increase 
in alpha-band power (8–12 Hz) is clearly visible during the 
two eyes-closed periods. Figure 7 shows the same data in 
the time domain, bandpass filtered between 4 and 40 Hz, as 
two 10 s windows centred at the onset of each of the peri-
ods of eye closure in Fig.  6. Again, the increase in alpha 
activity is clearly visible when the eyes are closed at 15 and 
45 s.

Simulated sleep task

The signal processing elements implemented for the sec-
ond task were deliberately simplistic, keeping the focus 
on the operation of the system as a whole rather than on 
advanced signal processing techniques. The task produces 
easily measurable changes in the signals so there is no need 
for complicated processing. The window size of the feature Fig. 5  A user wearing the prototype Elapse device

Fig. 6  Spectrogram of occipital 
EEG (O1) showing increased 
alpha during eye closure
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extractors was set to Twin = 2 s with a step size of Tstep = 
0.5 s.

The eye video feature extractor used the algorithm from 
[20] to locate the boundary of the pupil in each frame of 
video and to assign one of three categories of eye closure: 
open, partially closed, or closed. The eye closure catego-
ries were used to calculate the percentage of time in each 
2 s window in which the eye was closed, denoted here as 
 PERCLOS2. (Note that this is different to the usual defini-
tion of PERCLOS which measures percentage eye closure 
during a 1-min window [21].) The EEG feature extractor 
used the squared magnitude of the Fourier transform of 
the data to approximate the power spectral density. It used 
this to calculate the total power between 4 and 40  Hz in 
EEG channel O1. The IMU feature extractor calculated the 
cumulative change in the head pitch (nod) angle in each 2 s 
window.

The classifier simply applied a threshold to each of the 
features  (PERCLOS2, EEG power, head pitch) and con-
sidered a simulated microsleep event to have occurred 
when all of the three features exceeded their respective 
thresholds. This does not reflect any of the subtleties of 

detecting real microsleeps but it is sufficient to demon-
strate the process of classifying an event based on fea-
tures from multiple modalities.

The upper three traces of Fig.  8 show the variation 
of the three extracted features over the course of three 
simulated microsleeps. The dotted lines mark the thresh-
old that the classifier applied to each feature. The output 
of the classifier is shown in the bottom trace, reading 1 
when all of the features exceed their thresholds and 0 oth-
erwise. The plot clearly shows that the classifier success-
fully detects the three simulated microsleep events.

More importantly, however, this example application 
demonstrates the successful operation of an end-to-end 
biosignal classification system. It loads signal process-
ing code from user-implemented plugins written in both 
C++ and Python; it receives biosignal data in real time; 
it demonstrates the two aspects of feature extraction (per-
sample analysis for the video and per-window analysis 
for all signals); it demonstrates a multi-modal classifier, 
and it presents all of this to the user as a single graphical 
application. None of the code loaded from plugins needed 

Fig. 7  Increase in occipital 
alpha during eye closure. The 
two traces show 10 s windows 
around the beginning of the 
periods of eye closure shown 
in Fig. 6 10 12 14 16 18 20
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to deal with timestamps and synchronisation because the 
pipeline handles all of that.

Software characteristics and performance

Latency is an important factor in all real-time systems. 
To measure the latency of the Elapse system, a circuit 
was devised that generated an event visible to all of the 
device’s sensors at the same time: an LED positioned in 
front of the camera lit up, a voltage pulse was applied 
between two EEG electrodes, and a servo rotated to tap 
the IMU [8]. The latency for each sensor was defined as 
the time between the event being triggered and the sam-
ple containing that event being emitted by the corre-
sponding sample decoder in the Elapse software. That is, 
it is the total round-trip time for the laptop to trigger the 
event, the sensor to sample the event, the device’s firm-
ware to capture and transmit the sample containing the 
event, and the Elapse software to receive and decode that 
sample. It does not include the time taken to process the 
sample through the feature extractors and classifier since 
that is entirely dependent on the user’s implementation 
of those elements. Twenty of these events were recorded 
and the latencies for all three channels were measured to 
be less than 100 ms. A microsleep detection device needs 
to detect and respond to events lasting more than 500 ms 
[4], so a latency of 100 ms allows detection soon after the 
onset of a microsleep.

Significant effort has been put into making it easy 
for users to implement their own algorithms within the 
framework and also to expand the framework as neces-
sary. The most common requirement that users will 
have, and therefore the one that has been made easiest to 
achieve, is to implement their own feature extraction and 
classification algorithms. This is simply a matter of cop-
ying a small amount of template code from the sample 
provided to create a new plugin, then filling in the blanks. 
The same applies for implementing custom data sinks/
sources and output actions and for displaying custom 
GUI widgets. If the user is capturing data with hardware 
other than the Elapse device they may want to add sup-
port for other types of signals. This involves modifying 
the framework but is fairly simple to achieve by adding 
a field to the signal type enumeration and a correspond-
ing branch to the pipeline. If users have existing signal 
processing code in a language that is not supported by 
the framework then they may wish to implement a new 
plugin host to support plugins written in that language. 
Plugin hosts have a very simple factory interface so the 
difficulty of implementing one depends mostly on how 
easy it is to call into that language from C++.

Discussion

The Elapse software framework as it is described above 
provides a combination of features that is not present in the 
existing software mentioned in “Existing platforms” sec-
tion. It processes signals in real time, unlike the Biosignal 
Igniter Toolkit [9]. It encapsulates the whole signal pro-
cessing pipeline from data capture to classification, unlike 
BiosignalsStudio [12]. It is designed specifically for pro-
cessing biosignals, unlike GStreamer [14].

Although the pipeline structure supports a variety of sig-
nal processing and classification techniques, there are some 
things that its simple structure does not allow. For example, 
it is not possible to implement a feature extractor for one 
signal that uses other signals to improve its performance, 
e.g., using the eye video to help remove eye-blink artefacts 
from the EEG. The classifier, however, uses the features 
from all of the signals, so this could potentially be imple-
mented as a preprocessing step inside the classifier.

An important factor driving the design of the Elapse 
software was the high data rate of the eye video—the 
uncompressed video has a bit rate of 37  Mbit/s. Because 
this rate is much higher than the more commonly acquired 
biosignals such as EEG and EMG, the software framework 
has constraints that are not present in some other biosig-
nal acquisition systems. For example, at high data rates it is 
useful to have control over memory management in order 
to avoid copying large blocks of data unnecessarily. The 
Elapse framework uses reference-counting “smart point-
ers” to manage the lifetime of the data passed through the 
pipeline. That is, space for the data is allocated dynami-
cally and that space is automatically freed when nothing 
refers to the data any more. It is possible for users to imple-
ment more efficient memory management techniques when 
writing plugins, too. For example, a video decoder element 
could allocate frames of video data from an internal buffer 
pool [22] and provide a custom destructor for the smart 
pointer which returns the buffers to the pool when they are 
no longer needed. This technique is faster than allocating 
every new frame of video dynamically. To the rest of the 
Elapse framework, nothing has changed because the data 
is still passed around using the same type of smart pointer. 
This gives the user flexibility to implement any custom 
memory management techniques that may be necessary for 
their application.

The Elapse device and software framework have been 
developed as part of a larger project to detect and predict 
microsleeps. In this context, future work will likely involve 
porting some of the techniques that have been developed 
to run within the framework. These include using various 
EEG features (power spectrum, approximate entropy, frac-
tal dimension, Lempel–Ziv complexity) with various clas-
sifiers (tapped delay-line multilayer perceptron and long 
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short-term memory recurrent neural networks, echo state 
networks, linear discriminant analysis) [5, 6, 23, 24]. To 
apply the system to real-world microsleep detection, it will 
also be necessary to run experiments with more subjects 
and to analyse real microsleeps, since the proof-of-concept 
experiments described here used a single subject and simu-
lated microsleeps.

While the device and software framework were spe-
cifically designed for microsleep detection and prediction, 
they can equally be used to quantify other measures of 
cognitive state, and to develop biomedical instruments for 
multi-modal real-time physiological monitoring and event 
detection in intensive care, anaesthesiology, cardiology, 
neurosurgery, etc.

Conclusion

We have developed a software framework for implement-
ing real-time, multi-modal cognitive monitoring applica-
tions. It provides a pipeline structure which allows users 
to load custom signal processing code from plugins writ-
ten in C++ or Python. The pipeline handles synchronisa-
tion between signals so that the user does not have to. The 
framework also provides facilities for saving, loading, and 
visualising data in real time. This combination of features 
was not available in existing software. Preliminary studies 
have demonstrated the usefulness of the framework in sup-
porting signal processing for research into cognitive states.

The Elapse software has been released under an open-
source licence and is available from http://github.com/sijk/
elapse. This licence allows anyone to use or contribute to 
the core framework while also allowing signal processing 
plugins to remain closed-source if necessary.
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