
Vol.:(0123456789)1 3

Australas Phys Eng Sci Med (2017) 40:739–749
DOI 10.1007/s13246-017-0559-x

TECHNICAL PAPER

A software framework for real-time multi-modal detection
of microsleeps

Simon J. Knopp1,2 · Philip J. Bones1 · Stephen J. Weddell1 · Richard D. Jones1,2

Received: 19 May 2016 / Accepted: 14 May 2017 / Published online: 1 June 2017
© Australasian College of Physical Scientists and Engineers in Medicine 2017

Introduction

Over recent years, an increasing amount of research has
been undertaken in the fields of workload monitoring [1],
passive brain–computer interfaces [2], and augmented
cognition [3]. Techniques for detecting lapses of respon-
siveness (~0.5–15 s [4]), particularly microsleeps, are also
being developed [4–7] towards increasing transportation
safety. Many of these applications require a system that can
capture multiple biosignals and process them in real time to
classify various cognitive states or events.

The Elapse platform [8] was developed to be such a sys-
tem, providing a common hardware and software platform
to aid research in the above areas, particularly microsleep
detection. It consists of two parts: a wearable device to cap-
ture biosignals and a software framework to process these
signals. The device captures 16 channels of EEG, video of
one eye at 60 fps, and head movement via a six-axis inertial
measurement unit (IMU). The captured data is transmitted
wirelessly to a remote computer running the signal process-
ing software. This signal processing software is the focus
of this paper.

Requirements

Given the characteristics of the Elapse device, several
requirements exist for the signal processing software.
Firstly, and most obviously, it must support at least the
types of signals that the device captures: EEG, video, and
inertial data. The software should provide a single inte-
grated system for all stages of signal processing, from
receiving/loading the biosignals, through feature extraction
to classification and producing some output. This process-
ing must be done in real time so that biofeedback can be
provided to the user. Finally, given that Elapse is intended

Abstract A software framework is described which
was designed to process EEG, video of one eye, and head
movement in real time, towards achieving early detection of
microsleeps for prevention of fatal accidents, particularly in
transport sectors. The framework is based around a pipeline
structure with user-replaceable signal processing modules.
This structure can encapsulate a wide variety of feature
extraction and classification techniques and can be applied
to detecting a variety of aspects of cognitive state. Users of
the framework can implement signal processing plugins in
C++ or Python. The framework also provides a graphical
user interface and the ability to save and load data to and
from arbitrary file formats. Two small studies are reported
which demonstrate the capabilities of the framework in
typical applications: monitoring eye closure and detect-
ing simulated microsleeps. While specifically designed for
microsleep detection/prediction, the software framework
can be just as appropriately applied to (i) other measures of
cognitive state and (ii) development of biomedical instru-
ments for multi-modal real-time physiological monitor-
ing and event detection in intensive care, anaesthesiology,
cardiology, neurosurgery, etc. The software framework has
been made freely available for researchers to use and mod-
ify under an open source licence.

Keywords Biosignals · Real-time · Multi-modal ·
Cognitive monitoring · Software framework

 * Simon J. Knopp
 simon.knopp@nzbri.org

1 Department of Electrical and Computer Engineering,
University of Canterbury, Christchurch, New Zealand

2 New Zealand Brain Research Institute, Christchurch,
New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s13246-017-0559-x&domain=pdf

740 Australas Phys Eng Sci Med (2017) 40:739–749

1 3

to be a research platform, the software should make it easy
for users to implement their own signal processing algo-
rithms and to mix and match these at will. The software
should also be able to save the raw data as it is captured and
to reload this data at a later time to allow experimentation
with different algorithms.

There is existing software that meets some of these
goals, either as part of an integrated hardware and software
solution or as standalone packages. These each have an
emphasis on particular use-cases and have varying degrees
of flexibility. A small sample of these systems are briefly
reviewed here. Although it is by no means a complete list,
it is representative of the range of what is available.

Existing platforms

The Biosignal Igniter Toolkit (BIT) [9] is a low-cost biosig-
nal acquisition and processing system aimed at educa-
tion and prototyping. The hardware portion of the system,
known as BITalino [10], includes sensors for electromyo-
graphy (EMG), electrocardiography (ECG), electrodermal
activity (EDA), and acceleration, all connected to a Blue-
tooth interface. The accompanying acquisition and visuali-
sation software, OpenSignals (previously SignalBIT [11]),
receives data from the device, displays it in a graphical user
interface (GUI), and saves it to disk. The stored data can
then be replayed through the same software or processed
with the BioSPPy toolbox. BioSPPy provides a library of
common biosignal processing and feature extraction algo-
rithms, e.g., QRS complex detection for ECG. OpenSignals
does not provide the ability to process incoming data using
the BioSPPy functions during real-time operation, so pro-
cessing must be done offline. For its stated purpose of edu-
cation, this is an acceptable model, but it does not meet our
requirement for real-time processing.

BiosignalsStudio [12] is a software framework for
real-time acquisition and processing of biosignals. It
receives data from some acquisition device, passes it
through an arbitrary combination of signal processing
and feature extraction modules, and sends the output to
a display, a file, and/or external classification software.
The software allows the user to construct any number
of parallel streams, each reading data from one sensor,
applying any number of operations to the data (e.g., fil-
tering, format conversion), and sending it to any number
of outputs. This is a very flexible structure; for instance,
input modules can be implemented to read data from
directly connected sensors, from a wireless connection to
a remote device, or from a file. The disadvantage of this
system when implementing a complete biosignal-based
application is that it does not include anything to do with
classification. It is up to the user to implement a separate
program for classification along with any necessary code

to parse the output of BiosignalsStudio, and to take care
of launching both programs and setting up the communi-
cation between them at run-time. This fails our require-
ment for a single integrated system.

G.tec, a manufacturer of EEG acquisition systems,
offers software called g.HIsys [13] which provides a real-
time interface between their devices and the Simulink
and LabView graphical programming environments. This
makes the existing libraries of Simulink and LabView sig-
nal processing blocks available for use. They also produce
g.RTanalyze, a library of Simulink blocks for biosignal
processing, including filtering, power spectrum analysis,
heart rate variability, linear discriminant analysis (LDA),
and support vector machines (SVM). While the concept
of integrating biosignal acquisition hardware with one
of these platforms is useful, this particular software is, of
course, only useful with g.tec’s hardware.

It may be feasible to apply existing multimedia process-
ing software to this problem domain. GStreamer [14], for
example, is a library which allows the user to construct
pipelines of media processing elements. In a typical video
player application, this might consist of a file source ele-
ment followed by a demultiplexer to extract audio and
video streams, decoder elements to decompress the byte
streams, a video sink to display the video on screen, and an
audio sink to play the audio through speakers. GStreamer
can pass almost any type of data through the pipeline,
representing everything simply as “buffers” with some
associated metadata, so it could be equally applicable to
biosignals as to audio/video. GStreamer also takes care of
synchronising multiple data streams by the timestamp on
each buffer. In practice, though, it is a reasonably complex
framework and the effort required to conform to its API
does not meet our requirement for users to be able to easily
write their own plugins.

All of these existing systems meet some of the require-
ments of “Requirements” section but none of them meet
all of the requirements. The Elapse framework uses some
of the concepts from these systems and builds them
into a complete framework for biosignal classification
applications.

Materials and methods

At the centre of the Elapse software framework is a con-
figurable signal processing pipeline. The pipeline has five
stages, illustrated in Fig. 1. This structure was designed
to be as simple as possible while still providing the flex-
ibility necessary to encapsulate a wide variety of signal
processing and classification algorithms for a variety of
applications.

741Australas Phys Eng Sci Med (2017) 40:739–749

1 3

Signal processing pipeline

First, there is a data source which is responsible for push-
ing data into the pipeline. This is typically done by receiv-
ing data over Wi-Fi as it is captured in real time by the
Elapse device, although it could also load data from file.
The data source produces multiple outputs, one per biosig-
nal type.

The next stage of the pipeline is a set of sample decod-
ers, one per signal type. Each sample decoder receives one
byte stream from the data source and decodes it to produce
meaningful data structures. For example, the video decod-
er’s task is to decode the H.264-compressed video stream
from the device to produce a sequence of uncompressed
images.

The output of each sample decoder is passed to a fea-
ture extractor—again, one for each signal type. The role of
each feature extractor is to extract salient features from a
sequence of samples. For example, an EEG feature extrac-
tor could calculate the power spectral density in a window
of samples.

The fourth stage of the pipeline is the classifier. The
classifier analyses the output of all of the feature extractors
to identify the cognitive state of interest for the particular
application. For the example of alertness monitoring, the
output of the classifier could be whether the user is cur-
rently having a microsleep and how likely they are to have
one in the next 5 min.

Finally, this information is passed to an output action
which can take some action based on the classified state.
Keeping with the example of alertness monitoring, the out-
put action could sound an alarm to rouse the user or trigger
some safety mechanism.

Pipeline elements are loosely coupled and do not inter-
act directly with each other; all interactions between ele-
ments are mediated by a pipeline object. This is achieved
by the use of Qt’s “signals and slots” mechanism. Qt [15]
is a set of C++libraries for application development,
including a GUI toolkit, support for dynamically loadable

plugins, and high-level networking classes. Signals and
slots are essentially the observer pattern [16]—a signal
is an observable event and a slot is an event handler. Con-
nections from signals to slots can be managed at run-time
and whenever a signal is emitted all connected slots are
executed. Each of the pipeline elements implements one
input slot and one output signal, with the exception of
the data source, which only has output signals, and the
output action, which only has an input slot. The signal-
to-slot connections between elements are made indirectly
by enqueueing the signals in Qt’s event loop. This allows
elements to use background worker threads internally to
effectively exploit multi-core processors, while transpar-
ently ensuring that the input slot to the next element is
always called from the main thread.

In parallel with the pipeline, a data sink observes the
connections between all of the elements. The data sink is
able to save any of the data passing between elements to
disk in arbitrary formats.

Plugin system

All of the elements in the signal processing pipeline are
provided by plugins. Plugins are discovered dynamically at
run-time and the user is able to select which ones to use
from a graphical dialog box. All of the elements in the
pipeline can be replaced by custom versions implemented
by the user, though defaults are provided. When using the
software with the Elapse device there is no need to pro-
vide custom implementations for the first two stages of the
pipeline—the data source and sample decoders—because
the default implementation of these is tied to the device’s
embedded software. It is up to the user to provide mean-
ingful implementations for the elements in the final three
stages.

It is this plugin system in combination with the pipeline
structure that makes the Elapse software a “framework”. To
quote Pree [17, p. 152]:

Fig. 1 Object diagram of the Elapse signal processing pipeline. Arrows represent data flow between objects

742 Australas Phys Eng Sci Med (2017) 40:739–749

1 3

Application frameworks consist of ready-to-use and
semi-finished building blocks. The overall architec-
ture is predefined as well. Producing specific applica-
tions usually means to adjust building blocks to spe-
cific needs by overriding some methods in subclasses.

The Elapse software provides the overall pipeline
architecture and allows the user to load signal processing
“blocks” from plugins to meet the needs of their applica-
tion. Currently, plugin hosts have been implemented for
C++ and Python and support for Matlab is planned.

The plugin system has been designed to allow users to
write plugins in multiple languages. Figure 2 shows the
internal structure of the plugin management code. The
plugin manager uses the abstract factory pattern [16] to
create instances of classes provided by plugins. It contains
a set of plugin hosts, each of which is capable of loading
plugins implemented in one particular language. For exam-
ple, the NativePluginHost loads C++ shared libraries
and instantiates C++ classes, while the PythonPlugin-
Host starts a Python interpreter and imports Python mod-
ules. Each plugin contains one or more implementations
of the element base classes (e.g., FeatureExtractor,
Classifier) along with some identifying metadata. For
C++, the classes inherit directly from the Elapse base
classes, but other languages require appropriate bindings
(glue code) to translate to and from C++. To implement
support for a new language, it is only necessary to provide
a plugin host and bindings for the Elapse base classes, as
the shaded region in Fig. 2 illustrates for Python.

By providing multiple interfaces to the Elapse frame-
work, it is possible for users to choose the most appropriate
language for their application. If they want to interact with
existing C/C++ libraries or require low-level control over

memory management, they can implement their plugins in
C++. If not, they can implement their plugins in Python
and take advantage of the extensive collection of math-
ematical and signal processing functions provided by the
NumPy and SciPy libraries [18], among others.

Methods

The following section describes each element of the signal
processing pipeline in greater detail, including the inter-
faces between elements and the data types passed through
the pipeline. Also, since the Elapse framework aims to pro-
vide everything except the actual signal processing, a set of
default elements are provided which are described below.

The task of the data source is to receive or load data
from some source and to pass that data to the rest of the
pipeline via its output signals. The default data source
receives data from the device over Wi-Fi. Whenever data
is received the data source simply emits the received byte
array via the output signal corresponding to the signal type,
e.g., eegReady(bytes). The data source has no knowl-
edge of the meaning of the data that it receives; it exists
solely to move blocks of bytes around.

The sample decoders take these blocks of data and
produce meaningful samples. There is a sample decoder
for each biosignal. All sample decoders emit subclasses
of Sample (Fig. 3). Samples have a 64-bit timestamp
containing the time at which the sample was captured in
nanoseconds, generated by the data capture hardware on
the device. Each biosignal has a corresponding subclass
of Sample. An EegSample contains an array of floating-
point values, each representing one channel of EEG in
microvolts, as well as a sequence number which is added
by the EEG hardware driver for detecting dropped samples.

Fig. 2 Class diagram of the
Elapse plugin manager. Plugin-
Host is an abstract factory that
instantiates classes provided
by plugins. “Foo plugin” is
implemented in C++ and “Bar
plugin” in Python

743Australas Phys Eng Sci Med (2017) 40:739–749

1 3

A VideoSample contains one frame of video as an 8-bit
greyscale image. An ImuSample contains two three-axis
values, one containing acceleration in m/s2 and the other
angular velocity in °/s. While it is possible for the user to
provide their own sample decoders in a plugin, there is no
need for them to do so—the default decoders have been
implemented to match their encoding counterparts in the
device’s embedded software.

Unlike the data source and sample decoders, users must
implement feature extractors specific to their application.
Each feature extractor receives the samples emitted from
a sample decoder and extracts features that are important
for the particular application. From the user’s perspective
a feature extractor has two properties, Twin and Tstep, and
two methods, analyseSample() and analyseWin-
dow(). The window length Twin and step size Tstep define
a sliding window of time; these values are the same for all
feature extractors in the pipeline. The two methods allow
the user to extract features both from individual samples
and from a window of samples. For example, an imple-
mentation of a video feature extractor could implement
an analyseSample() method that analyses a frame
of video to locate the pupil and eyelids. An EEG feature
extractor, on the other hand, would not need to implement
this method since there are no features that can be extracted
from a single sample of EEG. The feature extractor base
class takes the result of the analyseSample() method
and pushes it into an internal queue. Once a full window
of samples has been received, the contents of this queue
are passed to the analyseWindow() method. Users can
implement this method to identify temporal features in the
queued data. To continue with the earlier examples, the
video feature extractor implementation could analyse the
sequence of pupil and eyelid positions to count blinks and
calculate the percentage of time that the eyes were closed.

The EEG feature extractor could analyse the sequence of
samples to calculate the power spectral density in each
channel. The output of the analyseWindow() method
is a FeatureVector—an array of floating-point values
with the exact number and meaning of each left up to the
person implementing the feature extractor. Once the feature
vector has been emitted into the pipeline, the feature extrac-
tor base class removes all data within Tstep of the oldest
sample in the internal queue, thus sliding the window to its
next starting point. This feature extractor design hides all of
the details of dealing with sample timestamps and window-
ing logic from the user, allowing them to simply implement
one or two functions to do the actual signal processing.

Like the feature extractors, the user must implement
a classifier specific to their application. From the user’s
perspective a classifier has a single method: clas-
sify(). This method is passed a set of feature vectors
for one window of time, one for each signal type. The
user must override this method to implement a multi-
modal classifier which analyses the set of feature vectors
to identify the cognitive state of the subject. This state
may be almost anything according to the requirements
of the application—attention, arousal, alertness, anxi-
ety, drowsiness, fatigue, vigilance, workload, boredom,
excitement, etc. The output of the classify() method
is a CognitiveState object which contains an array
of floating point values. Much like for FeatureVec-
tors, the number and meaning of these values is left up
to the user. Behind the scenes, the classifier base class
takes care of synchronising the feature vector inputs. The
output signals of all of the feature extractors are con-
nected to the classifier’s one input slot; the base class
buffers the incoming feature vectors, inspects their times-
tamps, and calls the classify() method when the full
set of feature vectors is available for one time window.
This technique accounts for any differences in processing
time required by the sample decoders and feature extrac-
tors for the different signal types. Once again, this hides
the complexity of dealing with timing issues from the
user and allows them to implement just their classifica-
tion algorithm.

The user may implement an output action to take some
action based on the classified cognitive state. While the
Elapse device is the interface from the real world to the
analysis software, the output action is the interface from the
software back to the real world. It is what makes a system
based on this framework of practical benefit. Returning to
the example of alertness monitoring for transportation, an
output action could sound an alarm to alert the subject, or
even trigger an adaptive cruise control system to prepare
for emergency braking. Similarly, in a clinical environment
a multi-modal physiological instrument could sound an
alarm if abnormal events or state were detected.

Fig. 3 Class diagram for the types passed through the pipeline

744 Australas Phys Eng Sci Med (2017) 40:739–749

1 3

Finally, a default data sink is provided which saves each
byte array emitted by the data source to disk along with
the timestamp at which it was received. A corresponding
data source element is also provided which can load the
files saved by the data sink and, using the stored times-
tamps, “replay” the data through the pipeline again at the
same rate. This is useful in a research context so that all of
the raw data can be saved during a study. When it is later
reloaded by the data source, it is exactly as if the device
was operating in real time and so can be used for testing
feature extractors and classifiers.

Users may implement their own data sinks to save data
to any required format. The data sink observes the connec-
tions between all of the elements so it would be possible to
create a sink that, for example, saves the decoded EEG to a
Matlab file, the video frames to a video file, and the classi-
fier output to a text file. Data sinks also support the concept
of capture info—arbitrary metadata associated with a cap-
tured data set. This could be as simple as the time and date,
or as complex as the subject ID and test conditions for a
research study. The user implementing the data sink is free
to choose what capture info is required, if any, and how to
save that information to disk.

User interface

The signal processing pipeline is wrapped up in a user-
friendly application to allow easy interaction with the
software. In addition to the signal processing pipeline the
application contains a GUI, support for controlling the
device hardware, support for configuration files, and the
plugin management code (see “Plugin system” section).

The GUI (Fig. 4) has two main purposes. The first is to
allow the user to select which element classes to load from
plugins to populate the pipeline. When the application is
first launched it searches for available plugins and presents
the user with a window to choose which elements to use.
The user must select one implementation for each element
in the pipeline. This selection is saved in the configura-
tion file and will be reloaded automatically in subsequent
sessions.

The second purpose of the GUI is to monitor the opera-
tion of the signal processing pipeline as it runs. Elements
may optionally implement a displayable interface which
allows them to provide a GUI widget to the application. For
example, the default EEG sample decoder provides a strip-
chart that plots the last several seconds of EEG data and the
IMU decoder displays a 3D head in the same orientation
as the subject’s head. User-implemented pipeline elements
are free to implement the displayable interface to provide a
graphical representation of their internal state. For exam-
ple, in Fig. 4 the eye video feature extractor that is being
used provides a widget which displays the pupil boundary
overlaid on the eye video. All of the widgets provided by
displayable elements are shown in the main window of the
application. These widgets can be rearranged within the
window to suit the user’s preference.

The application also has a log window which displays
messages from the code. The list of messages can be fil-
tered according to severity (e.g., debug, warning, error) and
searched using regular expressions. This centralised log-
ging facility collects messages from the application itself,
from the default elements, and from user-implemented ele-
ments. This is very useful for debugging.

Fig. 4 The Elapse framework’s user interface during data capture

745Australas Phys Eng Sci Med (2017) 40:739–749

1 3

Results

To demonstrate the operation of the software, signal pro-
cessing plugins were implemented to detect simulated
microsleep events. An experiment was carried out using
these elements to demonstrate that it is possible to extract
meaningful information from the captured data and process
it through the Elapse framework.

The experiment was conducted with a single subject.
The subject performed two tasks: the first, the ‘closed-eyes
task’, was performed by looking at a fixed point in front of
him while keeping his eyes open for 15 s, followed by clos-
ing his eyes for 15 s when prompted by an audible beep.
This sequence was repeated three times. This task was
designed to confirm that the software could detect changes
in EEG spectral content during eye closure. In the second

task, the ‘simulated sleep’ task, the subject performed exag-
gerated simulated microsleeps—closing his eyes slowly
while drooping his head forwards, then quickly opening his
eyes and jerking his head back upright. This was done three
times, interspersed with 15 s periods of maintaining gaze
on a fixed point. This second task was designed to cause
measurable changes in all three of the signals—eye closure
in the eye video, increased posterior alpha in the EEG, and
forward head tilt from the IMU. Both tasks were done with
the subject wearing the Elapse device (Fig. 5). The soft-
ware pipeline was configured with the feature extractors
and classifiers described in “Simulated sleep task” section
as well as a data sink that saved all of the raw data to disk.

Closed-eyes task

In the majority of people (~80%) an increase in posterior
alpha activity occurs during restful wakefulness with the
eyes closed compared to with eyes open [19]. Figure 6
shows a spectrogram of the EEG captured at O1 during 2.5
periods of alternating eyes open and closed. The increase
in alpha-band power (8–12 Hz) is clearly visible during the
two eyes-closed periods. Figure 7 shows the same data in
the time domain, bandpass filtered between 4 and 40 Hz, as
two 10 s windows centred at the onset of each of the peri-
ods of eye closure in Fig. 6. Again, the increase in alpha
activity is clearly visible when the eyes are closed at 15 and
45 s.

Simulated sleep task

The signal processing elements implemented for the sec-
ond task were deliberately simplistic, keeping the focus
on the operation of the system as a whole rather than on
advanced signal processing techniques. The task produces
easily measurable changes in the signals so there is no need
for complicated processing. The window size of the feature Fig. 5 A user wearing the prototype Elapse device

Fig. 6 Spectrogram of occipital
EEG (O1) showing increased
alpha during eye closure

746 Australas Phys Eng Sci Med (2017) 40:739–749

1 3

extractors was set to Twin = 2 s with a step size of Tstep =
0.5 s.

The eye video feature extractor used the algorithm from
[20] to locate the boundary of the pupil in each frame of
video and to assign one of three categories of eye closure:
open, partially closed, or closed. The eye closure catego-
ries were used to calculate the percentage of time in each
2 s window in which the eye was closed, denoted here as
 PERCLOS2. (Note that this is different to the usual defini-
tion of PERCLOS which measures percentage eye closure
during a 1-min window [21].) The EEG feature extractor
used the squared magnitude of the Fourier transform of
the data to approximate the power spectral density. It used
this to calculate the total power between 4 and 40 Hz in
EEG channel O1. The IMU feature extractor calculated the
cumulative change in the head pitch (nod) angle in each 2 s
window.

The classifier simply applied a threshold to each of the
features (PERCLOS2, EEG power, head pitch) and con-
sidered a simulated microsleep event to have occurred
when all of the three features exceeded their respective
thresholds. This does not reflect any of the subtleties of

detecting real microsleeps but it is sufficient to demon-
strate the process of classifying an event based on fea-
tures from multiple modalities.

The upper three traces of Fig. 8 show the variation
of the three extracted features over the course of three
simulated microsleeps. The dotted lines mark the thresh-
old that the classifier applied to each feature. The output
of the classifier is shown in the bottom trace, reading 1
when all of the features exceed their thresholds and 0 oth-
erwise. The plot clearly shows that the classifier success-
fully detects the three simulated microsleep events.

More importantly, however, this example application
demonstrates the successful operation of an end-to-end
biosignal classification system. It loads signal process-
ing code from user-implemented plugins written in both
C++ and Python; it receives biosignal data in real time;
it demonstrates the two aspects of feature extraction (per-
sample analysis for the video and per-window analysis
for all signals); it demonstrates a multi-modal classifier,
and it presents all of this to the user as a single graphical
application. None of the code loaded from plugins needed

Fig. 7 Increase in occipital
alpha during eye closure. The
two traces show 10 s windows
around the beginning of the
periods of eye closure shown
in Fig. 6 10 12 14 16 18 20

-50

0

50

Vo
lta

ge
(µ
V
)

40 42 44 46 48 50

Time (s)

-50

0

50

Fig. 8 Detecting simulated
microsleeps. The top three
traces show features extracted
from the biosignals. The classi-
fier identifies simulated micros-
leeps when all three features
are above certain thresholds
(dashed lines)

0 5 10 15 20 25 30 35 40 45

Time (s)

Classifier output

EEG: Total power

Video: PERCLOS2

IMU: Head pitch

747Australas Phys Eng Sci Med (2017) 40:739–749

1 3

to deal with timestamps and synchronisation because the
pipeline handles all of that.

Software characteristics and performance

Latency is an important factor in all real-time systems.
To measure the latency of the Elapse system, a circuit
was devised that generated an event visible to all of the
device’s sensors at the same time: an LED positioned in
front of the camera lit up, a voltage pulse was applied
between two EEG electrodes, and a servo rotated to tap
the IMU [8]. The latency for each sensor was defined as
the time between the event being triggered and the sam-
ple containing that event being emitted by the corre-
sponding sample decoder in the Elapse software. That is,
it is the total round-trip time for the laptop to trigger the
event, the sensor to sample the event, the device’s firm-
ware to capture and transmit the sample containing the
event, and the Elapse software to receive and decode that
sample. It does not include the time taken to process the
sample through the feature extractors and classifier since
that is entirely dependent on the user’s implementation
of those elements. Twenty of these events were recorded
and the latencies for all three channels were measured to
be less than 100 ms. A microsleep detection device needs
to detect and respond to events lasting more than 500 ms
[4], so a latency of 100 ms allows detection soon after the
onset of a microsleep.

Significant effort has been put into making it easy
for users to implement their own algorithms within the
framework and also to expand the framework as neces-
sary. The most common requirement that users will
have, and therefore the one that has been made easiest to
achieve, is to implement their own feature extraction and
classification algorithms. This is simply a matter of cop-
ying a small amount of template code from the sample
provided to create a new plugin, then filling in the blanks.
The same applies for implementing custom data sinks/
sources and output actions and for displaying custom
GUI widgets. If the user is capturing data with hardware
other than the Elapse device they may want to add sup-
port for other types of signals. This involves modifying
the framework but is fairly simple to achieve by adding
a field to the signal type enumeration and a correspond-
ing branch to the pipeline. If users have existing signal
processing code in a language that is not supported by
the framework then they may wish to implement a new
plugin host to support plugins written in that language.
Plugin hosts have a very simple factory interface so the
difficulty of implementing one depends mostly on how
easy it is to call into that language from C++.

Discussion

The Elapse software framework as it is described above
provides a combination of features that is not present in the
existing software mentioned in “Existing platforms” sec-
tion. It processes signals in real time, unlike the Biosignal
Igniter Toolkit [9]. It encapsulates the whole signal pro-
cessing pipeline from data capture to classification, unlike
BiosignalsStudio [12]. It is designed specifically for pro-
cessing biosignals, unlike GStreamer [14].

Although the pipeline structure supports a variety of sig-
nal processing and classification techniques, there are some
things that its simple structure does not allow. For example,
it is not possible to implement a feature extractor for one
signal that uses other signals to improve its performance,
e.g., using the eye video to help remove eye-blink artefacts
from the EEG. The classifier, however, uses the features
from all of the signals, so this could potentially be imple-
mented as a preprocessing step inside the classifier.

An important factor driving the design of the Elapse
software was the high data rate of the eye video—the
uncompressed video has a bit rate of 37 Mbit/s. Because
this rate is much higher than the more commonly acquired
biosignals such as EEG and EMG, the software framework
has constraints that are not present in some other biosig-
nal acquisition systems. For example, at high data rates it is
useful to have control over memory management in order
to avoid copying large blocks of data unnecessarily. The
Elapse framework uses reference-counting “smart point-
ers” to manage the lifetime of the data passed through the
pipeline. That is, space for the data is allocated dynami-
cally and that space is automatically freed when nothing
refers to the data any more. It is possible for users to imple-
ment more efficient memory management techniques when
writing plugins, too. For example, a video decoder element
could allocate frames of video data from an internal buffer
pool [22] and provide a custom destructor for the smart
pointer which returns the buffers to the pool when they are
no longer needed. This technique is faster than allocating
every new frame of video dynamically. To the rest of the
Elapse framework, nothing has changed because the data
is still passed around using the same type of smart pointer.
This gives the user flexibility to implement any custom
memory management techniques that may be necessary for
their application.

The Elapse device and software framework have been
developed as part of a larger project to detect and predict
microsleeps. In this context, future work will likely involve
porting some of the techniques that have been developed
to run within the framework. These include using various
EEG features (power spectrum, approximate entropy, frac-
tal dimension, Lempel–Ziv complexity) with various clas-
sifiers (tapped delay-line multilayer perceptron and long

748 Australas Phys Eng Sci Med (2017) 40:739–749

1 3

short-term memory recurrent neural networks, echo state
networks, linear discriminant analysis) [5, 6, 23, 24]. To
apply the system to real-world microsleep detection, it will
also be necessary to run experiments with more subjects
and to analyse real microsleeps, since the proof-of-concept
experiments described here used a single subject and simu-
lated microsleeps.

While the device and software framework were spe-
cifically designed for microsleep detection and prediction,
they can equally be used to quantify other measures of
cognitive state, and to develop biomedical instruments for
multi-modal real-time physiological monitoring and event
detection in intensive care, anaesthesiology, cardiology,
neurosurgery, etc.

Conclusion

We have developed a software framework for implement-
ing real-time, multi-modal cognitive monitoring applica-
tions. It provides a pipeline structure which allows users
to load custom signal processing code from plugins writ-
ten in C++ or Python. The pipeline handles synchronisa-
tion between signals so that the user does not have to. The
framework also provides facilities for saving, loading, and
visualising data in real time. This combination of features
was not available in existing software. Preliminary studies
have demonstrated the usefulness of the framework in sup-
porting signal processing for research into cognitive states.

The Elapse software has been released under an open-
source licence and is available from http://github.com/sijk/
elapse. This licence allows anyone to use or contribute to
the core framework while also allowing signal processing
plugins to remain closed-source if necessary.

Acknowledgements Simon Knopp was the recipient of a University
of Canterbury Doctoral Scholarship and the work reported formed
part of his doctoral study.

Compliance with ethical standards

Conflict of interest The authors declare that they have no financial
or personal relationships with other people or organisations that could
have inappropriately influenced this work.

Ethical approval Ethical approval was not required due to the small
scale and non-invasive nature of the experiments.

References

 1. Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F (2014)
Measuring neurophysiological signals in aircraft pilots and
car drivers for the assessment of mental workload, fatigue and

drowsiness. Neurosci Biobehav Rev 44:58–75. doi:10.1016/j.
neubiorev.2012.10.003

 2. Zander TO, Kothe C (2011) Towards passive brain–computer
interfaces: applying brain–computer interface technology to
human–machine systems in general. J Neural Eng 8:25005.
doi:10.1088/1741-2560/8/2/025005

 3. Reeves LM, Schmorrow DD, Stanney KM (2007) Augmented
cognition and cognitive state assessment technology – near-
term, mid-term, and long-term research objectives. In: Founda-
tions of augmented cognition. Springer, Berlin, pp. 220–228.
doi:10.1007/978-3-540-73216-7_25

 4. Jones RD, Poudel GR, Innes CRH, Davidson PR, Peiris MTR,
Malla AM, Signal TL, Carroll GJ, Watts R, Bones PJ (2010)
Lapses of responsiveness: characteristics, detection, and underly-
ing mechanisms. In: Proceedings of 32nd IEEE Conference on
Engineering in Medicine and Biology Society. pp 1788–1791.
doi:10.1109/IEMBS.2010.5626385

 5. Davidson PR, Jones RD, Peiris MTR (2007) EEG-based lapse
detection with high temporal resolution. IEEE Trans Biomed
Eng 54:832–839. doi:10.1109/TBME.2007.893452

 6. Peiris MTR, Davidson PR, Bones PJ, Jones RD (2011) Detection
of lapses in responsiveness from the EEG. J Neural Eng 8:16003.
doi:10.1088/1741-2560/8/1/016003

 7. Golz M, Sommer D, Chen M, Trutschel U, Mandic D (2007)
Feature fusion for the detection of microsleep events. J VLSI
Signal Process 49:329–342. doi:10.1007/s11265-007-0083-4

 8. Knopp SJ (2015) A multi-modal device for application in
microsleep detection. PhD thesis, University of Canterbury.
http://hdl.handle.net/10092/10408. Accessed 04 Oct 2015

 9. da Silva HP, Lourenço A, Fred A, Martins R (2014) BIT: biosig-
nal igniter toolkit. Comput Methods Progr Biomed 115:20–32.
doi:10.1016/j.cmpb.2014.03.002

 10. BITalino DIY biosignals. http://bitalino.com/. Accessed 04 Oct
2015

 11. Lourenço A, da Silva HP, Carreiras C, Alves AP, Fred A
(2014) A web-based platform for biosignal visualization and
annotation. Multimed Tools Appl 70:433–460. doi:10.1007/
s11042-013-1397-9

 12. Heger D, Putze F, Amma C, Wand M, Plotkin I, Wielatt T,
Schultz T (2010) BiosignalsStudio: a flexible framework for
biosignal capturing and processing. In: Dillmann R, Beyerer
J, Hanebeck UD, Schultz T (eds) Annual conference on arti-
ficial intelligence. Springer, Berlin/Heidelberg, pp 33–39.
doi:10.1007/978-3-642-16111-7_3

 13. Guger Technologies. http://www.gtec.at/Products/. Accessed 04
Oct 2015

 14. GStreamer: open-source multimedia framework. http://
gstreamer.freedesktop.org/. Accessed 04 Oct 2015

 15. Qt. http://qt.io/. Accessed 04 Oct 2015
 16. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design pat-

terns: elements of reusable object-oriented software. Pearson
Education, Upper Saddle River

 17. Pree W (1994) Meta patterns—a Means for capturing the essen-
tials of reusable object-oriented design. In: Object-oriented pro-
gram. Springer, Berlin, pp 150–162

 18. Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source
scientific tools for Python. http://www.scipy.org/. Accessed 04
Oct 2015

 19. Santamaria J, Chiappa KH (1987) The EEG of drowsi-
ness in normal adults. J Clin Neurophysiol 4:327–382.
doi:10.1097/00004691-198710000-00002

 20. Knopp SJ, Bones PJ, Weddell SJ, Innes CRH, Jones RD (2013)
A wearable device for measuring eye dynamics in real-world
conditions. In: Proceedings of 35th IEEE Conference on Engi-
neering in Medicine and Biology Society, pp 6615–6618.
doi:10.1109/EMBC.2013.6611072

http://github.com/sijk/elapse
http://github.com/sijk/elapse
http://dx.doi.org/10.1016/j.neubiorev.2012.10.003
http://dx.doi.org/10.1016/j.neubiorev.2012.10.003
http://dx.doi.org/10.1088/1741-2560/8/2/025005
http://dx.doi.org/10.1007/978-3-540-73216-7_25
http://dx.doi.org/10.1109/IEMBS.2010.5626385
http://dx.doi.org/10.1109/TBME.2007.893452
http://dx.doi.org/10.1088/1741-2560/8/1/016003
http://dx.doi.org/10.1007/s11265-007-0083-4
http://hdl.handle.net/10092/10408
http://dx.doi.org/10.1016/j.cmpb.2014.03.002
http://bitalino.com/
http://dx.doi.org/10.1007/s11042-013-1397-9
http://dx.doi.org/10.1007/s11042-013-1397-9
http://dx.doi.org/10.1007/978-3-642-16111-7_3
http://www.gtec.at/Products/
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://qt.io/
http://www.scipy.org/
http://dx.doi.org/10.1097/00004691-198710000-00002
http://dx.doi.org/10.1109/EMBC.2013.6611072

749Australas Phys Eng Sci Med (2017) 40:739–749

1 3

 21. Wierwille WW, Ellsworth LA (1994) Evaluation of driver
drowsiness by trained raters. Accid Anal Prev 26:571–581.
doi:10.1016/0001-4575(94)90019-1

 22. Boulton RJ, Walthinsen E, Baker S, Johnson L, Bultje RS, Kost
S, Müller T-P, Taymans W (2015) GStreamer plugin writer’s
guide, Ch 15: memory management. http://gstreamer.freedesk-
top.org/data/doc/gstreamer/head/pwg/html/chapter-allocation.
html. Accessed 04 Oct 2015

 23. Ayyagari SSDP, Jones RD, Weddell S (2015). Optimized echo
state networks with leaky integrator neurons for EEG-based

microsleep detection. In: Proceedings of 37th IEEE Conference
on Engineering in Medicine and Biology Society, pp 3775–3778.
doi:10.1109/EMBC.2015.7319215

 24. Shoorangiz R, Weddell S, Jones RD (2016). Prediction of
microsleeps from EEG: preliminary results. In: Proceedings of
38th IEEE Conference on Engineering in Medicine and Biology
Society, pp 4650–4653

http://dx.doi.org/10.1016/0001-4575(94)90019-1
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/chapter-allocation.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/chapter-allocation.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/chapter-allocation.html
http://dx.doi.org/10.1109/EMBC.2015.7319215

	A software framework for real-time multi-modal detection of microsleeps
	Abstract
	Introduction
	Requirements
	Existing platforms

	Materials and methods
	Signal processing pipeline
	Plugin system
	Methods
	User interface

	Results
	Closed-eyes task
	Simulated sleep task
	Software characteristics and performance

	Discussion
	Conclusion
	Acknowledgements
	References

