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Abstract— Prediction of an imminent microsleep has the
potential to save lives and prevent catastrophic accidents. A
microsleep is a brief episode of unintentional unconsciousness
and, hence, loss of responsiveness. In this study, prediction of
imminent microsleeps using EEG data from 8 subjects was
examined. A novel Bayesian algorithm was proposed to identify
common components of pre-microsleep activity in the EEG
in all subjects and predict microsleeps 0.25 s ahead. To avoid
overfitting, this model incorporates sparsity-promoting priors
to automatically find the minimum number of components.
Due to intractability of full Bayesian treatment, variational
Bayesian was integrated to approximate posterior probabilities.
To predict microsleeps, EEG log-power spectral features were
extracted from a 5-s window. Bayesian multi-subject factor
analysis was used to extract common microsleep patterns
and transform all features into lower-dimension common-space
features. Discrimination between responsive and microsleep
instances was done with a single linear discriminant anal-
ysis (LDA) classifier. Performance of the proposed method
was evaluated using leave-one-subject-out cross-validation. Our
prediction system achieved moderate AUCROC and GM of 0.90
and 0.80, respectively, but with a relatively low precision of
0.29.

I. INTRODUCTION

A brief unintentional episode of sleep-related suspension
of performance from 0.5–15 s, i.e., a microsleep, while
performing an active and monotonous task, such as driving,
is a safety threat, which can lead to catastrophic conse-
quences [1]. Tefft [2] estimated that drowsy drivers were
involved in 13% of car crashes resulting in hospitalization,
and 21% of fatal car crashes in the USA. Fatigue was also
involved in 16% of fatal crashes in New South Wales [3]. A
National Sleep Foundation survey in the USA showed that
65% of participated drivers had experienced drowsiness be-
hind the wheel in the past year, while more than one-third ac-
knowledged falling asleep while driving [4]. Similarly, more
than half (58%) of participants in a public poll in Ontario
admitted experiencing drowsiness and 14% acknowledged
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falling asleep while driving [5]. These studies indicate that
drowsiness and fatigue are substantial contributing factors to
car accidents.

Microsleeps can occur frequently even in non-sleep-
deprived healthy people. Peiris et al. [6] found an average
rate of 15.2 (0.0–72.0) h−1 microsleeps in 15 participants
performing a 1-D continuous task. Similarly, Poudel et al. [7]
reported an average rate of microsleeps of 79 h−1, with a
mean duration of 3.3 s, while non-sleep-deprived participants
performed a 2-D tracking task in an MRI-scanner for 50 min.
Moreover, Sirois et al. [8] found a high correlation between
microsleep duration and accident event probability. These
indicate the importance of early detection and even prediction
of microsleeps, so that a wake-up alarm can be sounded and
a fatal accident averted.

Lal and Craig [9] showed that spectral components of EEG
have high reproducibility among fatigued drivers. Wang et
al. [10] used EEG power spectra to detect fatigue and lapse.
Peiris et al. [11] analysed EEG power spectral and other
nonlinear features, such as fractal dimension, approximate
entropy, and Lempel-Ziv complexity, for microsleep detec-
tion. They found spectral features had the highest detection
performance among other features. Davidson et al. [12] used
a long-short-term-memory (LSTM) recurrent neural network
to capture temporal dynamics of EEG power spectral fea-
tures to detect microsleeps. Lastly, our preliminary analysis
also showed that power spectral features of EEG contained
information predictive of microsleeps [13].

In this study, our aim was to improve the performance
of microsleep prediction by incorporating subject-variability
into a feature reduction model. To this end, a Bayesian
multi-subject factor analysis model was proposed. Due to
intractability of full Bayesian treatment, variational inference
was applied to approximate posterior probability distribu-
tions. Leave-one-subject-out cross-validation was employed
to measure performance of the proposed method [12].

II. METHODOLOGY

A. Data

This study included 15 healthy participants, who had
reported an average previous night’s sleep of 7.8±1.2 h.
Participants had no neurological or sleep disorders [6].
The task was based on 1-D random preview tracking in
which participants were asked to follow a moving cursor
as accurately as possible using a steering wheel. Scalp EEG
was recorded from 16 channels, namely, Fp1, Fp2, F3, F4,
F7, F8, C3, C4, O1, O2, P3, P4, T3, T4, T5, and T6,
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placed according to the international 10-20 system. EEG was
sampled at 256 Hz. Tracking data and facial video were also
recorded to identify microsleeps through behavioural cues.
Each participant performed two 1 h sessions.

B. EEG Preprocessing

EEG data were filtered using a band-pass finite impulse
response with cut-off frequencies of 1 Hz and 45 Hz. Next,
a moving artefact subspace reconstruction (ASR) [13], [14]
with 2-min window length and 50% overlap was used to
remove artefacts with a z-score over 5. Lastly, canonical
correlation analysis blind source separation [15] was applied
to remove muscle artefacts.

C. Microsleeps and Gold-standard

Microsleeps were identified from recorded facial video and
tracking performance. An expert independently examined
facial video recordings to identify behavioural clues using a
6-scale rating, i.e., alert, distracted, forced eye closure, light
drowsy, deep drowsy, and microsleep [6], [11]. In parallel,
tracking performance was analysed to find ‘responsive’,
‘deviated’, and ‘flat-spot’ regions [13]. Lastly, video and
tracking analyses were used to generate the final gold-
standard as follows:
• ‘responsive’: subject is closely tracking the target, irre-

spective of video rating,
• ‘microsleep’: subject is not tracking the target, and the

video rating is deep drowsy or microsleep,
• ‘uncertain’: remainder of data which is not explained

by ‘responsive’ or ‘microsleep’.

D. Feature extraction

EEG data was segmented into 5-s windows, in which each
segment corresponded to a gold-standard τ ahead, as shown
in Fig. 1. In this study, τ was set to 0.25-s and the gold-
standard frequency was 4 Hz. Power density of various EEG
frequency bands were then estimated for each channel using
Welch’s method with 2-s windows and 75% overlap. These
frequency bands were delta (1–4.5 Hz), theta (4.5–8 Hz), al-
pha1 (8–10.5 Hz), alpha2 (10.5–12.5 Hz), alpha (8–12.5 Hz),
beta1 (12.5–15 Hz), beta2 (15–25 Hz), beta (12.5–25 Hz),
gamma1 (25–35 Hz), gamma2 (35–45 Hz), gamma (25–
45 Hz), and overall (1–45 Hz). A total of 192 features were
extracted and all estimated powers were transformed into
log-space.

E. Bayesian Multi-Subject Factor Analysis

We assume that S subjects share a set of latent components
while they experience microsleeps. Each subject has Ns inde-
pendently and identically distributed microsleep observations
where s ∈ 1, . . . , S. This can be formulated as:

xs,n ∼ N
(
µs + Wzs,n,Ψ

−1
s

)
, (1)

where N (µ,Σ) represents a multivariate normal distribution
with mean µ and covariance matrix Σ, x is a D-dimensional
feature vector, z is a K-dimensional vector of latent variable,
W is a D×K loading matrix, and Ψ is a precision matrix.
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Fig. 1. Association between EEG segment and gold-standard.

A zero mean normal distribution was assigned as the prior
distribution of the latent variable,

z ∼ N (0, IK) . (2)

Prior distributions of parameters µs and Ψs are given as

p(µs
∣∣ Ψs) =

D∏
d=1

N
(
µs,d

∣∣ 0, (β0ψs,d)
−1
)
, (3)

p(Ψs) =

D∏
d=1

G
(
ψs,d

∣∣ aψ, bψ) , (4)

where G(a, b) is Gamma distribution given by

G
(
x
∣∣ a, b) =

1

Γ (a)
baxa−1 exp (−bx) , (5)

and β0, aψ , and bψ are hyperparameters and shared among all
the subjects. Each column of W corresponds to a component
of latent variables. A hierarchical prior utilizing automatic
relevance determination (ARD) was used over loading matrix
W such that

p(W
∣∣ α) =

K∏
k=1

N
(
wk

∣∣ 0, α−1k I
)
, (6)

p(α) =

K∏
k=1

G
(
αk
∣∣ aα, bα) , (7)

where wk is the kth column of W, and aα and bα are
hyperparameters. The precision of the kth column of loading
matrix W is controlled by αk. Therefore, the concentra-
tion of posterior distribution of αk on large values will
result in wk having values closer to zero. This effectively
identifies the number of factors and removes unnecessary
components [16]. A probabilistic graphical model of multi-
subject factor analysis is shown in Fig. 2.

We performed variational Bayesian inference [17] to ap-
proximate posterior distributions, since fully Bayesian treat-
ment of multi-subject factor analysis is intractable. The goal
of variational inference is to maximize the lower bound of
the evidence L (q),

ln (p (X)) = ln

(∫
p (X,θ) dθ

)
≥
∫
q (θ) ln

(
p (X,θ)

q (θ)

)
dθ = L (q) , (8)
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Fig. 2. Probabilistic graphical model representation of multi-subject
Bayesian factor analysis.

where θ = {θi} denotes all the latent variables, parameters,
and hyperparameters, and q (θ) is the approximating distri-
bution.

In order to perform variational analysis, we assume q (θ)
is factorized as

q (Z,W,α,µ,Ψ) = q (Z) q (W) q (α) q (µ,Ψ) . (9)

The expressions for approximating distributions are

q(Z) =

S∏
s=1

Ns∏
n=1

N
(
zs,n

∣∣ m̃s
z,n, Σ̃

s
z

)
, (10)

q(W) =

D∏
d=1

N
(
ŵd

∣∣ m̃w,d, Σ̃w,d

)
, (11)

q(α) =

K∏
k=1

G
(
αk
∣∣ ãα, b̃α,k) , (12)

q(µ
∣∣ Ψ) =

S∏
s=1

D∏
d=1

N
(
µs,d

∣∣ m̃s
µ,d,

(
βsµψ

s
d

)−1)
, (13)

q(Ψ) =

S∏
s=1

D∏
d=1

G
(
ψs,d

∣∣ ãsψ, b̃sψ,d) , (14)

where

Σ̃s
z =

(〈
W>ΨsW

〉
+ I
)−1

,

m̃s
z,n = Σ̃s

z

〈
W>〉 (〈Ψs〉xs,n − 〈Ψsµs〉) ,

βsµ = Ns + β0,

m̃s
µ,d =

1

βsµ

Ns∑
n=1

(
xsn,d −

〈
ŵ>d

〉
〈zs,n〉

)
,

Σ̃w,d =

(
〈diag (α)〉+

S∑
s=1

〈ψs,d〉
Ns∑
n=1

〈
zs,nz

>
s,n

〉)−1
,

m̃w,d = Σ̃w,d

S∑
s=1

〈ψs,d〉
Ns∑
n=1

(
〈zs,n〉

(
xds,n − 〈µs,d〉

))
,

ãα = aα +
D

2
,

b̃α,k = bα +

〈
w>k wk

〉
2

,

ãsψ = aψ +
Ns
2
,

b̃sψ,d = bψ −
βsµ
2
m̃s
µ,d

2

+
1

2

Ns∑
n=1

(
xds,n

2 − 2xds,n

〈
ŵ>d

〉
〈zs,n〉

+ tr
(〈
ŵdŵ

>
d

〉 〈
zs,nz

>
s,n

〉))
.

It is notable that ŵ>d corresponds to the dth row of loading
matrix W, 〈〉 denotes expectation with respect to q (θ), and
diag (α) denotes a matrix with {αk} as diagonal elements. A
numerical solution of approximate distributions can be found
by iterating over variables and updating one at a time. Lower
bound L (q) can then be used to monitor convergence.

F. Classification

We included only those subjects who had had at least one
microsleep whilst performing the tracking task outlined in
Section II.A (N = 8). To measure performance of our system,
one subject was left out as test data while data of the other 7
subjects were used to train the prediction model. This process
was repeated 8 times and test performances were averaged.

For each test, a Bayesian multi-subject factor analysis was
applied to the microsleep portion of the training data to find
the posterior probability of a common loading matrix, given
microsleep data of all seven training subjects. Latent features
were then inferred by fixing the probability distribution of
the loading matrix to the posterior from previous step, and
inferring µ and Ψ for each subject. An LDA classifier was
employed to discriminate between microsleep and responsive
using latent features. Batch learning was performed for
training data, but online inference was employed for test
data. To this end, our variational Bayesian model was first
initialized to the first 60 s of data, and then updated every
2 s.

To evaluate performance of our system, multiple mea-
sures were used including area under the curve of receiver
operating characteristic (AUCROC), area under the curve of
precision-recall (AUCPR), geometric mean (GM), phi corre-
lation coefficient (ϕ), sensitivity, specificity, and precision.

III. RESULTS

Bayesian multi-subject factor analysis let the training data
share information, while having individual variations. Each
common component consists of a linear combination of 12
log-powers of various frequency bands within 16 channels.
Fig. 3 is a topographic scalp map representing spatial dis-
tribution of a common component extracted from 7 training
subjects. This component showed a mixture of activities in
left temporal in Delta and Beta1 bands, and frontal areas in
Gamma band.

The average values of performance of the 8 test subjects
were: AUCROC = 0.90, AUCPR = 0.36, sensitivity = 0.72,
specificity = 0.89, ϕ = 0.34, GM = 0.80, and precision =
0.29. Due to a highly variable imbalance ratio (IR) among
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Fig. 3. A topographic representation of spatial weights of a common
component for log-power of different frequency bands.
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Fig. 4. Distribution of performance measures and imbalance ratios over 8
independent test subjects.

the test subjects, the precision values were widespread (0.01–
0.89). AUCPR and ϕ also spanned a wide range of values,
i.e., 0.09–0.90 and 0.06–0.75, respectively. On the other
hand, AUCROC and GM were less influenced by IR. The
distributions of various performance measures, as well as
IR, are shown in Fig. 4.

IV. DISCUSSION

Continuous prediction of 0.25 s ahead microsleep or re-
sponsive state was investigated in this study. We applied
Bayesian multi-subject factor analysis to extract common
space microsleep features among all training subjects, where
features were log-power spectral of various frequency bands.
In addition, test data were applied in an online and adaptive
fashion, where the first 60 s was used to initialize parameters
of Bayesian model, and then it was updated every 2 s. Leave-
one-subject-out cross-validation was used to evaluate the
performance of our proposed method, and average values
of different measures were reported.

Comparing the performance of this model with our previ-
ous work [13] shows that average GM and ϕ were slightly
improved, i.e., 0.80 vs 0.74 and 0.34 vs 0.33, respectively,
while AUCROC remained the same (0.90). Moreover, the

average number of retained components in this study was
115, while 37–40 features were retained in the previous
work. This indicates that although retained microsleep com-
ponents of the proposed method are in common between
subjects, some of these appear to have little discriminative
power. Therefore, a feature selection method could poten-
tially improve the prediction performance by selecting the
most discriminative common features.
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