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Abstract—The technique of multireference adaptive noise canceling )
(MRANC) is applied to enhance transient nonstationarities in the elec-
troencephalogram (EEG), with the adaptation implemented by means of P
a multilayer-perceptron artificial neural network (ANN). The method was — %
applied to recorded EEG segments and the performance on documented Scalp sk \

nonstationarities recorded. The results show that the neural network
(nonlinear) gives an improvement in performance (i.e., signal-to-noise . . . .
ratio (SNR) of the nonstationarities) compared to a linear implementation Fig- 1. Multireference adaptive noise canceller.
of MRANC. In both cases an improvement in the SNR was obtained.
The advantage of the spatial filtering aspect of MRANC is highlighted

when the performance of MRANC is compared to that of the inverse (MRANC), as described by Widrowt al. [8]. The background EEG
auto-regressive filtering of the EEG, a purely temporal filter. on other channels in the multichannel EEG recording is used to
Index Terms—Adaptive filters, electroencephalography, neural network adaptively cancel the background EEG on the channel under inves-
applications, nonlinear filters. tigation. The use of a multilayer ANN to implement the MRANC
filter provides the opportunity to model the EEG spatial distribution
as nonlinear and leads to improved performance over the linear

case.
The electroencephalogram (EEG) can be considered to consist of

an underlying background process (assumed stationary and ergodic),
with superimposed transient nonstationarities (TNS's) such as spike Il. MULTIREFERENCE ADAPTIVE NOISE CANCELING
and sharp-waves (SSW's), electrode “pop,” eye-blinks, and mus-Multireference adaptive noise canceling [8] is illustrated in Fig. 1.
cle artifacts. The detection of SSW's in the EEG is of particulafhe EEG signal is assumed to consist of a sigaalhere, mod-
importance in the diagnosis of epilepsy. eling the TNS) contaminated by noise, (here, modeling the
Methods for detecting SSW’s have included mimetic methodsackground EEG) which is assumed to be uncorrelated with the
[1], [2] and the use of template matching [3]. The lack of angignal. Each reference inpuf..s(k) contains a noise signat;
definition of a SSW other than “transients clearly distinguished fromhich is uncorrelated witts,, but correlated withe,. The adaptive
background activity with pointed peaks at conventional paper speedifter adapts its parameters so as to produce an output signal
[4] means that what constitutes the “ideal” SSW can vary amongshich is as close as possible te;. This output is then sub-
researchers. Instead of matching a single template, several authi@sted from the primary input, canceling the noise contentout
have employed an artificial neural network (ANN) by training théeaving signalse intact. The adaptive filter continuously adjusts
ANN on a large number of known SSW's [5], [6]. Lopes da Silvdo minimize the output:. Any suitable adaptive algorithm which
et al. [7] used the method of modeling the (stationary) backgrourdinimizes the output can be used; in particular, the least mean
EEG with an autoregressive (AR) prediction filter and detectingquare (LMS) adaptive algorithm [8] can be used if the system
TNS's by examining the prediction error; the AR filter was calculatei$ assumed to be linear. The LMS algorithm is employed in the
from a segment of the background EEG which is assumed to werk reported here to compare with the nonlinear ANN described
stationary. The major drawback is that the stationarity assumptibalow.
may not always hold true, leading to a large number of false The reference inputs to the adaptive noise canceller may contain
detections. some signal components which are correlated to the signal at the
The method described here comprises the first stage of a ANptimary input (Fig. 1). As the level of crosstalk increases, the
based system designed to detect SSW's in the interictal EE@rformance of the noise canceller begins to deteriorate and the noise
The system makes use afiultireference adaptive noise cancelingcanceller not only cancels the noise at the primary input but begins
to distort the signal component as well. It can be shown that as
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CHARACTERISTICS OFEEG SGMENTS (SSW's ARE —([-:ALESLSIIEFIIIED As DEFINITE, PROBABLE, OR PossiBLE BY EEGER)

Patient Montage Duration (s) SSW distribution SSW classification

Def. | Prob. | Poss.
Patient #1 | Longitudinal 24 Focal (15) 3 2 5
Patient #2 Transverse 20 Focal (14) 0 4 6
Patient #3 | Circumnferential 20 Focal (o1) 8 1 1
Patient #4 | Longitudinal 20 Focal (¢f{-p4) 0 3 7
Patient #5 | Longitudinal 20 Multifocal (¢4, ¢f-p4, ¢3) | 0 0 10
Patient #6 | Longitudinal 20 Generalized 0 0 10

in the hidden layer has a log-sigmoidal nonlinear activation functigerimary input channel, the less correlated the background EEG
while the single output neuron has a linear activation function. ltecomes with the primary channel and hence the more MRANC
can be shown [10], [11] that through the use of the backpropagatiperformance deteriorates. To determine the optimal combination of
training algorithm the weights and biases of the three-layer ANMference channels, the reference channels were put into three groups,
may be adjusted so as to minimiz&(k). To further optimize the N was varied for each group, and a number of tests carried out
performance of the ANN, the learning rate adaption procedure knovier each case. The channel containing the highest amplitude SSW’s

as the “delta-bar-delta” learning rule is used [10]. was made the primary channel. The reference channels were then
grouped as follows: group A comprised the three channels closest
. M ETHODS to_the primary channel, group B the four channels furthest fror_n the
primary channel, and group C all channels other than the primary
channel.

A. Data Collection . .
A number of tests were carried out wiffi set at 2, 5, 10, and 20.

The EEG was recorded by scalp electrodes placed accordiggsjiminary testing indicated that system performance was optimal
to the International 10-20 system. Sixteen channels of EEG wggp p = 2 and, hence, this was used for all subsequent tests.

recorded simultaneously both for referential and bipolar montages.
The amplified EEG was sampled at 200 Hz, digitized to 12 bits and

stored for later off-line processing. D. Subjects
The system was tested on the epileptiform EEG’s of six patients.
B. Performance Index Single segments of bipolar EEG, each containing ten SSW's (classi-

. . fied by an electroencephalographer as definite, probable or possible),
As a means of measuring the performance of the system, the signal- :
¢ : tio (SNR) is defined as the ratio of th k-t K |Were chosen from each patient (see Table I). The SNR of each SSW
oc;-tnr?:g Sr?lvlotcf the Zolit r?]g; se(lqsuarg E?n;Z)ovallfepc?fatr;eo-bzec?(g:/oibre{ s calculated in the original recording. So as to test the system on
EEG for a number of samples on either side of the SSW, excludia range of different SSW's, the EEG’s chosen included both focal

the SSW itself. As the duration of SSW's is 70-200 ms [4], we hav%e%w s and generalized SSW's.

assumed a typical duration of 135 ms, corresponding to 27 samples

at 200 samples/s. The peak-to-peak valijg is calculated from E. Autoregressive Prediction

samples within the rangé:14 samples from the maximum negative For comparison with MRANC, the technique of autoregressive
peak. Finally, 30 samples (150 ms) on either side of the 27-samp{&R) prediction as described by Lopes da Siétal. [7] was applied
wide SSW are chosen to describe the immediate background EEG &nthe primary channel EEG of each patient. In this method the EEG
to calculate the background rms valBg.... The SNR is calculated is considered as being the output of an AR filter having an input
by SNR= S,,/B:ms. The primary performance index used is thexf white noise (normally distributed). Passing the EEG through the

percentage increase in SNR defined as inverse of the estimated AR-filter should therefore result in normally
SNR.cow — SNR.14 distributed (white) noise, the prediction error. At any point at which
ASNR = == x 100% (1) the prediction error deviates from a normal distribution (at a certain

obability level) a TNS is assumed to be present at the input.
The coefficients of the AR model were estimated by Durbin’s
algorithm (see Makhoul [12]) on the first 800 samples (4 s). The
order of the estimated AR filter was setjat= 15, corresponding to
C. MRANC and ANN Parameters that used by Lopes da Sihat al. [7]. The SNR of the known TNS’s
Experiments were performed to determine the number of referengas measured (as in Section 1lI-B) at the output of the inverse AR-
channelsV, the number of delays to be considered for each referentiter and the percentage increase in performance calculated. Also
channelp, and the number of neuron& in the single hidden calculated was a detection function [@]k) = S5 | '3(;—")]2,
layer of the ANN. To remove crosstalk it is preferable to choosehereé(k) is the prediction error of the inverse AR filter asd is
reference channels as far as possible from the primary input chantie® variance of the prediction error. For a normally distributéid),
Conversely, the more distant a reference channel lies from tig:) would have ay* distribution with five degrees of freedom (d.f.)

.
where subscripts “old” and “new” refer to before and after filteringf,)
respectively.
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Fig. 2. Results of processing an 800 sample (4 s) epoch of signal for Patient #1 containing three SSW’s. The primary signal was resestlexhdt
references at3—p3, p3—ol and#3-t5. (a) The original signal and primary input to the MRANC filter—the SNR’s of SSW's are indicated. (b) The output of
the linear MRANC filter and (c) the nonlinear MRANC filtép = 2, H = 2). The percentage increase in SNR is indicated by the values in brackets.

[7]. A threshold D was set ford(k) on the basis thaP(d(k) > Overall, linear MRANC resulted in an average performance of 76%

D) < 0.001; from tabulated valuesD = 20.5. (p = 2, Group C) and nonlinear MRANC 121% & 2, H = 10,
Group C).
The performance of MRANC was superior to the inverse AR-filter
IV. RESULTS output in terms of enhancement of SSW's by an average 18%. Fig. 3

. i i AR-filteri ith = 15 li ingle 3-

On calculating the average performance of the MRANC over a{uustrates nverse ltering (witly 5) app led to a §|ng ess

six patients with each group of reference channels, with the numbersgfgmem' The same segment was MRANC filtered (using reference
; oup C,H = 10,p = 2) and subsequently inverse AR filtered,

neurons in the hidden layer varying from 2 to 20, for both linear al N ) - . .
nonlinear implementation of MRANC, the following was observe(PrOduc'ng its corresponding prediction error and detection function.

MRANC achieved an increase in the average SNR of SSW's fhthreshold was set for the detection function of each case, Fig. 3(c)
all patients for both linear and nonlinear configurations. Howevefnd (f), corresponding to a probability level of 0.001 for detecting

in virtually every SSW tested over the six patients, the nonlinefft€ Presence of TNS’s. While the known TNS was detected in both
MRANC configuration resulted in a significant improvement iff@Ses, numerous false detections occurred for the “raw” EEG case.
performance over the linear configuration. Overall, increasing tHée SNR of the known TNS (SSW in this case) is shown in Fig. 3
number of neurons in the hidden layer above ten resulted in R8th for the inverse AR-filtered EEG and the MRANC filtered EEG,
significant improvement in performance. These results also show taéang with ASNR in each case.

performance increased slightly as more channels were included in thdhe MRANC filter can be considered to converge to a highpass
reference groups. Fig. 2 depicts a particular example of three SSMitter (HPF) the characteristics of which varies with time and between
in the EEG segment of patient #1. EEG's of different patients. Fig. 4 shows the frequency response of
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Fig. 3. Nonlinear MRANC and inverse AR filtering applied to a 3-s EEG segment. (a) The original EEG segment. (b) The prediction error from inverse
AR filtering the “raw” EEG (p = 15), and (c) the detection function calculated from (b) with 5 d.f. (d) The MRANC filtered version (nonlinear) of
the EEG (ref. group CH = 10,p = 2). (e) The corresponding prediction error due to inverse AR filtering the MRANC filtered EEG= 15)

and (f) the detection function from (e) with 5 d.f.

EEG’s of different patients to be accommodated. Classification of
the enhanced TNS's into epileptiform and nonepileptiform events is
to be performed by a following stage. Our contention is that the
classification process will be rendered considerably more accurate in
terms of both sensitivity and selectivity by the prior attenuation of
the background EEG.

The presence of signal crosstalk between the primary and reference
channels is a significant factor affecting the performance of MRANC.
In the case of EEG, maximum crosstalk is seen with generalized
epileptiform activity such as, for example, in patient #6. Nevertheless,
although MRANC did not perform as well for patient #6 as for
the other patients, a substantial improvement in SNR was still
achieved.

Another factor affecting MRANC performance is the correlation
of the noise source between the input channels. Designating all
channels other than the primary channel as reference channels (i.e.,

102 i ; i i i i ; i reference group C), confers a practical advantage in that it eliminates
10 20 30 40 50 60 70 80 90 100 the need for arbitrary selection of reference groups dependent on a
Frequency (Hz) primary channel and montage for a particular EEG segment. Initially,

) ] ) ] it was thought that the choice of reference channels would prove
29' 4. Amplitude response of ”0”“”ea][tMRSAS’\\‘A(/:E'1ter (reference 9;‘;“" Ghe most important factor in the application of MRANC to the
= 10,p = 2) at timestl = 500 ms after 2 = 900 ms after . .
SSW #2 gnds): 20'0 ms aﬁerJSSW #3 (see, Fig. 2; EEG, but this turned out not to be the case. Although increases
in performance were seen as more reference channels were added,
i . I these were slight.
the MRANC filter (with H = 10 and utilizing reference group C) at MRANC (with H = 10 and utilizing reference group C) performed

c_iifferent_ ins_tances in time .throu_gh t_he EEG segment of Fig._2._ Trﬂ)%tter than the inverse AR-filtering method. The fundamental differ-
figure highlights the variability with time of the filter characteristics, .o petween the two approaches is that the AR-filtering method

utilizes purely temporal information and relies on the nonstationary
properties of TNS’s to enhance their presence in the otherwise

Implementing MRANC by means of an ANN allows the process tetationary background EEG, whereas MRANC utilizes spatial as well
be modeled as nonlinear which has been shown to yield consideraty temporal information (but, particularly the former) to enhance
better results than its linear counterpart (LMS). The adaptive naturdlS’s in the primary channel, with no prior knowledge of “signal”
of the MRANC filter also allows for variations in the backgroundr “noise” characteristics required.

V. DISCUSSION
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In conclusion, it is clear that MRANC can considerably enhance thg] A. J. Gabor and M. Seyal, “Automated interictal EEG spike detection
presence of focal activity in the EEG and that the use of a nonlinear
ANN in the application of MRANC improves the effectiveness of the
process. By enhancement of transient nonstationarities, in particulg’r]
spikes and sharp-waves, MRANC should provide an important first

stage in the detection of epileptiform activity in the interictal EEG.
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