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Abstract— A microsleep is a brief and an involuntary
sleep-related loss of consciousness of up to 15 s. We inves-
tigated the performances of seven pairwise inter-channel
relationships–covariance,Pearson’s correlation coefficient,
wavelet cross-spectral power, wavelet coherence, joint
entropy, mutual information, and phase synchronization
index–in continuous prediction of microsleep states from
EEG. These relationships were used as the feature sets of
a linear discriminant analysis (LDA) and a linear support
vector machine classifiers. Priors for both classifiers were
incorporated to address the class imbalance in the training
data sets. Each feature set was extracted from a 5-s window
of EEG with the step of 0.25 s and was demeaned with
respect to the mean of first 2 min. The sequential forward
selection (SFS) method, based on a serial combination of
the correlation coefficient, Fisher score-based filter, and
an LDA-based wrapper, was used to select features from
each training set. The comparison was based on 16-channel
EEG data from eight subjects who had performed a 1-D
visuomotor task for two 1-h sessions. The prediction perfor-
mances were evaluated using leave-one-subject-out cross-
validation. For both classifiers, non-normalized feature sets
were found to perform better than normalized feature sets.
Furthermore, demeaning the non-normalized features con-
siderably improved the prediction performance. Overall,
the LDA classifier with joint entropy features resulted in
the best average prediction performances (phi, AUCPR, and
AUCROC) of (0.47, 0.50, and 0.95). Joint entropy between O1
and O2 from theta frequency band was the most informative
feature.

Index Terms— EEG, microsleep, inter-channel relation-
ships, LDA, LSVM, class imbalance.

I. INTRODUCTION

WE DEFINE microsleeps as complete and unintentional
sleep-related losses of consciousness of up to 15 s.

They are accompanied by behavioral signs of eye closure,
droopy eyes, and total loss of visuomotor responsiveness
[1], [2], which are quite distinctive from the more tonic
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states of drowsiness (tendency to fall asleep) and fatigue
(disinclination to responsiveness) [3], [4]. Studies have shown
that healthy and non-sleep-deprived can also have frequent
microsleeps [2], [4]. Furthermore, the high correlation between
the probability of accidents and the duration of microsleeps has
been reported [5]. In extended-attention monotonous activities
such as driving, the consequences of microsleeps are often
fatal. Microsleep related accidents can potentially be avoided
if they are noninvasively and accurately predicted.

EEG is being used for detection of microsleeps due to its
high temporal resolution of changes in brain activity. Spectral
power features have frequently been used in EEG-based
microsleep state detection [1], [6]–[8]. Compared to other
neural networks, a long-short-term-memory (LSTM) recurrent
neural network (RNN) resulted in the best performance metrics
(phi, AUCPR, AUCROC) of (0.38, 0.43, 0.84) [1]. Stacking
of 7 linear discriminant analysis (LDA) classifiers resulted in
performance metrics (phi, AUCPR, AUCROC) of (0.39, 0.43,
0.84) on pruned EEG data [6]. Whereas, stacking of 7 echo
state networks (ESN) resulted in performance metrics (phi,
AUCPR, AUCROC) of (0.44, 0.45, 0.88) [8]. These studies
used a 2-s window to extract features from EEG, principal
component analysis (PCA) to reduce feature space and had a
detection resolution of 1.0 s for microsleep states.

Similarly, spectral power features have also been used in
EEG-based microsleep state prediction [9], [10]. With single
LDA classifier, performance metrics (phi, AUCPR, AUCROC)
of (0.33, 0.36, 0.90) were achieved with mutual information-
based greedy-forward-feature-selection algorithm [9], and of
(0.34, 0.36, 0.90) with Bayesian multi-subject factor analysis
for feature reduction [10]. In both studies, a ∼5-s window was
used to extract features. The prediction time (τ ) was 0.25 s
ahead with a prediction temporal resolution of 0.25 s.

Golz et al. [7] fused spectral and delay vector variances
of 7 EEG, 2 EOG, and 3 eye-tracking signals per eye (pupil
size, x and y gaze coordinates) and achieved an accuracy
of ∼0.91 with radial basis function support vector machine
(RBF-SVM) on classification of microsleep and alert events.
This promising but erroneous accuracy was achieved by bal-
ancing the test data and cross-validation was performed on
concatenated data from all the subjects. In doing so, indepen-
dence of the test and training data, and hence generalization
accuracy of the system, were lost. Similarly, with spectral
features and a claimed accuracy of 0.88 on the prediction of
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microsleep events [11]. Lin et al. [12] achieved an accuracy of
∼0.78 on determining the effectiveness of providing feedback
during behavioral lapses (i.e., microsleeps) in a discrete task
of sustained-attention. These studies, however, are limited to
class-balanced binary data sets.

Due to the multivariate property of EEG signals, it was
considered that inter-channel relationships might be advanta-
geous over independently extracted features from individual
channels. Such inter-channel relationships are also known
as functional and effective connectivity [13] between EEG
electrodes or brain anatomical regions and may or may not
be normalized [14]. Normalized EEG inter-channel relation-
ships have been widely used to analyze brain function with
different stimuli, e.g., visual oddball task [15]. Different
measures of connectivity have been compared on simulated
data [16] and real EEG data [17], [18]. The comparisons
were to differentiate causal and non-causal connections [16],
quantify the level of synchronization [17], and understand
connectivity patterns [18]. Connectivity patterns of alert versus
drowsy [19], [20] and connectivity patterns of microsleep
onset versus offset have been reported as significantly dif-
ferent [21]. However, these studies have been restricted to
offline characterization, i.e., statistical comparison between
equal samples of two classes taken from the whole data.
Unfortunately, such characterization cannot be utilized in real-
time detection/prediction of microsleeps.

In emotion classification, however, connectivity patterns
have been used as features. Lee and Hsieh [22] compared
three EEG-based functional connectivity patterns and achieved
the best accuracy of 0.82 with phase synchronization index
and quadratic discriminant analysis (QDA) classifier. Sim-
ilarly, with different connectivity and event-related poten-
tial (ERP) features, the LDA classifier resulted in an accuracy
of 0.89 [23]. The accuracies, though impressive, are based on
small and class-balanced data. Functional connectivity patterns
with RBF-SVM resulted in accuracies of 0.92 and 0.97,
respectively, on the classification of mental fatigue and alert
states on a 1-h simulated driving task and on a psychomotor
vigilance task (PVT) [24]. Although these accuracies are
impressive, it is important to note that they have been obtained
on class-balanced data from a discrete task (i.e., first and last
5 min). Also, although data independence in classification
was maintained by leave-one-out cross-validation, amount
(percentage) of data used in feature selection was unclear.

From joint entropy features between EEG channels and with
an LDA classifier, we were able to predict (0.25-s ahead)
microsleep states from continuous EEG with a mean phi
accuracy of 0.38 [25]. This was ∼15% better than individually
extracted spectral features [9], [10] and 65% better than mutual
information features [25].

As far as we are aware, we are the first to have investi-
gated EEG inter-channel relationships in online classification/
prediction of microsleep states. The aim of the current study
was to investigate (1) the prediction performances of seven
model-free, bivariate, and symmetric inter-channel relation-
ships as feature sets to LDA and linear SVM (LSVM) classi-
fiers and (2) present a preprocessing step in feature space to
address heterogeneity inherent in EEG and reaction times over

Fig. 1. Illustration of tracking performance and corresponding gold
standard. The microsleeps are instances of unresponsiveness, as
indicated by either essentially flat or incoherent tracking.

multiple subjects and sessions. In addition to simplicity and
computational ease, model-free (generally symmetric) inter-
channel relationships are reliable, accurate in the presence
of common noise [14], [26], and robust against a common
reference [27] and data decimation [16], and therefore were
preferred in the investigation.

II. METHODS

A. Data

The original data were from a previous study [2], compris-
ing behavioral and EEG recordings over two 1-h sessions, one
week apart, from 15 non-sleep-deprived healthy male subjects,
aged 18-36 years, and with no neurological or sleep disorder.
Data in the current study were from a subset of the 8 subjects
who had had at least one definite microsleep over the two
sessions.

Each subject performed a 1-D preview tracking task. The
task was to track a pseudo-random target with minimum error.
EEG was sampled at 256 Hz from 16 channels, namely Fp1,
F3, F7, Fp2, F4, F8, C3, C4, P3, P4, T3, T5, T4, T6, O1, and
O2, placed as per the international 10-20 system. Face video
at 25 fps and tracking performance at 64 Hz were recorded.

B. Gold Standard

A gold standard, shown in Fig. 1, comprising 3 classes –
responsive, microsleep, and uncertain – was formed
from tracking performance and independent expert video
ratings. The video recordings were conservatively rated by
Peiris et al. [2], without knowledge of the corresponding
tracking performances. He rated video on a 6-level scale using
criteria similar to those of Wierwille and Ellsworth (1994).
Levels 1–6 were marked alert, distracted, forced eye closure
while alert, drowsy, deep drowsy, and sleep respectively.

Coherent tracking irrespective of the video rating was
labeled as responsive. Incoherent tracking (i.e., mean absolute
error> 3 cm lasting for 1 s) or unresponsiveness (i.e., tracking
speed < 0.1∗target speed) along with a video rating of deep
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TABLE I
TOTAL MICROSLEEPS (BOTH SESSIONS) FOR EACH SUBJECT

AND THE CORRESPONDING IMBALANCE RATIO

drowsiness was labeled as microsleep. Epochs that did not
fall unequivovally into either of these classes were labeled as
uncertain [9] and discarded during training and testing.

The incidence and duration of microsleeps for all 8 subjects
(the two 1-h sessions combined) are shown in Table I.

C. EEG Preprocessing

EEG signals were band-pass filtered from 1 to 45 Hz and
re-referenced to common average to improve the SNR.
Artifacts were removed using artifact-subspace reconstruc-
tion (ASR) [28]. ASR requires a clean data to be used as
calibration/base data to remove artifacts from rest of the
data. The clean data were selected based on z-score ≤ 5 of
EEG. The noisy segments of the data were decomposed into
principal components (PCs), which then were projected into
the calibration data’s space by using its covariance matrix.
PCs which represented high-amplitude artifacts were removed
based on a threshold derived from the calibration data.
Remaining PCs were then back-projected into EEG channel
space. Considering non-stationary associated with EEG, it was
segmented into 2-min epochs with 50% overlap and ASR
was applied to each epoch independently. Calibration data of
each epoch was found and then was used to clean the same
epoch. The epochs were then concatenated together to have
a cleaned set of original EEG data. The overlapping parts
of consecutive epochs were averaged to avoid discontinuity.
Canonical correlation analysis [29] was finally used to remove
muscles artifacts [9]. Artifact-free EEG signals were then
decomposed into EEG sub-bands (delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–45 Hz)), decimated to 128 Hz to reduce processing
time, and segmented to 5-s epochs with steps of 0.25 s.
This defines the lower operational limit of microsleep events
(i.e., ≥ 250 ms) and a temporal resolution of 0.25 s. In contrast
to earlier work [1], [6], [8], epochs of 5 s were used to ensure
smooth and reliable connectivity estimates and to compare
microsleep state prediction performances based on spectral
features [9], [10]. In addition, the best classification accuracy

in detecting ongoing microsleep events has been reported with
an epoch of 5-s EEG [7].

D. Covariance and Correlation

Covariance and correlation (Pearson’s correlation coeffi-
cient) between two equal lengths EEG time series X and Y
with N samples (window length) are defined as

CXY = 1

N − 1

1∑

i=1

(X (i)− μX )(Y (i)− μY ), (1)

rXY = CXY

σXσY
, (2)

where μX and μY are the means and σX and σY are the
standard deviations of time series X and Y respectively.

E. Cross-Spectral Power and Coherence

Cross-spectral power and coherence were calculated using
wavelet transform due to its variable window size and better
immunity to noise over Fourier transform [30], [31]. Wavelet
cross-spectrum W Y Y and wavelet coherence C XY between two
equal lengths EEG time series X and Y with N samples are
defined as

W XY = �∣∣�W X
n ( f )W Y∗

n ( f )� f
∣∣�N , (3)

C XY = �
∣∣�W X

n ( f )W Y∗
n ( f )� f

∣∣
√

�|W X
n ( f )|2� f �|W Y

n ( f )|2� f

�N , (4)

where W X
n ( f ) and W Y

n ( f ) are the wavelet auto-spectra of
time series X and Y respectively. f is the frequency index
and n is the time index. The numerator and denominator of
Equation (4) are required to be smoothed separately, otherwise
the quantity will always be unity. Smoothing can be carried
out over time, scale, or both and can be simple averag-
ing [31]–[34]. Smoothing in scale/frequency direction has been
empirically found to be more effective than smoothing in time
direction [35]. For continuously long-time series (e.g., EEG),
performing wavelet transform prior to the segmentation avoids
edge effects and is suitable for online implementation. For
consistency, both Equation (3) and (4) were smoothed over
individual frequency bands using expectation �.� f . Finally,
time expectation �.�N was performed on smoothed cross-
spectral powers and coherences to obtain features for the
corresponding window.

The Morlet wavelet was used as the mother wavelet as it
has good time-frequency localization [34]. With dimension-
less frequency ω0 and dimensionless time η, it is defined
as

ψ0 = π0.25e−iω0ηe−0.5η2
. (5)

Frequency-to-scale (s) conversion was performed according to

s =
√
ω2

0 + 2
/

4π f , where ω0 = 6.
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F. Joint Entropy and Mutual Information

Joint entropy H and mutual information I between two
equal lengths EEG time series X and Y with N samples are
defined as

H (X,Y ) =
N∑

i=1

N∑

j=1

PXY (i, j)ln PXY (i, j), (6)

I (X,Y ) =
N∑

i=1

N∑

j=1

PXY (i, j)ln

(
PXY (i, j)

PX (i)PY ( j)

)
, (7)

where PXY is the joint probability density function (pdf) of X
and Y , PX and PY are marginal pdfs of X and Y respectively.

Entropies and mutual information were estimated using a
K-nearest neighbor (kNN). It is a commonly used entropy
estimator and has been reported to outperform for a small
number of data points typically of the order of 100-1000 across
noise levels [36]. Entropy via kNN is estimated [37] as

H (X) = 1

N

N∑

i=1

ln �iψ(k)+ ln v + ln N (8)

where N and k are the number of samples and nearest
neighbor, respectively. �i = �xi − kxi� is the kth neighbor-
hood distance and ψ is digamma function. The volume of the
one-dimensional unit ball (v) is defined as

v = π1/2

	
( 1

2 + 1
) , (9)

where 	 is the gamma function.
To account for bias-variance trade-off, we selected k = 3

from optimal values of 2–4 [36]–[38]. kNN-based entropies
were estimated using the ITE toolbox [39]. Mutual informa-
tion, however, was estimated from marginal entropies of EEG
time series X and Y , and their joint entropy.

G. Phase Synchronization Index

An analytic time series Z for a univariate EEG time series
X is defined as

Z = X + jH [X] = Ae jθ , (10)

where A and θ = tan−1
(H[X ]

X

)
are the instantaneous ampli-

tude and instantaneous phase (IP) of X respectively, and H [X]
is the Hilbert transform of X .

The analytic time series Z is calculated in three steps
[40], [41] by: (1) taking the discrete Fourier transform (DFT)
Y of the time series X , (2) doubling the positive frequency
bins and zeroing the negative frequency bins, and (3) taking
the inverse discrete Fourier transform (IDFT) Z of Y . This
results in phase shift (delay) of π /2 which does not alter the
spectral distribution of the signal and, therefore, the Hilbert
transform can be regarded as an all-pass filter.

The mean phase coherence (MPC) is the most commonly
used and suitable PSI for analyzing EEG signals at low
sampling rates [41] and is estimated as

λ =
∣∣∣�e jπ �N

∣∣∣ , (11)

where �.�N is the expectation over samples (window size), and
φ is the IP difference, also known as relative phase between
the two equal lengths EEG time series X and Y, defined as
φ = θX − θY .

H. Features Preprocessing

There can be a considerable difference in EEG signals and
reaction times over different subjects and sessions. Together,
these usually result in varying and subject-specific distribu-
tions and, consequently, poorer classification performances.
At the start of each session, all subjects are generally alert
and responsive, and, for the same task, homogeneity in EEG
signals and reaction times can be assumed. Thus first 2 min of
features were treated as baselines and averages thereof were
subtracted from the respective feature sets in that session.
The aim of this was to match data means without affecting
their distributions. In contrast, the standard normalization of
features changes data distributions and can, therefore, remove
some of the information. Thus, features are not divided by the
standard deviations of first 2 min.

I. Features Selection

M channels of EEG decomposed into B sub-bands gives
B∗M(M−1)

2 pairwise inter-channel relationships, i.e., 600 fea-
tures per epoch in each feature set. Large numbers of features
can introduce high variance in test results, and redundant
and irrelevant features can substantially deteriorate classifica-
tion performance. Features were therefore selected from each
training set (i.e., concatenated data from 7 subjects). Initially,
a subset of features was created by pruning the linearly-
correlated features (|r | > 0.9). Finally, features were selected
by using the sequential forward selection (SFS) [42] method.
A Fisher-score-based filter [43] was used to rank the features
of the subset as per their individual discriminatory power and
the best single feature was selected. LDA-based wrapper was
then used to sequentially select the ranked features. AUCROC,
due to its robustness under skewed-class distributions [44] was
used as the performance metric (objective function). The mean
AUCROC of the 5-fold cross-validation with the top-ranked
feature was calculated and saved. The successive feature was
then combined with the top-ranked feature and selected if the
combined mean AUCROC was improved, otherwise, it was dis-
carded. The process was iterated until a stopping criterion was
met. At every iteration, based on relative AUCROC, a feature
was either selected or discarded. In this study, the stopping
criterion was a logical OR of a maximum number of selected
features (70) and allowed number of successive iterations (70)
in which no performance improvement was observed.

J. Classification

Nonlinear classifiers have a computational complexity of
O(N3) [45], [46], where N is the number of training instances,
and propensity to over-fit [47], which can be avoided at
extra computational costs involved in selecting optimal values
of a regularization and kernel parameters. For large and
high-dimensional data sets, linear classifiers have, however,
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Fig. 2. Prediction of gold standard (microsleep and responsive state)
from corresponding EEG epoch. Prediction time is represented by τ ,
which in this research is 0.25s. Events comprise a varying number of
states and, hence, are of variable length.

resulted in similar performances to nonlinear classifiers and
are fast [48]. The average data length in this study is
∼ 121,000 samples per training session and feature set, where
nonlinear classifiers become infeasible to use.

Two linear classifiers – LDA and LSVM – were therefore
used to validate the efficacy of a feature set in predicting
microsleep states and to compare their prediction accuracies.
An LDA classifier assumes each class density as multivariate
Gaussian with a common covariance-matrix that leads to a
linear-decision boundary. An LSVM finds an optimal linear
decision boundary that maximally separates the training data
into different classes and leads to good test classification
performance [47].

To attain a generalized microsleep prediction system, both
classifiers were trained on concatenated data from 7 training
subjects and tested on the 8th subject via the leave-one-subject-
out cross-validation.

An algorithm-based approach referred to as cost-sensitive
learning [49] was employed by considering both classes as
equally important (or equal misclassification cost) to account
for class imbalance ratio in the training data sets. Equal prior
probabilities (0.5) were therefore assigned to both classes in
the decision.

The prediction of microsleep states was 0.25 s ahead of the
gold standard, with a temporal resolution of 0.25 s as shown
in Fig. 2.

K. Performance Evaluation

Performance evaluation was based on data from the 8 test
subjects. Average values of widely used performance met-
rics of sensitivity, specificity, precision, Matthew’s correlation
coefficient (phi), AUCPR, and AUCROC from 8 independent
test subjects are reported here.

Sensitivity, precision, and specificity values alone are biased
and can be misleading [50]. These performance metrics were
therefore combined into a single widely-used performance
metric of phi for imbalanced biomedical data [51], [52] and
was subsequently used to demonstrate the effect of feature
preprocessing.

TABLE II
AVERAGE NUMBER OF FEATURES SELECTED

FROM EACH PROCESSED FEATURE SET

The paired non-parametric Wilcoxon signed-rank test [53],
was systematically used to compare prediction performances
of all feature sets and both classifiers. The threshold-dependent
performance metric of phi [52] and threshold-free metrics of
AUCPR and AUCROC, were used in the comparisons. AUCPR
is sensitive [54] while AUCROC is insensitive [44] to the class
distributions.

The feature sets were divided into two groups: normalized
(correlation, coherence, mutual information, and phase
synchronization index) and non-normalized (covariance,
cross-spectral power, and joint entropy). The hierarchy of
comparisons was (1) inter-group, i.e., normalized feature sets
versus their non-normalized counterparts, (2) within-groups,
and (3) between classifiers. Phase synchronization index
was excluded from the inter-group comparison as it has no
non-normalized counterpart.

The effects of class imbalances and prediction times on the
phi metric were also assessed for both classifiers and feature
sets from the best performing group.

L. Discriminatory Features

The numbers and durations of microsleep events for each
subject over the 2 sessions (see Table I) varied considerably.
Features selected from training data of concatenated subjects
varied considerably in each round of leave-one-subject-out
cross-validation. Drawing conclusions from the selected fea-
tures is inappropriate and can lead to wrong interpretations.
A greedy forward step-wise wrapper method was used to find
top and consistent discriminatory features across all subjects.
Initially, an LDA classifier was trained on each of joint entropy
features of concatenated data from 7 subjects, tested on data of
test subject, and the corresponding AUCROCs were recorded.
AUCROCs of 8 iterations were averaged and the feature with
the highest AUCROC was saved. The process was then repeated
for each of the remaining features. At each step, the feature
resulting in the highest AUCROC was added to the selected
features. This procedure continued until a stopping criterion
was met. In our case, a maximum of 10 features was used as
the stopping criterion.

III. RESULTS

The number of features selected from each feature set are
shown in Table II.
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TABLE III
MICROSLEEP PREDICTION (0.25 s) PERFORMANCES (MEAN ± SE) OF UNPROCESSED FEATURE

SETS WITH LDA AND LINEAR SVM CLASSIFIERS

TABLE IV
MICROSLEEP PREDICTION (0.25 s) PERFORMANCES (MEAN ± SE) OF PROCESSED FEATURE SETS WITH LDA AND LINEAR SVM CLASSIFIERS

The mean prediction performance metrics for each
unprocessed feature set (i.e., without demeaning with respect
to the first 2 min baseline) with LDA and LSVM classifiers are
presented in Table III. While the mean prediction performance
metrics for each preprocessed feature set with both classifiers
are presented in Table IV.

In all tables and figures, Cov, Corr, WCPS, Wcoh, JE,
MI, PSI, and WSP represent features extracted using covari-
ance, correlation, wavelet cross-spectral power, wavelet coher-
ence, joint entropy, mutual information, phase synchronization
index, and wavelet spectral power respectively.

The feature preprocessing with LDA and LSVM classifiers
improved the mean phi by (20.5%, 19.4%, 8.6%) and (109.5%,
48.1%, 17.6%) respectively on (joint entropy, wavelet cross-
spectral powers, covariance) features. Conversely, feature

preprocessing with LDA and LSVM classifiers dropped the
mean phi by (7.1%, 10.0%, 18.2%) and (20.0%, 14.2%,
24.0%) respectively on (correlation, wavelet coherence, phase
synchronization index). Phi of mutual information features
with both classifiers, however, remained unaffected by the
feature preprocessing step.

In terms of AUCROC, AUCPR, and phi, inter-group
comparisons for both classifiers showed superior performances
of preprocessed non-normalized features to their respective
normalized counterparts (all ps ≤ 0.016). Within-group
comparisons, however, showed no significant differences,
except for LDA classifier, where joint entropy was superior
(all ps ≤ 0.02) to covariance and correlation was superior
(all p ≤ 0.046) to phase synchronization index. Similarly,
between-classifiers comparisons showed no significant
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Fig. 3. Phis of non-normalized feature sets for the 8 test subjects,
ordered with respect to class imbalance ratios (number of microsleep
states vs number of responsive states) of 1:813.40 – 1:2.26

difference, except for joint entropy where LDA had higher
phi coefficient compared to LSVM (p = 0.031) but had lower
phi for mutual information (p = 0.047) and lower AUCROC
for phase synchronization index (p = 0.047).

The mean prediction (at τ = 0.25 s), AUCROC, AUCPR,
and phi performances of both preprocessed cross-spectral
power and joint entropy features, compared to preprocessed
power-spectral features extracted from individual EEG time
series, were higher. However, mean prediction performances
of covariance features were comparable to power-spectral
features.

Overall, joint entropy feature set gave the best performance
metrics followed by wavelet cross-spectral power and covari-
ance feature sets.

Fig. 3 shows that, for both classifiers and across the non-
normalized preprocessed features, the prediction accuracy phi
was anti-correlated (r = −0.48 – −0.60) to the imbalance
ratio – i.e., phi increases as the imbalance between microsleep
and responsive states decreases.

Fig. 4 shows that for LDA and LSVM classifiers, the aver-
age rate of performance drop, phi, for (joint entropy, wavelet
cross-spectral power, covariance) against the prediction time
was (−0.024, −0.040, −0.040) and (−0.020, −0.030, −0.030)
respectively. The corresponding correlations between phi and
prediction time were (−1.00, −1.00, −0.94) and (−0.97,
−0.97, −0.88).

Using leave-one-subject-out cross-validation to evaluate
microsleep prediction performances on unforeseen data, each
subject was used once as a test subject while the rest were
used for the training.

Fig. 4. Average phi of non-normalized feature sets against the prediction
time (τ ) s.

Fig. 5. Top 10 discriminatory features (frequency band) and correspond-
ing AUCROC.

Based on leave-one-subject-out cross-validation, all best
discriminatory features were from the theta frequency band.
Joint entropies between T6-O2 and P3-C4 were always
among the top 10 discriminatory features, whereas, between
P3-P4, T6-P4, F7-O2, and T5-P3 6 times. Cross-spectral
power between P4-O2 was always in the top 10 discriminatory
features, whereas, between F7-F8 and O1-O2 7 times, and
between F7-T4 and O2-T4 6 times. Covariances between
P4-O2 and P3-O1 were always in the top 10 discrimina-
tory features, whereas, between F7-F8, O1-O2, T6-C3, and
T5-O1 7 times.

The top 10 discriminatory/informative features across the
study are shown in Fig. 5, where joint entropy between O1-O2
from theta band was the most discriminatory feature.
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IV. DISCUSSION

To the best of our knowledge, we are the first to have
explored the use of different EEG inter-channel relationships
as feature sets of a classifier in the prediction of microsleep
states. Furthermore, we have obtained the highest detection
and prediction performances seen for microsleep states.

Feature preprocessing (baseline correction/demeaning) led
to a substantial improvement in prediction phis for non-
normalized feature sets. Except for mutual information,
it worsened prediction phis for normalized feature sets.

The standard normalization process requires the mean and
variance of the full data and, therefore, is not practical in real-
time implementations [6]. The effect of noise (outliers) on the
training data is global and the test data normalized with respect
to the noisy training data also become noisy. In contrast,
demeaning the data with respect to the first 2 min of each
session is local with respect to that session. Furthermore,
with our technique, training and test data are independently
preprocessed and similar global means are retained.

Irrespective of the classifier, non-normalized preprocessed
feature sets resulted in higher prediction accuracies than
spectral features [9], [10], wavelet power-spectral features,
and normalized counterparts on performance metrics of phi,
AUCPR and AUCROC. Of these, joint entropy, on average
and across both classifiers, outperformed all other feature
sets. However, covariance with LSVM showed the lowest rate
of performance drop against prediction time (τ ). The phi
performances of all non-normalized feature sets and across
both classifiers had a similar adverse effect with increasing
imbalance ratio.

Despite normalized feature sets being used extensively in
functional connectivity analyses [17], [18], [55], their poorer
prediction performances can be due to the inherent property
of being scale(amplitude)-invariant, and consequently, a loss
of classification-related information. Furthermore, irrespective
of the task, brain regions are likely to be synchronized at
times. A change in the level of such synchronization may only
be time-locked to some events. Similarly, communication
between brain region may be independent of synchronization
between them. In such a scenario, brain regions can
be considered as cognitive sources and sinks, and the
communication can be asynchronous, simplex, or half-duplex.
Phase-locking between the two signals may occur even
if their amplitudes remain uncorrelated, and noisy signals
exhibit random phase slips [56]. Similarly, because of the
normalization process, spurious peaks in wavelet coherence
can occur for areas of low individual wavelet powers [35].
Furthermore, changes in EEG amplitude and frequency
are directly correlated with behavioral performances and
circadian rhythms [57], [58]. Conversely, non-normalized
feature sets are scale-variant, and consequently, have the
better classification-related information.

The anti-correlation between phi and prediction time indi-
cates the presence of microsleep-related information prior to
microsleep which lessens as one gets farther ahead of the
microsleep.

Both LDA and LSVM classifiers resulted in compara-
ble mean values of AUCPR and AUCROC. However, LSVM

resulted in higher average values of sensitivity than LDA
but at the cost of specificity and precision. Peiris et al. [6]
reported that stacking of 7 LDA classifiers with spectral power
features resulted in a similar level of performance to that of
an RNN [1]. Likewise, results presented here show that the
detection performance (i.e., τ = 0 s in Fig. 4) of a single
LDA classifier with joint entropy features is, on average, better
than that of 7 stacked ESN with spectral features [8] (i.e.,
phi of 0.48 vs 0.44). In addition to large datasets [48], linear
classifiers have often given similar [59] or better [60], [61]
performances on EEG and fMRI-based small data sets, than
nonlinear classifiers. This indicates that linear classifiers are
more robust and less susceptible to overfitting than nonlinear
classifiers. Overall, similar and/or superior performances of
LDA classifiers, in these studies support the argument that
simple-decision boundaries and estimates via Gaussian models
are stable [47] and that this is even more evident in imbalanced
datasets.

Selection of best discriminatory features from theta subband
is in accordance with the findings that theta activity is associ-
ated with drowsiness/microsleeps [1], [2], [4], [6], [21], [62].

Similarly, the top 10 non-normalized features from left
and right parietal, left and right frontal, and occipital regions
correspond to changes in connectivity during, and prior to the
onset of, microsleeps [21] and microsleep-related eye closures
[62]–[64].

The mean test AUCROC(≥ 0.92) of non-normalized feature
sets indicate that EEG-based microsleep state predictors can
be used in applications that demand equally for sensitivity and
specificity.

Our results suggest a way forward in using EEG inter-
channel relationships as features in classifying microsleep
states. The results boost the importance of considering non-
normalized inter-channel relationships over commonly used
normalized ones or spectral features. Joint entropy features
gave the best mean performances across both classifiers and
can be considered as an out-of-the-box choice.

Feature preprocessing with respect to the first 2 min can
substantially improve the classification performances of long
and imbalanced data.

Notwithstanding our achievements towards prediction of
microsleeps, there is still some way to go to real-
ize the accuracy desired for implementation in real-life
applications.
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