
  

 

Abstract— Microsleeps are brief and involuntary instances 

of complete loss of sleep-related consciousness.  We present a 

novel approach of creating overlapping clusters of subjects and 

training of an ensemble classifier to enhance the prediction of 

microsleep states from EEG. Overlapping clusters are created 

using Kullback-Leibler divergence between responsive state 

features of each pair of training subjects. Highly correlated 

features within each overlapping cluster are discarded. The 

remaining features are selected via Fisher score based ranking 

followed by an average of 5-fold cross-validation areas under 

the curves of receiver operating characteristics (AUCROC) of a 

linear discriminant analysis (LDA) classifier. The decisions of 

LDA classifiers on overlapping clusters are fused using 

weighted average. We evaluated this new approach on 16- 

channel EEG data from 8 subjects who had performed a 1-D 

visuomotor task for two 1-h sessions. Joint entropy features 

were extracted from a 5-s window of EEG with steps of 0.25 s. 

Test performances were evaluated using leave-one-subject-out 

cross-validation. Our ensemble of overlapping clusters of 

subjects achieved a mean prediction performance, phi, of 0.42 

compared with 0.39 for a single LDA classifier and 0.37 for 

generalized stacking.  

I. INTRODUCTION 

Microsleeps are complete and unintentional sleep-related 
losses of consciousness of up to 15 s. Behavioural cues of 
microsleeps are eye closure, droopy eyes, and loss of 
visuomotor responsiveness [1, 2]. Although sleep restrictions 
increase the propensity of falling asleep, studies have shown 
that non-sleep-deprived and healthy people can also have 
frequent microsleeps [2, 3]. Drowsiness and fatigue 
substantially contribute to road crashes [4, 5]. The duration of 
microsleeps has also been reported to be highly correlated 
with the probability of accidents [6]. Microsleeps impair 
human performances to the extent that they can be fatal in 
extended-attention monotonous activities such as driving.  
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Microsleep related accidents can potentially be averted if 
they can be non-invasively and accurately predicted. 

Irrespective of feature reduction, feature selection, and 
classification techniques, the spectral components of EEG 
have frequently been used as features to analyze [7], detect 
[1, 8, 9], and predict [10, 11] microsleep states. However, we 
have found that pairwise joint entropy features were able to 
improve the prediction performance metrics (phi by 15% and 
AUCROC by 3% ) [12].  

It has been well demonstrated that an ensemble 
learner/classifier, i.e., a combination of multiple classifiers, 
performs better than a single classifier [8, 9, 13, 14]. The 
creation of an ensemble classifier is based on the fusion of 
decisions from multiple classifiers and is constrained by 
uncorrelated classifier errors (diversity) [15]. Bootstrap 
aggregating (bagging), boosting, and generalized stacking are 
widely used ensemble techniques in machine learning 
literature. The diversity is achieved by training different (i.e., 
heterogeneous) classifiers on the same data set or using 
different partitions/subsets of the data to train the same 
classifier models. Data partitions are generally achieved 
through clustering techniques. The final decision is typically 
a majority or weighted vote of the individual decisions.  

When the data of each training subject is large (e.g., > 
10,000 feature points), a simple way of clustering is to treat 
the data of each subject as a cluster. Both Peiris et al. [8] and 
Ayyagari et al. [9] stacked the training subjects with multi-
response linear regression (MLR) on pruned data to detect 
microsleep states at a resolution of 1.0 s. They achieved phis 
(stacked vs single classifier) of 0.39 vs 0.31 with 7 linear 
discriminant analysis (LDA) classifiers and 0.51 vs 0.38 with 
7 leaky echo state network (ESN) classifiers respectively. 
Rahman et al. [15] partitioned the training data into 
overlapping clusters by repeatedly running the k-means 
algorithm, where each repetition was called a level.   

The overall performance of stacked generalization based 
on data of individual training subjects may be limited when 
different subjects respond to a common task in a similar way. 
While its practicability may be a serious challenge when the 
number of training subjects grows. In a similar way, k-means 
clustering practically becomes a time consuming and 
redundant processing step if large data from different training 
subjects are concatenated.  Besides, both numbers of clusters 
and levels are unknown in k-means based overlapping 
clusters.  

In this paper, we propose a novel approach of ensemble 
learning that depends on overlapping clusters of training 
subjects and weighted voting. The idea is to create 
divergence-based overlapping clusters of individual training 
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subjects. Divergence is a measure of dissimilarity between 
two distributions. If subjects X and Y, and subjects Y and Z 
respond to a common task in a similar way. Two clusters can 
intuitively be created that share the data of subject Y but, yet, 
still result in uncorrelated posterior probabilities. Two 
clusters of individual subjects, one being a subset or superset 
of the other cluster, are also likely to result in uncorrelated 
posterior probabilities due to different data distributions. This 
approach can be considered as an extension of weighted 
voting by clustering data in terms of individual training 
subjects. 

This paper presents the concept of ensemble learning 
based on overlapping clusters of training subjects, and 
compares prediction performances (sensitivity, precision, phi, 
AUCPR, and AUCROC) with a single LDA classifier and with 
generalized stacking. 

II. METHODS 

A. Data 

Fifteen non-sleep-deprived healthy subjects, aged 18-36 
yr, used a steering wheel to track a 1-D pseudorandom target 
cursor as accurately as possible for two 1-h sessions, one 
week apart. During the task, EEG at 256 Hz, facial video at 
25fps, and tracking error at 64 Hz were recorded. 16 EEG 
channels, namely Fp1, Fp2, F3, F4, F7, F8, C3, C4, O1, O2, 
P3, P4, T3, T4, T5, and T6 were placed per the international 
10–20 system [2]. Data for the current study were from the 8 
subjects who had at least one definite microsleep over the 2 
sessions. 

B. Gold Standard 

Facial video and tracking error were used to form a gold 
standard, which comprised three classes: microsleep, 
responsive, and uncertain [10]. Incoherent tracking or 
unresponsiveness, along with a video rating of deep 
drowsiness was marked as a microsleep. Coherent tracking, 
irrespective of video rating was marked as a responsive. 
Data that could not be explained by either microsleep or 
responsive was marked as uncertain and discarded at the 
feature selection stage.   

C. Feature Extraction and Preprocessing 

Bandpass filtering of 1–45 Hz and artefact subspace 
reconstruction (ASR) were used to remove artefacts from the 
EEG [10]. The EEG signals were then decomposed into 
delta (0.5–4 Hz), theta (5–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), and gamma (30–45 Hz) sub-bands, following the 
common average reference. Following the decimation to 128 
Hz, EEG signals from each subband were segmented to 5 s 
epochs and with a step size of 0.25 s. Joint entropy features 
were extracted from each pair of EEG channels for each 
epoch and each subband. Joint entropy via k-nearest 
neighbour (kNN) with k = 3 was estimated as [16]  

𝐻(𝑋) =
𝑑

𝑁
∑ ln 𝜖𝑖

𝑁

𝑖=1

− 𝜓(𝑘) + ln 𝑣 + ln 𝑁, (1) 

where N is the epoch length (i.e., 640 samples), d is the 
dimension of EEG time series X, 𝜖 is the distance between a 
sample point and its kth neighbourhood, 𝜓 is the digamma 

function, and 𝑣 is the volume of a d-dimensional unit ball 
defined as 

𝑣 =
𝜋𝑑/2

Γ (
𝑑
2

+ 1)
, (2) 

where Г is the gamma function. 

D. Overlapping Clustering 

Training subjects were grouped into overlapping clusters 
according to the mean value of divergences between their 
responsive state features over alpha sub-band. Symmetric 
Kullback-Leibler divergence defined as 

𝐷𝐾𝐿 =  𝐷𝐾𝐿(𝑃||𝑄) + 𝐷𝐾𝐿(𝑄||𝑃) (3) 

was calculated via kNN (k = 3) using ITE toolbox [17]. The 
Kullback-Leibler divergence is defined as 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃𝑖 ∗

𝑁

𝑖=1

ln
𝑃𝑖

𝑄𝑖

, (4) 

where P and Q are the probability distributions and N is 
number of responsive state features of a training subject. 

The divergence matrix was then normalized with respect 
to the maximum value. Subjects of each row of the 
normalized divergence matrix were clustered if their 
normalized divergence was below a threshold of 0.15. 
Redundant clusters, i.e., clusters containing the same 
subjects, were discarded.  

E. Feature Selection 

M channels of EEG decomposed into B sub-bands gives 
0.5BM(M-1) pairwise joint entropy features, i.e., 600 features 
per epoch. Irrelevant and redundant features result in poor 
classification performances. Features were therefore 
independently selected from the whole concatenated training 
data set for the single classifier, from each training subject 
data for generalized stacking, and from each cluster for 
ensemble of overlapping clusters of training subjects.  

Linearly-correlated features (|r| > 0.9) from the training 
data set were discarded and the remaining features were 
sorted according to their Fisher scores. A higher Fisher score 
indicates a higher discrimination between classes. Features 
were then incrementally selected using 5-fold cross-
validation AUCROC of an LDA classifier. The process was 
initiated by computing and then saving the mean AUCROC of 
the top-most feature. The process was iterated by combining 
the successive feature with the top-most feature and selecting 
it if the combined mean AUCROC was improved, otherwise, it 
was discarded. 

F. Classification 

In all approaches, LDA classifiers were trained on 
different combinations of data from 7 training subjects and 
tested on the 8th subject via the leave-one-subject-out cross-
validation. Priors were incorporated to address the class 
imbalance in the training data sets. Prediction of microsleep 
was 0.25 s ahead of the gold standard, as shown in Fig. 1. 
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In the single classifier approach, training data of 7 
subjects were concatenated. In generalized stacking one base 
(level-0) classifier per subject whereas, in ensemble of 
overlapping clusters of subjects, one classifier per cluster was 
used. 

G. Fusion 

The decision of individual classifiers on overlapping 
clusters were fused using weighted voting according to 

�̂� =  
1

𝑑
∑ 𝑎𝑖𝑃(𝐶|𝑋, 𝑘𝑖)

𝑑

𝑖=1

, (5) 

where d is the number of overlapping clusters k, a is the 
weight assigned to the posterior probabilities P of individual 
classifiers. C and X are the test class and test features 
respectively. Each weight was the reciprocal of the mean 
distance between a test point and centroids of the overlapping 
clusters of subjects. The weights are normalized with respect 
to their maximum values.  

The decisions of individual base classifiers on training 
subjects were fused using meta (level-1) classifier. MLR was 
used as a meta classifier as it has proven to be an optimal 
level-1 classifier when fed with posterior probabilities (meta 
features) of the base (level-0) classifiers [13].  

To address class imbalance at level-1 synthetic minority 
oversampling (SMOTE) was applied to the meta features. 
Coefficients (weights) of MLR and thresholds (to convert the 
continuous output of MLR into binary) were obtained via 
leave-one-training subject-out cross-validation. A threshold 
(from a range) at each cross-validation step was selected that 
gave the maximum correlation coefficient between MLR 
output and the cross-validation labels. 

III. RESULTS 

Leave-one-subject-out cross-validation resulted in 8 
training and test sessions. On average, our approach of 
overlapping clusters of subjects resulted in 3.9 (3-4) clusters 
per training session. In contrast, generalized stacking used 7 
clusters in all the training sessions. 

Metrics of microsleep state prediction performance (0.25 
s ahead with a temporal resolution of 0.25 s) are presented in 
Table I.  Both generalized stacking and ensemble of 
overlapping clusters of subjects gave better mean precision, 
AUCROC and AUCPR than the single classifier approach. 
However, our proposed approach resulted in the best 

compromise between sensitivity and precision as indicated by 
a superior mean phi of 0.42.  

Fig. 2 shows that phi accuracy is linearly related to the 
balance ratio between the classes. Subject-wise phi shows 
that our proposed ensemble of overlapping clusters of 
training subjects is effective in large class imbalance. 

IV. DISCUSSION 

An ensemble of base classifiers trained on overlapping 
clusters of training subjects is proposed. To the best of our 
knowledge, joint entropy features combined with ensemble 
of overlapping clusters of subjects has resulted in the highest 
prediction phi of microsleep states. 

Overlapping clusters are created using mean value of 
symmetric Kullback-Leibler divergences between joint 
entropy features of the training subjects. Features 
corresponding to the majority (responsive) class are chosen 
to get stable probability distributions involved in the 
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Fig. 1. Prediction of gold standard from corresponding epoch. 
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Fig. 2. Phi accuracy of different approaches for the independent test 

subjects, ordered with respect to their class imbalance ratios (number of 

microsleep states vs number of responsive states) of 1:813.40–1:2.26. 

TABLE I 

MEAN, MINIMUM, AND MAXIMUM MICROSLEEP PREDICTION 

PERFORMANCE (0.25 S) WITH DIFFERENT CLASSIFICATION 

APPROACHES. 

 
Single 

classifier 
Generalized 

stacking 
Overlapping 

clusters 

Sensitivity 
0.71  

(0.35-1.00) 
0.59 

(0.06-1.00) 
0.68  

(0.24-1.00) 

Specificity 
0.90  

(0.58-0.99) 
0.91  

(0.64-1.00) 
0.94  

(0.73-1.00) 

Precision 
0.33  

(0.00-0.95) 
0.45  

(0.02-0.97) 
0.41  

(0.02-0.98) 

Phi 
0.39  

(0.04-0.80) 
0.37 

 (0.05-0.87) 
0.42  

(0.06-0.88) 

AUCPR 
0.45  

(0.02-0.96) 
0.50  

(0.02-0.97) 
0.49  

(0.02-0.98) 

AUCROC 
0.94 

(0.89-0.98) 
0.96  

(0.92-0.99) 
0.95  

(0.91-0.99) 
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divergence. Features corresponding to minority class require 
less processing power but may result in fluctuating estimates 
of probability distributions for extremely small and varying 
number of sample points among different training subjects. 

The slightly poorer phi performance of generalized 
stacking can be an indication of overfitting or lack of 
diversity among the base classifiers relative to a single 
classifier.  

Practically, the ensemble of overlapping clusters of 
subjects can be advantageous over generalized stacking as it 
requires one classifier per cluster, whereas generalized 
stacking requires one base classifier per subject and one 
meta classifier per training session. A new training subject, 
irrespective of imbalance ratio, can easily be accommodated, 
based on its divergence with the other training subjects.  

Compared to our previous work [12], with a single LDA 
classifier, slight improvement in mean sensitivity, phi, and 
AUCROC could be due to an increased number of folds in 
cross-validation to select features in the training sessions.  

Irrespective of the classification approach, mean 
sensitivity, specificity, and test AUCROC (≥ 0.94) indicates 
that EEG-based microsleep state predictor incorporated with 
joint entropy features can confidently be used in critical 
applications in which prediction of true microsleep state is 
much more important than false microsleep state. 

V. CONCLUSION 

In this paper, we have presented a novel approach to 
create and train an ensemble classifier based on overlapping 
clusters. In this approach, base classifiers are trained on 
overlapping clusters obtained by grouping the data of 
different training subjects who performed similarly during 
all or most the task. The posterior probabilities of base 
classifiers are fused using weighted voting. The proposed 
approach resulted in better average phi metric compared to 
the single classifier and generalized stacking.   

Despite these achievements, there is still some way to go 
to realize the accuracy desired for implementation in real-
life applications.  
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