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Abstract

Objective: A multi-stage system for automated detection of epileptiform activity in the EEG has been developed and tested on pre-

recorded data from 43 patients.

Methods: The system is centred on the use of an arti®cial neural network, known as the self-organising feature map (SOFM), as a novel

pattern classi®er. The role of the SOFM is to assign a probability value to incoming candidate epileptiform discharges (on a single channel

basis). The multi-stage detection system consists of three major stages: mimetic, SOFM, and fuzzy logic. Fuzzy logic is introduced in order to

incorporate spatial contextual information in the detection process. Through fuzzy logic it has been possible to develop an approximate

model of the spatial reasoning performed by the electroencephalographer.

Results: The system was trained on 35 epileptiform EEGs containing over 3000 epileptiform events and tested on a different set of eight

EEGs containing 190 epileptiform events (including one normal EEG). Results show that the system has a sensitivity of 55.3% and a

selectivity of 82% with a false detection rate of just over seven per hour.

Conclusions: Based on these initial results the overall performance is favourable when compared with other leading systems in the

literature. This encourages us to further test the system on a larger population base with the ultimate aim of introducing it into routine clinical

use. q 1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The spike detection problem can be simply put: detect the

presence of epileptiform discharges (EDs) in the multichan-

nel EEG recording with high sensitivity and selectivity.

That is, a high proportion of true events must be detected

with a minimum number of false detections. Although desir-

able, it is not realistic to expect sensitivities and selectivities

of 100%±if for no other reason than the imprecise de®nition

of a spike. The lack of a proper de®nition of the `ideal'

spike, other than `transients clearly distinguished from

background activity with pointed peaks at conventional

paper speeds and a duration from 20 to under 70 ms approxi-

mately' (for sharp-waves the duration is of 70±200 ms)

(Chatrian et al., 1974), has rightly caused many researchers

to ask: What does the EEGer look for when visually detect-

ing EDs in the EEG?

Many researchers have attempted to answer this question

by extracting features from the raw EEG which, in their

opinion, best describe the ED morphology±i.e. mimetic

approaches. Others have opted to use arti®cial neural

networks (ANNs) as a means of utilising the raw EEG with-

out having to make any decision as to what parameters are

more important than others in detecting EDs are. OÈ zdamar

et al. (1991) state that the use of pre-processing to extract

parameters biases the system and defeats the very purpose

of a totally trainable system when utilising ANNs. Conver-

sely, Webber et al. (1994) report better results, in terms of

accuracy and speed of spike detection, through the use of
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parameterized EEG as opposed to raw EEG but then go on

to suggest that the network may need more raw test data to

abstract identifying features from EDs.

In mimetic approaches, values for peak amplitude, pre-

peak slope and post-peak slope, durations, 2nd derivatives,

etc., are extracted (such as Gotman and Gloor (1976);

Ktonas et al. (1981); Ktonas et al. (1984)). In the parametric

approach, the sharpness of the ED is used in a statistical

setting where the transient or non-stationary nature of the

ED is used as a criterion for detection when compared to the

(assumed) stationary background (Lopes da Silva et al.,

1977). The sharpness of the spike, compared to the back-

ground, should also result in a differing spectral content,

with more energy being found in the `higher' frequencies.

Wavelet analysis can be utilised as a means of providing

time-frequency signal analysis capabilities (Schiff et al.,

1994; Kalayci and OÈ zdamar, 1995).

It is well established that, apart from the ED itself, other

contextual information is also vital to the EEGer when clas-

sifying events as ED/non-ED. These are mainly spatial

information, such as What is happening in other channels

at the same time as a candidate ED? and wide-temporal

information such as Are there similar events with similar

distribution elsewhere in the EEG? Although it is well

known that EEGers use spatial information in the process

of identifying epileptiform events (EVs)1 just `what' form

the spatial cues take is not immediately identi®able. It is,

therefore, somewhat surprising that most of the spike detec-

tion systems reviewed work on a channel-by-channel basis

(i.e. no spatial or wide-temporal information is utilised).

However, Glover et al. (1989); Dingle et al. (1993) have

made use of both spatial and wide-temporal contextual

information, with a high degree of success, through their

use of expert systems. OÈ zdamar et al. (1991) make use of

spatial information by integrating the outputs of individual

channel spike detection ANNs (from four channels) into a

single ANN module trained to recognise the common spatial

distributions of EDs. Webber et al. (1994) also use four

channels simultaneously, including temporal contextual

information of a 1.0 s long window around the ED, in the

training of their ANN.

Since their inception, ANNs have been ideal candidates

for classi®ers, especially when little is known about the

underlying statistics of the input data and there is a need

to generalize to novel data. The ANN has, as mentioned

above, already featured in various spike detection systems

(OÈ zdamar et al., 1991; Gabor and Seyal, 1992; Jando et al.,

1993; Webber et al., 1994; Kalayci and OÈ zdamar, 1995).

However, in most cases, the ANN used has been a multi-

layer feed-forward network (such as the multi-layer percep-

tron) trained in a supervised manner±i.e. by repetitively

applying known classes of EEG segments to the ANN

until it is considered as being adequately trained (Webber

et al., 1994). This applies to systems that use raw EEG data

as input as well as features extracted from the raw EEG. The

action performed by these ANNs could be termed super-

vised classi®cation learning. The drawback is the require-

ment of a large training set of EDs that have been labelled

into classes a priori. This is not an easy task as there is often

disagreement, even amongst expert EEGers, on whether

candidate EVs are indeed epileptiform±i.e. lack of a gold

standard (Hostetler et al., 1992; Wilson et al., 1996; Black et

al., 1997; Black and Jones, 1998).

There is, however, a form of unsupervised classi®ca-

tion learning where no a priori knowledge is required

regarding an input's membership in a particular class.

Rather, gradually detected characteristics and a history of

training are used to assist the network in de®ning classes

and possible boundaries between them. Such unsupervised

classi®cation is called clustering and the ANN is known

as a self-organizing ANN. As there is no information

available from the teacher on the desired classi®er's

responses, the similarity of incoming patterns is used as

the criterion for clustering. Each cluster contains patterns

of similar features.

A popular self-organising ANN is Kohonen's self-orga-

nising feature map (SOFM) (Kohonen, 1990; Kohonen,

1995). The SOFM has many applications, mainly in pattern

recognition, many of which are described in Kohonen

(1995). The SOFM is a single layered ANN whose weight

vectors are adjusted in an unsupervised manner as inputs are

presented randomly from a training set. Once training is

complete, the spatial location of a neuron in the network

then corresponds to a particular feature, or group of features,

in the input patterns. The results achieved seem very natural,

indicating that the adaptive processes at work in the SOFM

may be similar to those at work in the brain. In terms of

parameters, the SOFM is quite robust and through a small

set of (empirically obtained) parameters the training is

controlled well. A further re®nement to the SOFM by Koho-

nen is learning vector quantization (LVQ) (Kohonen, 1990).

Kohonen implements LVQ as a means of `®ne-tuning' the

SOFM when it is to be used as a pattern classi®er. LVQ is,

however, a supervised learning technique and is intended to

follow the implementation of SOFM.

Gabor et al. (1996); Gabor (1998) have applied the SOFM

to the seizure detection problem.

This paper presents a novel approach to the use of the

SOFM ANN in the spike detection problem. The multi-stage

system relies on two fundamental issues: (1) A set of `repre-

sentative' ED/non-ED waveforms is obtained through a

self-organized training process using `raw' EEG waveforms

(i.e. not parameterized ED waveforms); (2) considerable use

is made of spatial cues (and limited temporal cues) in the

multichannel EEG recording during the spike detection
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1 As some confusion arises from the use of the terms spike and epilepti-

form discharge (ED) in the literature, the convention adopted throughout

this paper is to use spike and ED interchangeably to refer to epileptiform

activity on a single channel and to refer to activity which is in evidence

across two or more channels as an epileptiform event (EV).



process. These measures result in a system with a minimal

false detection rate. The multi-stage system is described,

stage by stage, in the next section following which the

performance of the system is assessed on a `test set' of

EEGs.

2. Materials and methods

2.1. EEG recordings

The EEG was recorded by scalp electrodes placed accord-

ing to the International 10-20 system (Jasper, 1958). Sixteen

channels were recorded from bipolar montages. The ampli-

®ed EEG was bandpass ®ltered between 0.5 and 70 Hz using

a ®ve-pole analogue Butterworth ®lter, sampled at 200 Hz

and digitized to 12 bits. All data were stored for later off-line

processing.

Four bipolar montages were used: longitudinal, trans-

verse, longitudinal-transverse and circumferential. All

recordings were made while the patient was awake but rest-

ing and included periods of eyes-open, eyes-closed, and

extended periods of photic stimulation and hyperventilation.

Three recording protocols were used, depending on the age

of patients: (a) OVER5, (b) UNDER5 and (c) BABY. The

details of each protocol are described in Table 1.

2.2. Overall system

The spike detection system consists of three stages (Fig.

1). The mimetic stage extracts and thresholds parameters of

the EEG and presents raw candidate epileptiform discharges

(CEDs) to the second stage, a trained SOFM. The SOFM

has been previously trained on a large training set in a self-

organized fashion and results in an ordered set of weight

vectors based on the features extracted from the training

data. The trained SOFM then becomes a classi®er, assigning

class labels to inputs based on the information held in the

weight vectors of the SOFM. Both of these stages form a

single-channel ED detector and are repeated (in sub-sets of

4 channels) for each channel in the multichannel EEG. The

®nal stage incorporates the multichannel outputs of the

previous stages (i.e. spatial information) to give the ®nal

EV/non-EV output of the spike detection system. The

spatial combination of each of the individual single channel

outputs is performed by means of a fuzzy-logic rule-based

system. Through the use of fuzzy-logic it becomes possible

to model the logic of an EEGer when performing spatial

analysis. Each of the system's three stages is described in

detail in the following sections.

The system has been developed using the MATLAB (Ver

4.2c1) package (The Math Works Inc.) with the Neural

Network toolbox (Ver 2.0b) and the Signal Processing tool-

box (Ver 3.0b). For testing purposes the ®nal system was

further developed using the Microsoft Visual ``C11'' (Ver

4.2) programming language. The tests were performed on a

PC system with a Pentium processor running at 200 MHz.

Spike-detection was performed `off-line' on data stored on

hard disk.

2.2.1. Stage 1: mimetic

The purpose of the mimetic stage is to screen the incom-

ing EEG for CEDs, for subsequent presentation to the

SOFM. Thus this stage is primarily for data reduction and,

hence, it is imperative that it detects as many EDs as possi-

ble whilst rejecting most `obvious' non-ED waveforms. The

design is based on the mimetic systems of Gotman et al.

(1978); Dingle et al. (1993).

All channels are scanned for a positive or negative vertex
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Table 1

The protocols used in the routine clinical recordings of the EEG used for

training and testing, including OVER5, UNDER5 and BAB

Run Montage Duration

(s, approx.)

Adult protocol (OVER5)

1 Longitudinal 300

2 Transverse 100

3 Long-transverse 100

4 Circumferential 100

5 Longitudinal 300

6 Longitudinal±

(hyperventilation)

300

7 Longitudinal±

(photic stimulation)

100

Child protocol (UNDER5)

1 Longitudinal 200

2 Transverse 100

3 Long-transverse 100

4 Circumferential 100

5 Longitudinal 200

6 Longitudinal±

(photic stimulation)

60

BABY protocol

1 Longitudinal 500

2 Longitudinal±(photic

stimulation)

60

Fig. 1. A block diagram of the multi-stage spike detection system depicting

each subsystem, each comprising (i) a mimetic stage, (ii) a SOFM stage and

(iii) a fuzzy logic stage.



using a simple peak detection algorithm. Once a vertex is

found, a CED is de®ned as the 200 ms wave surrounding the

vertex and, from this, a number of parameters are extracted

(Fig. 2). We used parameters considered the most important

when distinguishing EDs from non-EDs (Gotman and

Gloor, 1976; Gotman et al., 1978; Gotman, 1980; Kof¯er

and Gotman, 1985; Dingle et al., 1993; Webber et al., 1994).

These are:

² amplitude Ap: The difference between the peak value and

the ¯oating mean, where the ¯oating mean is the average

value of the EEG over 75 ms centred on the peak;

² durations D1, D2 and D3: D1 and D2 represent the dura-

tions of each half-wave before and after the vertex. D3

represents the sum of D1 and D2. The half-wave durations

are measured from the vertex to the point where there is

more than a 60% drop in slope or a change in direction of

the slope;

² slopes S1 and S2: Slopes are measured before and after the

vertex. For waveforms of short durations (i.e. D1 , 20

ms or D2 , 20 ms) the peak-to-peak slope is calculated,

otherwise a least-squared estimate is obtained based on

four samples (excluding the peak sample);

² sharpness Sp: The sum of the magnitudes of the pre-

vertex and post-vertex slopes.

The parameters are passed through a set of thresholds and

a waveform that exceeds all thresholds is ¯agged as passed

thresholds. The threshold values are based on values deter-

mined by discriminant analysis by Dingle (1992) and are:

AMin
P � 16:8 mV, DMin

1 �� DMin
2 � � 10) ms, DMax

1 ��
DMax

2 � � 150 ms, DMin
3 � 20 ms, DMax

3 � 250 ms, SMin
P �

1:26 mV/ms.

The mimetic stage acts on all channels independently.

Once a waveform is found which exceeds all thresholds

the vertex of that waveform is called the primary vertex.

At that point all CEDs on the remaining channels (within 50

ms of the primary vertex), whether or not they exceed the

thresholds, are grouped so that together they make up a

candidate epileptiform event (CEV) which is passed on to

the next stage.

In keeping with the de®nition that an ED must be clearly

distinguishable from background EEG, contextual para-

meters are extracted from the 1.0 s segment of EEG about

which the vertex of each CED is centred (excluding the 200

ms of EEG describing the CED itself). The parameters are:

² average amplitude Â: The RMS difference between the

actual EEG and a ¯oating mean calculated over a 15

sample (75 ms) window;

² average duration D̂: The average peak-to-peak duration

of the half-waves (half-waves with a peak amplitude of

less than 4.2 mV are ignored);

² average slope Ŝ: The average magnitude of the slope

between consecutive samples.

Once the primary vertex has been found and the contex-

tual information extracted for each CED, the following

information is put forward to the following SOFM stage

for each channel:

1. CED: The CED for each channel is made up of a window

of `raw' EEG. As EDs are said to vary in duration from

70±200 ms, the ideal inputs to the system would consist

of a window of at least 200 ms of `raw' EEG (40 samples

at 200 Hz). An important characteristic of an ED is the

slow wave that often follows the spike. For a 200 ms

waveform, the vertex occurs roughly during the ®rst

third and the slow wave (if present) in the remaining

two thirds. Thus, a 41 sample (205 ms) window is

used, such that the maximum vertex is placed at the

14th sample (at approximately one third the way across);

2. contextual information: The three contextual parameters

(Â,D̂,Ŝ) for each CED;

3. ¯ag: A ¯ag is set for a CED which passes the thresholds

and reset otherwise.

2.2.2. Stage 2: self-organizing feature map

This stage consists of Kohonen's SOFM as described

earlier. The SOFM is a lattice type ANN (single layer)

whose neurons become speci®cally tuned to various input

signals through an unsupervised learning process. We

adopted a square two-dimensional SOFM of order N. The

synaptic weights of the SOFM are changed through a learn-

ing process known as Kohonen's learning rule which is

described brie¯y below (for a more detailed description

see Kohonen (1990)).

Consider the square two-dimensional array of neurons

of Fig. 3. All the inputs are connected in parallel to all

neurons i in the network (for i � 1; 2;¼;N2). Each

neuron has a corresponding weight vector given by mi �
�mi1;mi2;¼;min�T (where n is the width of the input vector).

The weight vectors mi are initially given small random

values. An input x �x � �x1; x2;¼; xn�T � is presented to the

array and the Euclidean distance is calculated between the

input x and each mi, such that:

x 2 mcj j � min
i
fjx 2 mijg

C.J. James et al. / Clinical Neurophysiology 110 (1999) 2049±20632052

Fig. 2. The parameters extracted from around a vertex (on a single channel)

by the mimetic stage that will be thresholded in order to obtain a CED that

is then presented to the next (SOFM) stage. See text for de®nition of para-

meters.



where mc de®nes the `winning' weight vector (i.e. that

weight vector with the smallest Euclidean distance) and c

is the index of the winning neuron. A neighbourhood set Nc

around neuron c is then de®ned and all the weight vectors of

the neurons in the neighbourhood Nc are updated and all

others are left unchanged. The weight vectors of the

SOFM are updated as follows:

mi t 1 1� � � mi t� �1 a: t� � x t� �2 mi t� �� �
ifi [ Nc t� �

mi t 1 1� � � mi t� � if i Ó Nc t� �
where a(t) is a scalar valued learning rate, 0 # a # 1. Both

the learning rate and the neighbourhood function must be

gradually decreased with time. We opted for the exponential

decays given by

a t� � � a0e
2t
ta

� �
and

N t� � � N0e
2t
tN

� �
although the exact form of decay proved to be not critical for

training of the SOFM (James, 1997).

Once the above steps have been taken, a new input x is

chosen randomly from the training set and presented to the

SOFM and the entire process repeated. In this way the

weight vectors become representative of the underlying

statistics of the input vectors, the weight vectors also form

topographic maps of the inputs across the (2D) lattice where

similar inputs `excite' neurons in similar regions of the

SOFM. The number of iterations and the initial and ®nal

values of the learning rate, neighbourhood size and other

parameters can be obtained using rules of thumb developed

by Kohonen (1990). The parameters used for the SOFM

shown here were obtained from extensive study of the

SOFM by James (1997) and are: SOFM size (S £ S)

S � 20, initial learning rate ao � 1:00, ®nal learning rate

amin � 0:01, initial neighbourhood size No � S 2 1, ®nal

neighbourhood size Nmin � 1, exponential learning rate

decay, and exponential neighbourhood size decay.

The input to the SOFM is a vector made up of the `raw'

CED, contextual parameters and the passed/failed thresh-

olds ¯ag output by the mimetic stage. The trained SOFM

is required to output a value between 0 and 1 which repre-

sents the probability of there being an ED on that channel.

The SOFM is duplicated for all channels of the EEG such

that the overall output of the SOFM stage is a set of 16

probabilities. Up until this point there is no interaction

between channels.

Once the mi have become organized following training, a

step known as calibration is needed. Calibration of the

SOFM is a standard procedure developed by Kohonen

which assigns a class label to each neuron in the SOFM

(and hence to each weight vector mi). The calibration

process involves a majority voting scheme where the label

assigned to each mi is based on the largest number of `wins'

by a particular neuron for a given class of input, when

presented with the calibration data set.

It is possible to further enhance the performance of the

trained and calibrated SOFM as a classi®er by `®ne-tuning'

the mi using a (supervised) learning algorithm known as

Learning Vector Quantization (LVQ2) as developed by

Kohonen (1990). With LVQ2 training, data (CEDs) with

known class labels are used to further adjust the weights

of the SOFM such that strong probabilities to true EDs are

strengthened. The LVQ2 algorithm works by `pulling' the

weight vectors away from the decision surfaces to demar-

cate the class borders more accurately and is described in

more detail in Kohonen (1990).

2.2.2.1. Preparation of EEG training data for the

SOFM. The EEGs of 35 patients were obtained. All

EEGs had been previously seen independently by at least

two EEGers (in some cases three) and been graded as

containing de®nite epileptiform events. The average EEG

length was 24.4 min and the ages of the patients varied from

7 months to 71 years (average 19 years). Table 2 shows the

characteristics of the data, which totals over 14 h of 16-

channel EEG. The EEGers identi®ed more than 2585

de®nite EVs and 511 questionable EVs.

The data also included a variety of background activities

(e.g. alpha, delta, etc.) and most EEGs contained signi®cant

amounts of artifact, particularly eye-blinks, electrode move-

ment, and muscle artifact. Artifacts were especially promi-

nent during the periods of hyperventilation and photic

stimulation. All of the data recorded was for routine clinical

use and no segments of EEG were rejected because of

excessive artifact or `noisy' background activity.

The data was then passed through the mimetic stage and a

large number of corresponding CEDs were collected.

Considerably more CEDs failed the thresholds than passed

(75 vs. 25%, respectively). Assuming that the values of the

thresholds were optimally set such that no EVs were missed,

then the CEDs that passed the thresholds contained the true

EDs as well as many more false EDs. This means that of the

large number of CEDs available for training the SOFM only

a small minority had the potential of being true ED wave-

forms. If this was the case, only a small portion of the SOFM

C.J. James et al. / Clinical Neurophysiology 110 (1999) 2049±2063 2053

Fig. 3. The two-dimensional array of neurons in the SOFMs. All neurons

are connected to the input, x, via weight vectors mi.



would be representative of true EDs after training was

complete±the actual size of the corresponding portion of

SOFM would depend on the proportions of ED to non-ED

in the CED data. In order to achieve a more even balance

between ED and non-ED data, a number of failed-threshold

CEDs selected at random were removed from the training

set such that the number of passed-threshold CEDs was

twice that of failed-thresholds CEDs.

From the training set, nine EEGs were chosen for cali-

brating the SOFM. These EEGs had an average length of

22.9 min and were recorded from children and adults (EEGs

labelled with an asterisk in Table 2 represent the calibration

set). The EEGers graded 182 de®nite EVs and 184 question-

able EVs. As the calibration data was graded by more than

one EEGer, the ®nal grading assigned to each waveform

was based upon a consensus amongst the two (sometimes

three) EEGers. Waveforms that had widely varying labels

amongst the EEGers were removed from the calibration set

(but still remained part of the training set). This resulted in a

calibration set of 5846 CEDs, 4574 of which passed the

thresholds and 1272 of which failed. 1333 CEDs were

assigned true-ED labels (de®nite and questionable, based

on the consensus discussed above) and 4513 were assigned

non-ED (200 were rejected from the calibration set due to

large disagreement amongst EEGers). The calibration set

data was then used to calibrate the SOFM after training

was complete. The same data was also used for ®ne-tuning

using the LVQ2 algorithm.

2.2.2.2. Training and calibrating the SOFM. The SOFM

was trained by presenting the training data set in random

order to the SOFM whilst adapting according to the SOFM

C.J. James et al. / Clinical Neurophysiology 110 (1999) 2049±20632054

Table 2

The training set comprising 35 EEGs with in excess of 2585 de®nite EVs and 511 questionable EVsa

Patient Age Duration EEGers Epileptiform events

De®nite Questionable Total

1 9 27 m 7 s 2 102 11 113

2 30 25 m 2 s 2 .200 0 .200

3 49 25 m 21 s 2 1 7 8

4 2 15 m 42 s 2 .200 0 .200

5 4 15 m 26 s 2 49 0 49

6 58 25 m 46 s 2 0 4 4

7 16 26 m 27 s 2 57 41 98

8 20 33 m 20 s 2 1 4 5

9 67 27 m 50 s 2 .200 0 .200

10 6 26 m 8 s 2 2 7 9

11 5 26 m 24 s 2 201 0 201

12 25 26 m 34 s 2 0 9 9

13 6 28 m 40 s 2 2 0 2

14 11 34 m 2 s 2 230 0 230

15 7 mb 14 m 8 s 3 0 17 17

16 15 29 m 12 s 2 246 24 270

17 15 22 m 24 s 2 28 159 187

18 7 21 m 4 s 2 3 12 15

19 7 20 m 25 s 2 .200 0 .200

20 18 25 m 51 s 2 52 3 55

21 13 23 m 52 s 2 .200 0 .200

22 29 27 m 10 s 2 0 10 10

23 9 23 m 52 s 2 0 11 11

24 16 25 m 57 s 2 1 4 5

25 46 26 m 15 s 2 333 4 337

26 17 25 m 42 s 2 95 0 95

27* 71 18 m 49 s 2 17 40 57

28* 12 31 m 25 s 2 8 5 13

29* 8 26 m 43 s 3 3 32 35

30* 7 25 m 11 s 2 7 41 48

31* 4 14 m 58 s 2 12 17 29

32* 10 m 12 m 12 s 2 13 32 45

33* 32 24 m 55 s 2 6 4 10

34* 12 26 m 19 s 3 61 9 70

35* 17 25 m 26 s 2 55 4 59

Totals ~19 14 h 15 m 39 s .2585 511 .3096

a EEGs which contained `.200 EVs' had excessive amounts of EVs which were not individually graded by the EEGers. (EEGs indicated with an asterisk

were used to form the calibration set).
b m, month.



training algorithm as described in the section above. In a

preliminary study, the size of the SOFM was varied from a

[10 £ 10] to a [22 £ 22] SOFM in order to assess the

performance of the system as a function of the SOFM size

(James et al., 1996; James, 1997). It was found that as

SOFM size increased, the performance increased

measurably until a size of [20 £ 20], when increases were

negligible. The size of the SOFM needs to be large enough

to capture the variability present in the inputs. However, it is

important not to make the SOFM too large as this results in

longer training and slower performance. For the results

presented here we used an SOFM of [20 £ 20].

The training data was presented randomly to the SOFM

during training in such a way that all the data had been

presented at least twice during the crucial initial stage of

training known as the ordering stage. The ordering stage

was set at 1/8th of the complete training period, which

means that the entire training set was presented 16 times

to the SOFM during training±this results in over half a

million iterations of the training algorithm.

It is required that once a CED is presented to the SOFM

after training is complete, the SOFM responds with a value

indicating the probability of it being a true ED. This meant

that, as part of calibration, a probability level needed to be

assigned to each neuron. In operation, once a CED is

presented to the SOFM, the probability assigned to the

`winning' neuron (i.e. the neuron with the closest matching

mi) is taken to be the probability of the input CED being a

true ED. We have modi®ed the method suggested by Koho-

nen (1990) for calibrating the SOFM. The success rate for

neuron i is given by:

ui � si

ni

where the number of successes si indicates the number of

times the EEGers labelled input waveforms ED (as opposed

to non-ED) and ni is the total number of times neuron i was

the `winner'.

Using the Bayesian statistical approach, it is possible to

assign a probability to each neuron. This probability results

from a weighted mix of prior probabilities and the data

itself±the so-called posterior probability (Schmitt, 1969;

Bernardo and Smith, 1994). The prior distribution repre-

sents our uncertain knowledge of the success rate u i for an

individual neuron. As no a priori knowledge of the success

rate is assumed, the prior distribution is `¯at', meaning that

any success rate can be applied to each neuron. Applying

Bayes' theorem to the prior distribution and the Binomial

likelihood function for the data, it can be shown (Bernardo

and Smith, 1994) that an estimate of the success rate u can

be obtained by taking the mean value of the posterior distri-

bution, such that

E � uus
� � � s 1 1

n 1 2
;

for s successes and n trials. Thus, by a Bayesian approach, a

better estimate of the probability of a CED being a true ED

for neuron i can be found by

ci � si 1 1

ni 1 2
:

Consider, for example, two neurons i and j. If neuron i

was declared the `winner' ®ve times, four of which were for

true ED, this gives a success rate of 0.8 (i.e. 4/5) but a

probability of 0.71 using the Bayesian probabilities. If

neuron j was declared the `winner' 50 times, 40 times of

which for true ED, then the success rate is 0.8 (as for neuron

i) but the probability now becomes 0.79, re¯ecting the larger

number of `wins' for neuron j. In a similar manner, if neuron

i was declared winner for true EDs all ®ve times and neuron

j declared winner for true EDs all 50 times, both would have

a success rate of 1.0. However, neuron i would be assigned a

Bayesian probability of 0.86 whereas neuron j a probability

of 0.98.

Fig. 4 depicts the weight vectors of the [20 £ 20] SOFM

after training and calibration. The topological ordering of

the `ED-like' waveforms is apparent. Note that only the

`raw' EEG portion of the weight vectors is shown, the

contextual parameters and passed/failed thresholds ¯ag are

not shown. Those waveforms that resulted in a probability

greater than 0.5 after calibration are indicated in black

whilst all others are in light grey. It can be said that all

weight vectors describe `ED-like' waveforms but at differ-

ent probabilities when using the Bayesian technique

described above.

2.2.3. Stage 3: spatial-combiner

The ®nal stage of the spike detection system combines

the outputs of the SOFM stage in such a way as to con®rm

the presence of an EV across two or more channels of EEG

and, hence, report the detection of an EV. If the spatial

pattern is inconsistent with the presence of an EV, it is
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Fig. 4. The weight vectors of a [20 £ 20] SOFM after training and calibra-

tion. Weight vectors which have been assigned a probability of greater than

0.5 are indicated in black whilst all others are in light grey.



rejected. This stage is dubbed the spatial-combiner (James

et al., 1998).

The spatial-combiner uses a number of rules that specify

allowable combinations of EDs across channels to detect an

EV. The spatial-combiner works on a four channel bipolar

electrode chain basis, where the incoming (bipolar) EEG is

examined based on identical sub-systems. Electrode chains

with more than four channels (at most six channels) are split

into two overlapping four channel chains, and shorter elec-

trode chains are padded with `nulls' to make up a four

channel chain. The combiner relies on two pieces of infor-

mation for each bipolar chain: (a) the probability assigned to

each CED by the SOFM stage and (b) the polarity of each

CED within the bipolar chain.

The problem of detecting allowable spatial combinations

of EDs across channels is simpli®ed by introducing fuzzy

logic. With fuzzy logic, the generation of the fuzzy rules

becomes easier as no explicit mathematical models are

needed that describe the underlying process. Fuzzy logic

was ®rst developed by Zadeh (1965) and is based on a

mathematical theory that combines elements of multi-

valued logic, probability theory, and arti®cial intelligence.

Fuzzy logic simulates aspects of human thinking by incor-

porating the imprecision inherent in all physical systems

(Zimmermann, 1986; Klir and Folger, 1988).

The crisp inputs to the spatial-combiner (i.e. the probabil-

ities of true ED as output by each SOFM of the previous

stage) are fuzzi®ed by using the fuzzy sets de®ned in Fig.

5a. The fuzzy sets are de®ned to be: negative big (NB),

negative small (NS), zero (ZE), positive small (PS) and

positive big (PB). Each sub-system produces a single output

that is defuzzi®ed using the fuzzy sets described in Fig. 5b.

The four fuzzy sets are de®ned to be: zero (ZE), possible

(POS), probable (PRO) and de®nite (DEF). In both cases

trapezoidal membership functions are used because of their

ease of implementation. The method of composite maxi-

mum was adopted for the defuzzi®cation process such that

the rule most representative of an `allowable' EV distribu-

tion across the four inputs contributes to the fuzzy output set

label and the membership value.

The fuzzy-rules are drawn-up based on our pre-de®ned

knowledge of how an EV will manifest itself across a bipo-

lar electrode chain. Each rule covers the possibility of a

focal event at points along the bipolar electrode chain. As

the probabilities assigned to each CED (by the SOFM stage)

on each channel can take any value from 0 to 1, it would

take a great many rules to cover every combination of polar-

ity and probability value for each possible EV focus along a

four channel chain. As there are now only ®ve fuzzy (input)

variables, for a four channel electrode chain there are a

maximum of 54 � 625 possible rules which cover all the

possible combinations of inputs. However, a large number

of these rules are meaningless and are therefore not used.

This results in 127 distinct fuzzy rules describing allowable

combinations of fuzzy variables for the four inputs of each

sub-system. Each rule derived in this manner is assigned an

outcome of either DEF, PRO or POS. Fig. 6 describes one

such fuzzy-rule derived in the manner described here. (The

actual fuzzy output label assigned to each particular rule

was arbitrarily based on the number of PB/NB and PS/NS

variables assigned to each particular rule.) The detection of

an EV can then be made (a) if the crisp output exceeds a

given threshold or (b) if the fuzzy output is either of POS,

PRO or DEF.

Fig. 7a depicts a true EV, spanning four channels, where

the CEDs presented to the SOFM were assigned high prob-

abilities and were coupled with the right spatial distribution,

resulting in a detection. Fig. 7b depicts an instance where a

four channel CEV is rejected by the spatial combiner due to

incompatible spatial distribution.

The underlying assumption when deriving the fuzzy

spatial rules is that a focal EV is detected along the bipolar

chain of electrodes. Generalized EVs, however, show no

distinct focus across a number of four channel bipolar chains

but will appear as a focal event at one end of each chain.

Thus, the rules derived using the above method are able to

detect generalized activity.
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Fig. 5. The fuzzy sets used to de®ne (a) the inputs to, and (b) the outputs of,

the spatial-combiner.

Fig. 6. An example of a fuzzy rule obtained, in this instance, for the case

where a focus is assumed near the scalp with maximum negativity between

electrodes 2 and 3 (i.e. F2 and C2).



2.3. Grouping the inputs to the sub-systems

As stated before, the outputs from the SOFM stage

needed to be grouped into four channel bipolar chains

(depending on the montage in use). Each sub-system

performed exactly the same operation on the four probabil-

ity values input to it. For the longitudinal and longitudinal-

transverse montages, the sub-systems are naturally grouped

into four sub-systems of four channels. The transverse

montage is divided into ®ve sub-systems. The six channel

chain A1±T3±C3±Cz±C4±T4±A2 is divided into two over-

lapping four channel chains such that A1±T3±C3±Cz±C4

are input to one sub-system and C3±Cz±C4±T4±A2 are

input to another. The two channel chain Fz±Cz±Pz is

converted to a four channel chain by padding the last two

channels with 0 probabilities. The circumferential montage

is divided into six sub-systems. Two non-overlapping four

channel chains were formed with Fp2±F8±T4±T6±O2 and

Fp1±F7±T1±T5±O1 and two overlapping four channel

chains with F3±F4±C4±P4±P3 and F4±F3±C3±P3±P4.

Finally two three channel chains were padded with `null'

channels (i.e. 0 probability channels) for the chains F7±

Fp1±Fp2±F8 and T5±O1±O2±T6.

2.4. Artifact rejection

In order to minimize any further false detection of arti-

facts as EVs, outputs from the SOFM stage are eliminated if

they are due to muscle contraction, eye-blinks, electrode

movement or bursts of sharp-a . Elimination takes place

by assigning a probability value of 0. The detection of one

of the above-mentioned occurrences is made through

contextual information presented with the CED and is

based on work by Dingle et al. (1993). Each artifact is

tackled in the following way:

² Bursts of muscle activity on any channel are detected

when (a) the average background duration is short

(,20 ms, corresponding to the high frequency wave-

forms characteristic of EMG) and (b) the RMS back-

ground amplitude is large (.12.6 mV);

² eye-blinks are detected when the ¯oating-mean falls

signi®cantly below the baseline (,280 mV) on a frontal

channel;

² electrode movement is detected on a channel when the

¯oating mean reaches a maximum of at least 100 mV

above the baseline;

² bursts of a are detected when (a) the average background

duration is 100 ms and the CED duration D3 is similar

and (b) the RMS background amplitude is comparable to

the peak amplitude of the CED (Ap).

2.5. The test set of EEGs

A separate test set of eight EEGs recorded in a similar

manner to the training set described earlier was used to test

the performance of the trained system. The test set consisted

of seven EEGs containing epileptiform activity (as graded

by two or three EEGers) and one normal EEG (i.e. no

epileptiform activity as graded by all three EEGers). The

data (Table 3) consisted of routine clinical recordings of an

average length of 24.4 min (total EEG length 3.2 h) with 190

epileptiform events (65 de®nite and 125 questionable) as

marked by two or three EEGers using the convention as

described before for the calibration set. The EEGs contained

signi®cant artifact such as EMG, electrode movement and

bursts of alpha waves and no segment was discarded

because of artifact. The presence of artifact was most signif-

icant during photic stimulation and hyperventilation, which

made up over 30% of the recorded EEG.

2.6. Performance measures

The performance of the spike detection system has been

assessed (a) after the mimetic stage, (b) after the SOFM

stage and (c) at the output of the spatial combiner. For

both (a) and (b), no spatial contextual information is present,

whereas (c) uses spatial information to act on the outputs of

(b) making the ®nal EV/non-EV decision. A detection was

considered to have taken place at each stage as follows:
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Fig. 7. Examples of actual outputs from a given four channel bipolar chain

of electrodes: (a) depicts a correct detection on an EV based on the combi-

nation of the SOFM and spatial combiner outputs, (b) depicts a rejected

CEV due to incompatible spatial distribution.



² mimetic stage: if at least one CED on any of the 16

channels passed the thresholds;

² SOFM stage: if the probability assigned to at least one

CED on any of the 16 channels exceeded 0.84. (A detec-

tion threshold of 0.84 results in a sensitivity similar to

that measured at the spatial combiner stage);

² spatial combiner: if an output was assigned any one of

the fuzzy variables POS, PRO or DEF.

In each case the performance measures are the sensitivity

and selectivity of the system to EVs (similar to Webber et

al., 1994). The sensitivity and selectivity are given by

Sensitivity � correct detections

total number of true events
£ 100%

and

Selectivity � correct detections

total number of detections
£ 100%:

In addition, the number of false detections per hour has

been calculated. The false detection rate is considered an

important measure of performance of a system as it gives an

indication of how useful a system will be in routine clinical

practice. Furthermore, the measure of number of false detec-

tions per hour of EEG can be used to place the reported

performance of the system into context when considering

the length of EEGs used in the test sets.

In this study, EVs rated by the EEGers as de®nite or

questionable were both treated as true EVs. If some of the

questionable EVs were in fact non-epileptiform, this would

lead to a slight underestimation of sensitivity and overesti-

mation of selectivity. The effect of using `questionable's

along with `de®nite's should be the subject of another study.

3. Results

Our hybrid system runs at approximately 20 £ real-time

(i.e. a 20 min EEG takes about 1 min to process off-line) but

can take longer for EEGs with `noisy' backgrounds due to

the excessively large number of CEDs put forward by the

mimetic stage.

Table 4 gives the performance at each stage of the system

for each patient in the test set for a [20 £ 20] SOFM. For

each stage measures for the sensitivity, selectivity and false

detection rate are indicated for each EEG separately and for

the eight EEGs overall. It can be seen that the mimetic stage

results in a high sensitivity for almost every EEG with an

overall sensitivity of 91.1%, coupled with a very low selec-

tivity of 0.8% and a false detection rate of 6796/h. This

shows how the mimetic stage is `screening' the incoming

EEG with very little selectivity ± as expected.

At the output of the SOFM stage, the sensitivity has been

reduced to 58.9%. The selectivity improved slightly to 7.9%

with a marked improvement in the false detection rate to

410/h. Although the false detection rate shows a marked

improvement over the mimetic stage, it is still unaccepta-

ble±approximately one false detection every 7 s of EEG. (A

lower detection threshold at the SOFM stage could, of

course, give a higher sensitivity for this stage, but at the

expense of a lower selectivity and much higher false detec-

tion rate. The threshold of 0.84 was chosen so that compar-

isons could be made between the SOFM stage and output

stage with a similar sensitivity for both). This notwithstand-

ing, the performance at the SOFM stage indicates that a

large quantity of the CEDs were assigned a reasonably

high probability by each channel SOFM based on their

single-channel morphology.

The performance at the ®nal stage indicates a similar

sensitivity of 55.3% but a massive increase in the selectivity

to 82.0% coupled with an equally impressive 7.2 false

detections/h±one false detection every 500 s or 8.3 min of

EEG. This false detection rate re¯ects almost a 60 fold

reduction from the SOFM stage and almost a 1000 fold

reduction from the mimetic stage. These results support

our contention of the crucial importance of spatial analysis

in the spike detection process. Whilst the improvements in

the selectivity and false detection rate were substantial, it

was at the expense of reducing the sensitivity to 55.3%. This

is not, however, seen as a massive drawback as although not

ideal (i.e. 100%) the sensitivity complemented the low false

detection rate acceptably well.

Of particular note are the results of patient 7: the 5 ques-

tionable EVs marked by the EEGers were heavily contami-

nated by EMG and resulted in a poor sensitivity of 20% and

selectivity of 33.3%. However, the sensitivity and selectiv-

ity at the SOFM stage for this patient were 0%. This indi-

cates that on an individual ED level (i.e. single channel) the

relevant CEDs were assigned a low probability (a value less

than dth)±which was not surprising when the CEDs in ques-

tion were observed. This again highlights the importance of

spatial analysis.

Also of note are the results of patient 8 (the normal EEG):

the mimetic and SOFM stages resulted in unacceptably high

false detection rates of 8678.7/h and 261.3/h, respectively.
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Table 3

The test set comprising seven de®nite epileptiform EEGs (with a total of 65

de®nite and 125 questionable EVs) and one normal EEG (i.e. no epilepti-

form activity)

Patient Age Duration EEGers Epileptiform events

De®nite Questionable Total

1 5 27 m 24 s 3 9 3 12

2 71 25 m 08 s 2 15 17 32

3 24 26 m 16 s 2 25 20 45

4 11 23 m 34 s 2 2 1 3

5 3 16 m 03 s 2 8 21 29

6 50 21 m 13 s 3 6 58 64

7 84 26 m 50 s 3 0 5 5

8 28 25 m 15 s 3 0 0 0

Totals ~34.5 3 h 11 m 43 s 65 125 190



Following spatial analysis the false detection rate was

correctly reduced to 0/h.

4. Discussion

This paper has presented a new and innovative approach

for the detection of epileptiform discharges in the EEG.

Many attempts have been made previously in the literature

to solve this problem but all with limited success. The main

problem lies with the extreme dif®culty met in attempting to

eliminate considerable numbers of false detections due to

spike-like artifacts and sharp background activity in the

EEG. The EEGer makes considerable use of spatial and

temporal information when visually performing spike detec-

tion to in¯uence his decision in the process. Surprisingly,

few systems incorporate any aspects of such reasoning in

their spike detection algorithms. In the approach described

here, the ability of ANNs to be trained to solve problems and

their ability to generalize to novel data once training is

complete are drawn upon to the advantage of the spike

detection system.

The spike detector/classi®er is based around the SOFM.

The capability of the SOFM to extract identifying features

from large amounts of input data is drawn upon heavily in

this stage. This is particularly useful in the spike detection

problem where there is a great dif®culty in accurately grad-

ing large numbers of candidate epileptiform discharges

(CEDs) due to the amount of disagreement between

EEGers. Using the self-organising abilities of the SOFM it

is possible to train an ANN with a large number of EEGs

known to contain EDs and then use only a selected sub-set

of EDs (which have been graded with a high degree of

agreement amongst EEGers) to accurately label each weight

abstracted from the input data by the SOFM. The resulting

spike-like waveforms abstracted from the large training set

as shown in Fig. 4 indicates the large variability in spike

(and non-spike) morphology. Although it would be possible

to label the weight vectors of the trained SOFM as ED/non-

ED manually, this would be subjective and the further

requirement of a probability level attached to each wave-

form would make the task an extremely subjective one. A

lot of the subjectivity is removed through the novel use of

Bayesian statistics to assign a probability value to each

SOFM weight during the calibration stage. The use of

EDs in the calibration set labelled based on a consensus of

2/3 EEGers also helps reduce the subjectivity of the label-

ling process.

The SOFM stage is preceded by a mimetic stage in order

to screen the incoming EEG and reduce the number of CEDs

presented to the SOFM stage. Importantly, the mimetic

stage also gives a time reference to each CED such that it

is presented to the SOFM stage with its vertex positioned at

the same point in each case. Each mimetic/SOFM stage

works independently on each channel of EEG (i.e. utilising

no spatial information). The results given in Table 4 show

that the mimetic stage performed its function well; the sensi-

tivity of 91.1% is acceptable and the low selectivity of 0.8%

was expected.

The performance of the system following the SOFM

stage (at dth � 0:84) was a sensitivity of 58.9%, a selectivity

of 7.9% and a false detection rate of 410.6/h. The threshold

is arbitrary and is used only to give an indication of the

performance of the system. Nonetheless an almost 17-fold

reduction is achieved in the false detection rate over the

previous stage. However, apart from increasing the perfor-

mance of the system per se, the SOFM stage performs the

more important function of assigning a probability level to

each CED detected by the mimetic stage to the best advan-

tage of the spatial combiner.

Finally, a spatial-combiner stage, based on fuzzy logic, is

presented which groups the single-channel probabilities

according to the (bipolar) montage in use and forms a deci-

sion on the detection of an EV based on the spatial distribu-

tion of the CEDs. Following spatial analysis, the

performance of the system was measured at a sensitivity
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Table 4

The sensitivities, selectivities and false detection rates of the system at each stage to de®nite and questionable EVs for each patienta

Patient Mimetic stage SOFM stage (dth � 0.84) Spatial combiner stage

Sensitivity (%) Selectivity (%) FD rate/h Sensitivity (%) Selectivity (%) FD rate/h Sensitivity (%) Selectivity (%) FD rate/h

1 100.0 0.7 4840.8 83.3 10.0 270.3 83.3 58.8 21.0

2 93.8 1.9 4615.6 50.0 17.6 225.2 71.9 100.0 0.0

3 100.0 1.5 9099.1 66.7 13.6 573.6 44.4 95.2 3.0

4 100.0 0.4 2354.4 66.7 2.8 207.2 66.7 40.0 9.0

5 96.6 2.9 2840.8 58.6 13.2 336.3 65.5 79.2 15.0

6 79.7 2.9 5153.2 57.8 18.0 507.5 46.9 85.7 15.0

7 80.0 0.0 27 627.6 0.0 0.0 1558.6 20.0 33.3 6.0

8 ± ± 8678.7 ± ± 261.3 ± ± 0.0

Totals 91.1 0.8 6796.0 58.9 7.9 410.6 55.3 82.0 7.2

a The SOFM stage values are for a [20 £ 20] SOFM followed by ®ne-tuning with LVQ2). For the SOFM stage the detection threshold, dth, was set at 0.84 so

that the measured sensitivity was similar to that obtained by the spatial combiner stage, in order to make a justi®able comparison between selectivities and false

detection rates for each stage.



of 55.3%, a selectivity of 82.0% and a false detection rate of

7.2/h. The selectivity and false detection rate depict the

immense gains achieved through the use of spatial analysis

in the spike-detection process. A sensitivity of 55.3% may

be considered on the low side but we contend that, as long as

the sensitivity is adequate (i.e. as long as a reasonable

proportion of EVs are detected in the overall EEG), the

selectivity and more importantly the false detection rate

are the measures that will be used to `judge' a system's

utility in routine clinical use. As is always the case due to

the large variability between EEGs, the sensitivity was high

for four out of the seven epileptiform EEGs with an average

sensitivity of 71%. It should also be noted that our calcula-

tion of sensitivity included detection of questionable events;

many of these could, in fact, have been non-events, resulting

in an incorrect estimation of our system's sensitivity (e.g.

patient 7's 20% may have been invalid). Of the 85 EVs

missed by the system, 4% were missed due to the wrong

CEDs being chosen by the mimetic stage when grouping

across a four channel bipolar chain, resulting in CEVs with

incompatible spatial distribution. The mimetic stage

completely failed to pick up 20% of the missed EVs and

the remaining 76% of the missed EVs were due to low

probabilities being assigned to one or more CEDs for a

given event, resulting in incompatible spatial distributions.

The low probabilities were mainly due to EDs obscured by

artifact or background EEG. The appreciable fall in sensi-

tivity following the SOFM stage indicates that the major

cause of these missed events is indeed due to incompatible

spatial distributions. In contrast, the 17 false detections were

almost entirely due to large focal artifact present at the

beginning or end of an electrode chain (mainly as sharp

alpha waves measured by longitudinal montage) or, less

frequently, electrode `pop'.

Comparisons between different spike detection systems

are made dif®cult by the wide range of measures used for

evaluating their performance. The greatest differences in

assessing the performance occur when obtaining measures

for false detections and missed detections. Gotman and

Wang (1991, 1992) de®ne false detections as detections

which are obviously artifact, whereas other methods include

de®ning a false detection as an event not marked by any of a

panel of six EEGers (Eberhart et al., 1989) or marked by

fewer than six of seven EEGers (Fischer et al., 1980). In a

similar way, Gotman and Wang (1991); Gotman and Wang

(1992) state that missed detections are events falsely

rejected by the system as non-epileptiform, but they ignore

EVs/EDs missed by the system altogether. In contrast, Eber-

hart et al. (1989) identify missed detections as those not

detected by the system but marked by at least four of six

EEGers.

The performance measures used for this system, where

possible, will be used to compare between systems. Table 5

shows a number of spike detection systems found in the

literature and compares their performance with that of the

SOFM based spike detection system. In addition it was

possible to directly compare our system with that of Dingle

et al. (1993) using the same test set of EEGs as in the current

study; this is listed as system ``8'' in Table 5.

The results given in Table 5 show a great variability in the

measures of performance, especially false detection rate. Of

the systems described, only Gotman and Wang (1992) and

our system use a totally new set of test data to validate

performance. Of all of the systems, only Dingle et al.

(1993) and our system have included normal EEGs in

their tests. Webber et al. (1994) tested their system on the

EEGs obtained from ten patients (the same EEGs were used

for training), and report satisfactory sensitivity and selectiv-

ity for the mimetic 1 ANN (parameters) case (both 74%)

but at a cost of around 804 false detections/h. For their

performance using `raw' EEG instead of parameters, both

the sensitivity and selectivity were relatively low (both

46%), with an even higher false detection rate (over 5000/

h). OÈ zdamar et al. (1991) report similarly good results for

sensitivity and selectivity but a similarly high false detec-

tion rate (~1023/h). Hostetler et al. (1992) carried out an

independent evaluation of the Gotman et al. (1978) system

and reported a much lower false detection rate (37 false

detections/h). Gotman and Wang (1992) report a similar

false detection rate for their system (which estimates the

state of a subject during recording to improve performance).

In contrast, a false detection rate of zero is reported by

Dingle et al. (1993) with a reasonable sensitivity (53%) on

data from 11 patients including three with normal EEGs.

However, the system used the training data to test the

system. When the same system was used to assess the

novel test set used by our system, the false detection rate

rose slightly to two detections/h, the selectivity fell to 81%,

and the sensitivity fell to 14%. The system of Dingle et al.

(1993) has also been evaluated blindly on 521 consecutive

routine EEGs (173 h) compared with two or three EEGers.

The system detected 36 of 38 EEGs containing de®nite

EVs±a global sensitivity of 95%±and had an average false

detection rate in the non-epileptiform EEGs of 0.29/h (Jones

et al., 1996), thus con®rming the low false detection rate of

their system.

In relation to the other spike detection systems of Table 5

our system compares well. The importance of the false

detection rate as a measure of performance of such a system

is immediately apparent when one considers the perfor-

mance of systems that have outwardly good measures of

sensitivity and selectivity, such as OÈ zdamar et al. (1991);

Webber et al. (1994). It was not possible to determine

measures of the sensitivity for the systems of Gotman and

Wang (1992) so it was not possible to measure at what cost

(in terms of missed events) the values of selectivity and

false detection rate were obtained. Irrespective, the current

system resulted in superior selectivities and false detection

rates. Certainly results from the present study and those

from Dingle et al. (1993); Jones et al. (1996) con®rm the

crucial importance of incorporating spatial and wide-

temporal contextual information in the spike detection
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process. At this point it is worth exercising caution in that

the results obtained from the current system only represent

those extracted from a small set of novel routine EEGs.

Although the results look extremely promising, based on

novel EEGs as they are, testing on a much larger population

of routine and long term EEGs is warranted before the

system can be implemented in routine clinical use. This is

the next step in our study.

In conclusion, a new spike detection system has been

developed which makes considerable use of spatial and

limited use of temporal information in the EEG whilst

aiming to emulate the EEGer's approach to the spike detec-

tion problem. A modular approach was used in the system's

development and it makes particular use of the attributes

inherent in ANNs (i.e. nonlinear, adaptive, etc.). In a clinical

setting, such a system should prove to be an important tool

in the automatic and real-time detection of epileptiform

activity in routine EEG recordings and in long-term EEG

monitoring.
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