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INTRODUCTION

Wavelet-based signal analysis has evolved as a highly
innovative strategy in applications where it is desirable to
look at signals simultaneously in the time and frequency
domains. Distinct types of wavelet transforms offer new per-
spectives for a wide range of signal processing applications,
including compression, de-noising, time-frequency analysis
and feature detection. Wavelet transforms are suited to the
representationof nonstationary physiological signals such as
the EEG. Similar representations cannot be achieved withthe
Fourier Transform or short-time Fourier Transform because
they are based on analyzing intervals of afixed length. There
are different approaches to wavelet analysis: we discuss the
Discrete Wavelet Transform (DWT), Continuous Wavelet
Transform (CWT), and Matching Pursuit (MP) methods. Itis
also necessary to find the analyzing wavelet best suited for
one’s application. Interpretation of the transformed data is
more complicated than forthe Fourier Transform.

Inthe first partof this paper we present a general andillus-
trated introduction to wavelet analysis. Special attention is
given to the way transient waveforms are represented under
the various transforms and potential pitfalls are highlighted
with EEG-related examples. inthe second part, we illustrate
the application of some of these technigues to one of our
areas of particular interest - automated detection of epilepti-
form activity in the multichannel EEG. We describe the
wavelet-based stages of a spike detection system we have
developed. The performance of this section of the system has
been determinedin apreliminary clinical study.

DISCRETE WAVELET TRANSFORM

An orthogonal expansion breaks a function downinto a
number of uncorrelated components. In a muitiresolution
expansion those components vary in length. The most basic
orthogonal multiresolution expansion was described by the
mathematicianAlfred Haar as early as 1910. He found thata
function f(t) could be expanded into an infinite series of
approximation coefficients cy and detail coefficients d;
accordingto
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where ¢(t) and w(t} are nowadays known as the scaling
function and the corresponding wavelet function respec-
tively (Figure 1).

This expansion can be regarded as atransformto anew
basis formedby shifted (or transiated) and scaled (or dilated)
instances of ¢(t)and w(t). For digita! signal processingwecan
derive avery short and efficientfilter pair from these functions:
&(t) corresponds to a low-pass filter (LP) and w(t)to a high-
passfilter (HP).

Both filters are applied to a signal and subsequently down-
sample the resulting signais by a factor of two, by removing
every other sample. We have effectively splitup the signalinto
an approximation signal and a detail signal (Figure 2). Note
thatthe overall number of samples is retained. When the pre-
vious step is repeated for the approximation signal several
times, we end up with a single approximation signal and a
series of detail signals. This procedure is called a discrete
wavelettransform (DWT) or multiresolution decomposition.

The first approximation signal is similar to a signal sam-
pled at half the originat sampling rate. The second approxi-
mation corresponds to a quarter of the original sampling rate,
andsoon. Highfrequency details in the approximation signal
are gradually lost as we progress through the levels of the
decomposition. Infact, these details are carefully retainedin
the detail signals, so the original signal can be reconstructed
from the wavelet coeffients. The inverse transform is per-
formed ina series of steps consisting of upsampling (inserting
zeros between samples), LP filtering and addition of the detail
signals. Thisis another attractive feature of the DWT beside
its computational speed.

When the frequency characteristics of the Haar wavelet
filters are studied (Figure 3, top left), we find thatthe low-pass
and the high-pass overlap considerably. How can the sepa-
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Figure3.

Frequency characteristics of the Haar wavelet filter pairand the
Daubechies’ wavelets filter pairs of order n=2, 4 and 28 (solidlines:
low-pass, dashed lines: high-pass). The quality of the band sepa-
rationincreases withthe order of the wavelet.

ration of the two bands be improved? Itis extremely difficult to
find a filter pair that meets all the boundary conditions
required forthe DWT. Inthe late 1980s Daubechies' discov-
ered afamily of wavelets that combine optimal band-separa-
tion (or maximal “flatness” of the filter characteristics) with
shortfilterlengths. These wavelets arecommonly referred to
as Daubechies-nwavelets, where nindicates the order of the
wavelet. The Haar waveletis equivalent to the Daubechies-1
wavelet. The filter characteristics of the Daubechies’
wavelets of order 2, 4, and 28 are also shownin Figure 3.
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Each coefficientina DWT corresponds to a certain wave-
forminthe original signal. We have reconstructed the wave-
form of a single detail coefficient from leve] 5 (Figure 4).
These waveforms represent the actual wavelet functions of
the Daubechies' wavelet family. No analytic expression exists
forthe waveletfunctions, but they can be approximated recur-
sively to any accuracy. Figure 4 shows how the number of
oscillations increases with the order of the wavelets. Howev-
er, a large number of oscillations in a filter also has draw-
backs. ltmay add oscillations to transient eventsin the signal
in applications like de-noising, a technique in signal pro-
cessing that reduces the noise level without modifying the
information in a signal. There is a trade-off between the
amount of band separation we can achieve and the number of
oscillationsin the corresponding filter pair.

Figure 5 shows the frequency characteristics of a com-
plete 4-level decomposition with the Daubechies’ wavelet.
The high-pass ofthe level- 1 details is the same as in Figure 3.
The detail signal of ievels 2, 3, and 4 have a band-pass char-
acteristic. This is the result of a low-pass filter, a downsam-
pling step and a high pass filter in the downsampied domain.
Some sidelobes may be seen inthe low-pass andband-pass
forordern =2 (Figure5, top). These sidelobes correspondto
a crisp waveform (top left in Figure 4). Although the side-
lobes donotappearinthe frequency characteristics in the fil-
ter pair (Figure 3) they are added by the downsampling step in
the DWT. In a higher order of the wavelet (e.g., n = 28) the
sidelobes disappear and a cleanly cut partitioning of the
entire spectrumis obtained (Figure 5, bottom).

The main advantages of the DWT are high computational
speedand invertability. Arange of wavelets forthe DWT have
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Level-5 reconstructions of Daubechies' wavelets filters of order n=
2,4,10,and 28.
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Fourtransients “A"to “D" (fop row), pink noise (middie row) and test
signal (bottom row) composed of the sum of both. The simulated
waveforms represent two monophasic spikes, one biphasic spike
andaslow artifact. Thetest signalis equivalentto 4.5s of EEG
sampledat200 Hz.

been found since Daubechies’ discovery. Theyinclude near
symmetric and symmetric waveforms. Major applications of
the DWT are data compression and de-noising.

TRANSIENT DETECTION

Toiliustrate the means by which wavelet analysis can be
used to help in the detection of epileptiform spikes, a test
signal with transient and background features has been
devised. This will be looked at via the short-time Fourier
Transform and two types of wavelet transforms, with a par-
ticular emphasis on the properties of the transforms with
respect o transient detection.

©2000 VOL. 31 NO 4

Daubechies -2 wavelel, 4 levels

N
] 0.28 05
relative frequency

Daubechies-28 waveiel, 4 levels

"
L] 025 0s
reistive frequency

Figure5.
Band-pass characteristics of 4-level wavelet decomposition

(dashedines: approximations, solid lines: details) for Daubechies’
wavelets filters of order n=2 (top) and n=28 (bottom).

First, four transient waveforms are added to “colored”
noise (Figure 6). Transients A and B are derived from the
same waveform but feature slightly differentamplitudes. The
colored noise is derived from low-pass filtered white noise.
Note the variety of small transients in the colored noise.

The Short-Time Fourier Transform (STFT) of the test sig-
nalis examinedfirst. The STFTis, forexample, whatis usedin
acompressed spectral array.* We used a window width of 64
samples (320 ms) and split the test signal into 27 windows
{50% overlap). Transient Dis clearly visible inthe STFT (Fig-
ure 7), while the other transients generate weak responses
only. Transients Aand Bare spread out over a wide range of
frequencies. Transient Cis too wide to fit into any of the win-
dows and s thus spread over several temporal windows.

When the window width is reduced to 32 samples (55 win-
dows)we get stronger responses for the short transients A
and B (Figure 8). Now even the fourth transient does not fit
into a single window. Thus, all four transients cannot be
detected with asingle window size appropriately.

Next the DWT (Daubechies-2 wavelet, see Figure 4) is
appliedtothe signal (Figure 9). All transients are more clear-
ly visible in the detail signals of the DWT thanin the previous
STFTs. Specifically, transients A and B correspond to the
only outstanding peaks in the level 1 detail signal. Since
smaller scales correspond to shorter windows and larger
scales to wider windows all transients can be detected
through a single transform. Transient C is represented by
the approximation signal. Significantly, transients Aand Bare
represented differently in detail signals 2and 3 although they
were generated from the same waveform. This is one of the
major drawbacks of the DWT for our application: it is not
translation-invariant. Atransient in the signal causes a spe-
cific pattern in the transform but this pattern will change as
soon as we shift the signal by a couple of samples. Thus,
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Testsignal (top row) and modulus of the Short-Time Fourier Trans-
form with window width 64 samples.
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Test signal (top row) and 4-level Discrete Wavelet Transform with
Daubechies-2 wavelet (frequency bandsinthis Figure corre-
spond to those in Figure 5). Note that transienttwo is not detected
by the same scale as transient one,despite the two being identical
inform.

although a transient may be detected, a tansient-specific
feature cannotbe extracted from the DWT.

[lustration of the lack of translation-invariance is even
clearerin Figure 10inwhichthe DWT of a sine wave is shown.
The cycles of the sine wave are represented by the level-4
details and the approximation intermittently, forming whatisin
effectaninterference pattern. Note the high amplitude of the
wavelet coefficients when they are in phase with the wave. At
any one time we could not rely on a detection pattern for a
cycle orhalf-cycle of the wave.

CONTINUOUS WAVELET TRANSFORM
Unfortunately, it is not possible to design a transform
which is translation-invariant, orthogonal and invertibie at
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Testsignal (top row) and Short-Time Fourier Transform with win-
dow width 32 samples.
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Sine wave (top row) and Discrete Wavelet Transform with
Daubechies-2 wavelet (frequency bands in this Figure correspond
toFigure 5). Astronginterference between the waveletandthe
sine wave becomes evident. Although the frequency of the wave is
welllocalized, we cannotrely on a detectionin a specific scale at
anytimeinstance.

the same time. Ofthese attributes, translation-invariance is
the mostimportant for spike detection. We therefore chose to
use the continuous wavelet transform (CWT) in our design.
The CWT of a signal can be considered as the output of a
series of band-pass filters. A modulated window function is
chosen as a prototype filter called the analyzing wavelet. To
coverthe whole spectrum the analyzing waveletis re-scaled
toaseries of scales. No samples are droppedasin the DWT.
With the CWT one can explore scales and frequencies in
individual steps, whereas the DWT can only provide one
scale peroctave, corresponding to each level. Waveletfilters
for the CWT can be generated by sampling the analyzing
wavelet at various rates.
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Figure 11.

Complex-valued wavelets: Morlet-wavelet (top row), Senhadii's
wavelet (middte row) and psi-1 wavelet (bottom row). Waveforms
onleftside (solid line: real part, dashed line: imaginary part, dotted
lines: complex envelope) and corresponding frequency charac-
teristics onright side. Note that there are no mirror frequencies in
the spectra because the wavelets are complexin the time domain.
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Figure 13.
Continuous wavelet transform of the test signal.

The resultisaredundant representation of the signal. We
end up with a larger number of wavelet coefficients than the
signal samples fed into the transform. However, by doing
this the chances offinding our target pattern are increased. A
window function is modulated by multiplying with sine and
cosine waves, which shifts the spectrum of the window func-
tion. Three complex wavelets are illustrated in Figure 11.
Choosing the complex-valued Morlet wavelet® (Figure 11,
top row) allows achievement of an optimal time-frequency
resolution. For spike detection application a wavelet featuring
a smaller number of oscillations is required. A modulated
Hanning window as proposed by Senhadii et al.* (Figure 11,
middle row) for epileptiform spike detection this is a good

uv
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Figure 12.

Modulus of the Continuous Wavelet Transform of a sine wave
using Senhadiji's wavelet. Note thatthe transformis virually inde-
pendentoftime.

choice. The smallest possible number of oscillations is
achieved with the psi- 1 wavelet (Figure 11, bottom row).°

The output of a CWT is also referred to as a scalogram
since its vertical axis relates to scale rather than frequency.
Scales are inversely proportional to frequencies with a pro-
portionality factor, which is dependent on the wavelet filter.
For a complex-valued wavelet filter the modulus (or absolute
value) of the resulting complex wavelet coefficients is com-
monly depicted inthe scalogram. Figure 12 shows a scalogram
for a sine wave, with barely noticeable interference between
the analyzing wavelet (Senhadii's wavelet) and thewave. The
scalogram is fairly constant over time because the complex
wavelet can accommodate all phases of the oscillation. Adis-
crete setof scalesis used, rising linearly from a scale of 310 201.
The strongest response canbe seen atscale 70.

Allfourtransients can clearly be seenin the scalogram of
thetestsignal (Figure 13). The response totransients Aand 8
is now very similar. Transient Ccorresponds to the maximum
waveletcoefficientat scale 100. Eventransientfeatures ofthe
background can be traced in the dendrite structure of the
scalogram. The CWT gives a more detailed, redundant, trans-
lation-invariant representation of the data. Unfortunately, its
computational complexity is orders of magnitude larger than
that of the DWT and there is no simple method to invert the
CWT like the DWT. One compromise is to oversample the
DWT toachieve relative invariance totranslation. Forareview
of such variants with application to analyzing seizure EEGs
see Schiff et al.* Only the CWT allows for the application of a
complex modulated window function as an analyzing wavelet,
which resultsin a continuous estimate of signal powerinafre-
quency band without phase interference.

MULTISCALE FEATURES OF TRANSIENTS
The foregoing section has provided a basis for detection
of transient waveforms. In addition, itis also oftendesirable to
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Scalogram of several sharp transients {true amplitude scaling, 18
scales peroctave). Localtemporal maxima and minima are marked
withblack and white dots, respectively. The analyzing wavelet
{imaginary partof psi-1)is shownintop right corner.

discriminate between and classify different transients. This
canbe done by extracting features of each detected transient
from the scalogram. Transients of interest consist of two or
more edges. Edges are well localized intime but poorly local-
izedin frequency. Thus they may not be fully representedby a
single pointin the scalogram as in our previous test signal. A
good strategy is therefore to trace temporal maxima in the
scalogram across scales. These traces have been labeled
fingerprints or multiscale edges.’®

Figure 14 shows a test signal comprising a series of
edges and also shows the imaginary part of the psi-1 wavelet
as the analyzing wavelet. Harmonic progression of scales
with 18 scales per octave was used. Asthe analyzing wavelet
is real, both local maxima (black dots) and local minima (white
dots) are marked in the scalogram. For the purpose of
description each signal feature is referred to as a “transient”
and each line of dots as a “multiscale edge.” For each tran-
sient either (a) a single multiscale edge (samples 480, 750,
850) or (b) three multiscale edges (near samples 180, 240
and 1050) are foundinthe scalogram.

In Figure 15 the full complex wavelet (psi-1) has been
applied. Modulus maxima are marked in the scalogram. Now
only one multiscale edge is found for each transientexcept for
the peak near sample 800. Here two edges of a sharp peak
are covered by asingle multiscale edge. The CWT estimates
the local energy content of a signal. Only with a complex
wavelet can this estimate be made independent from the
phase of the signal. The phase of wavelet coefficients along
the multiscale edges can be collected as additional informa-
tion. Unfortunately, if noise is presentin the signal (samples
1100 to 1800) it becomes difficult to trace multiscale edges.
Some multiscale edges are discontinuous as we move to
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Scalogram of several sharp transients as for Figure 14 butana-
lyzed with a complex wavelet (shown intop right corner). Temporal
modulus maxima were marked with black dots in the scalogram.

larger scales. For further analysis and parameter extraction
frommultiscale edges see Berknerand Wells.*

MATCHING PURSUIT

In the Fourier Transform, frequencies aré covered by
changing the modulation of the prototype function. In the
CWT the scale of the prototype functionis changed instead.
For the CWT a wavelet with a fixed modulation is chosen
which will be sufficient for many applications. The variety ot
featuresinthe EEGis, however, large andincludes oscillatory
elements justlike transients. Letus for example take a look at
some alphaspindles.

Figure 16 shows a bipolar recording from the occipital
region that contains several alpha spindles. In the scalo-
gramthe spindles are clearly visible buttheir frequency can-
notbe determined very well. it coulid be somewhere between
7.5and 12.5Hz. Anisolated transient near sample 850 is also
foundin the scalogram.

InFigure 17 the modulation of the analyzing wavelet has
been changed from k = 2 to k = 8. Now one can obtain the
alpha frequency with reasonable precision as being close to
9 Hz. Atthe same time the transient event near sample 850
disappears fromthe scalogram. Soiis it possible to combine
both analyzing wavelets in a single analysis? In 1993 Mallat
and Zhang" proposeda new method called matching pursuit,
which is not limited to a singie analyzing wavelet. It has,
instead, a dictionary of waveforms, all of which are normal-
ized to unit energy. The signal is filtered with all waveforms
and the sample with the iargest magnitude among all
responsesis chosen. Aninstance of the corresponding wave-
form is translated and scaled appropriately and is called a
time-frequency atom of the signal. The atom is subtracted
from the signal and added to a reconstruction signal. The
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Series of alpha spindlesin bipolar EEG recording (10, 200 Hz
sampling rate) and corresponding scalogram. Senhadji's wavelet,
modulation k=2, 6 scales per octave. Afrequency scale is added on
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Anexample of matching pursuit. The dictionary included 20 scales
with 4 modulations each of Senhadiji's wavelet. Original signal (top
row) followed by reconstruction signal after 5, 10, 15, and 20 itera-
tions. Original signalis superimposed on 20-th teration recon-
structionin bottom row.

procedure is repeated until the difference between original
andreconstruction becomes sufficiently small.

InFigure 18the EEG trace was analyzed with a dictionary
of 71 waveforms. They included 20 scales (4 per octave)
and 4 modulations (k=1,2,4,6) of Senhadiji's wavelet.* The
reconstruction signal is plotted after 5, 10, 15, and 20 itera-
tions. After 5 iterations an alpha spindie is found near sample
1150 in the reconstruction. Itis represented by two adjacent
time-frequency atoms. Therefore, the most central peak of
the spindie is attenuated in the reconstruction. The spindle
would be better represented by alarger modulation (e.g., k=
8or 10). The isolated transient near sample 850 appears in
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Series of alpha spindels in bipolar EEG recording and correspond-
ingscalogram.

the reconstruction after 10 iterations but its characteristic
sharp edges are lost. The sharp edge details would eventu-
ally be picked up by atoms in further iterations. As one could
see in the previous section, edge details are distributed
across scales. With matching pursuit, a sharp edge would be
decomposedinto several atoms.

Matching pursuit is the best way to see both “the forest
and the trees” in a signal but it is a computationally very
expensive algorithm. In this example, the signal had to be fil-
tered 1420 times to extract 20 time-frequency atoms and,
hence, is an order of magnitude slower thanthe CWT. Forthe
application of matching pursuit to sleep spindles see Durka
and Blinowska' and Zygierewicz etal. ™

DETECTION OF EPILEPTIFORMACTIVITY

Since the early 1970s many approaches have beentaken
tofind a reliable detection method for epileptiform discharges.
However, the huge variety of age and status related EEG
patterns and artifacts®* makes it extremely difficult to build
suchasystem. Most spike detection systems use some form
offeature extraction stage followed by aclassification stage.
Gotman etal."“"*measured features such as sharpness and
duration of individual waves and half-waves (rising and falling
edges) in attempting to mimic the EEG reader's approach.
Gloveretal.**and Dingle etal."”'® combined the mimetic fea-
ture extraction stage with a rule-based expert system for
classification. Artificial neural networks were used by Webber
et al.' and Gabor and Seyal.® James et al.?' constructed a
hybrid system incorporating on mimetic feature extraction
and artificial neural networks and fuzzy logic for classification.

Soon after fastalgorithms forthe DWTand CWT became
available,"#?2their spike detection properties were explored.
Kalayci and Oezdamar® extracted spike features from the
DWT (Daubechies’ wavelet, orders n = 2 and n = 20) fol-
lowed by an artificial neural network for classification. Sen-
hadiji etal * appliedthe CWT (Senhadiji's wavelet, modulation
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Generalizedinterictal dischargesina 12-yearold patientand aver-
age waveletfilter response over 4 scales (psi-1 wavelet withcen-
tralfrequencies 60,43, 33, and 27 Hz) and over all 16 channels.
Epileptiform spikes near samples 24315and 26568 generate a
strongerfilter response than sharp transients caused by several
eye-movements. WC: wavelet coefficients, average.
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Consistency of chi-square distribution of log magnitude wavelet
coefficients across scales.

k = 2) and modeled the wavelet coefficients of background
EEG with the chi-square distribution. They derived a detec-
tion threshold from the background distribution. Clarencon et
al2implementedthe CWT (Morlet-wavelet, modulation k=5,
4 scales peroctave) with downsampling to reduce computa-
tional complexity. They achieved real-time operation. D'At-
telis et al. used a polynomial spline wavelet for the DWT.
They report better detection properties for the polynomial
spline wavelet than for the Daubechies-2 wavelet and an
approximation of the Morlet-wavelet.

ANEWAPPROACHTODETECTION
OF EPILEPTIFORMACTIVITY

The approach we have taken to detection of epileptiform
activity is based around the CWT with the complex-valued
psi-1wavelet(see Figure 11).%We present a statistical model
for the wavelet coefficients of background EEG. Detection
thresholds are derived from this background model and can-
didate spike features are extracted as fingerprints (multi-
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Figure 20.

Amplitude distribution of wavelet coefficients resulting from a sin-
glechannel of background EEG and the Psi-1 wavelet. Distribution
of modulus (left) and log modulus (right) with fitted Chi-Square dis-
tribution (df=3.5).

scale edges) fromthe scalogram. Events arethen classified
asepileptiformorartifactual.

Before describing in greater depth the approach we have
taken, itis insightful to see an illustration of the sensitivity of the
psi-1waveletto epileptiform spikes. Inthe example shownin
Figure 19, a 15s epoch of bipolar EEG was filtered with the psi-
1 wavelet at four scales. The magnitude of the resulting
waveletcoefficients was averaged across the four scales and
16 channels. The average of the wavelet coefficients (“WC”)
show strong peaks fortwo interictal discharges butonly small
variations for eye-blinks and eye-movements.

Distribution of Wavelet t
Coetficients for Background Activity

The distribution of wavelet coefficients of a 214s epoch of
background activity from an occipital bipolar channel is
shown in Figure 20 (left); there were no artifacts or alpha
spindles onthis channel. Achi-square distribution is fitted to
the amplitude distribution and degrees of freedom (df) esti-
mated from the mean and variance of the wavelet coeffi-
cients, providing values of df= 2.4 to df= 6.4. Taking the log
magnitude of wavelet coefficients leads to a distribution that
is less skewed (Figure 20, right); dfcan then be adjusted to
match mean, standard deviation and skewness to the log
distribution. The best match is found for a=3.5. The resultant
distribution of wavelet coefficients of background activity is
remarkably consistent across scales (Figure 21).

This consistency has also been shown to hold across
channels andindividuals. Thus, the log wavelet coefficient of
asharptransient can be related to the mean of the log back-
grounddistributionand, hence, estimate the probability that a
given wavelet coefficient occurs by chance. We could call this
the “Richter scale for transientsinthe EEG.”

Transient Detection

Epileptiform transients are detected as a deviation from
the background distributioninarange of scales. Local maxi-
mawithalogamplitude of 1.4 ormore above the mean back-
groundare marked in the scalogram for an epileptiformtran-
sientin Figure 22 and called single scale transients (SSTs).
An SST indicates an unusual event in the signal and also
defines atime-frequency atom.
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Figure 22.

Close up of an epileptiform transient {spike and wave complex)
andcorresponding scalogram (11 scales, 3 scales per octave).
Localmaxima that significantly exceed the background distribu-
tionare marked with dots in the scalogram. Dots are marked by cir-
clesarereferredtobelow (Figure 23).

Figure 24.
Themostimportant SSTs for eachtransientare traced across
scales.The resulting structure is called “time-scale fingerprint” (FP).

Figure 23 shows eight selected SSTs from Figure 22 and
the waveforms of the corresponding time-frequency atoms.
The Percentage Root-mean-square Difference (PRD) ofthe
atoms’ waveforms with respect to the original waveformis cal-
culated. The PRD helps identify SSTs that closely represent
parts of the signal. In Figure 23 SST #15 has a small PRD
since it closely fits the waveform of the spike. SSTs #1 to #4
indicate a high amountof activity in the 50 Hz band. However,
the high PRD of these SSTs indicates that the generating
activity is not centered at 50 Hz. In contrast, muscle spikes
show up as SSTs with small PRDs inthe 50 Hz band.
Feature Extraction

in Figure 24 the most important SSTs have been linked
across scales. This structureis called time-scale fingerprint
(FP).” For each SST in the fingerprint amplitude, phase,
translation, scale, log amplitude (with respectto mean back-
ground) and PRD are recorded. The root mean square of
the logamplitudesis calculated foreach FP.

Thresholds are applied to the root mean square of the
log wavelet coefficients and PRDs. The peak amplitude of
the FPs are evaluated in the following way: if the peak
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Figure23

Spike wave complex and waveforms of eight SSTs (those marked
by circles in Figure 22). The Percentage Root-Mean-Square Dif-
ference (PRD)is shown for each single scale fransient (SST).
SSTs #1to #4 reflect high slope aspects of transients in the signal.
SST#15features asmall PRD and, hence, represents a substan-
tial part of the spike.

EEQ
v
s seee|  Figure25.

. Stages of the spike detection system: EEG
w:_._ recordings are analyzed by the SST detec-
e et tor. FPs are formedfrom detected SSTs. Lin-

i T eardiscriminantanalysis is used toimprove

the selectivity of the system.

occurs atthe smallestscale (highest frequency) itis reject-
ed as a potential muscle artifact. Conversely, if the peak is
found atthe largest scale (lowest frequency) itis rejected as
a potential eye-blink. A spike is considered to have been
detected when simultaneous FPs are seen in at least two
channels (Figure 25). We have developed a fast algorithm
forthe CWT with the psi-1 wavelet which allows us to calcu-
late the CWT on 11 scales and perform SST and fingerprint
extraction for 16 channels three times fasterthan real-time
ona90-MHz PC.

Preliminary Clinical Evaluation

Apreliminary evaluation of our method was carried outon
11 clinical EEG recordings with an overall duration of 278 min.
The patients’ ages ranged from 2 weeks to 84 years. Sixteen
bipolar channels were recorded with several montages and
sampled at 200 Hz. Three independentraters identified 298
definite epileptiform discharges in the recordings. Epilepti-
formactivity was classified as generalizedin 7 cases and mul-
tifocalin 4 cases. The psi-1 wavelet was usedin a CWT with
11 eveninteger scales (3 peroctave). SSTs were detected in
individual scales and joined to fingerprints in each channel.
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Thresholds were applied tothe fingerprints. This resultsina
sensitivity of 84% and a selectivity of 12%.

DISCUSSION
Spike Detection

The CWT provides areasonable statistical reference for
background EEG with epileptiform transients showing up as
deviations from the background on muiltiple scales (SSTs).
Evidence from several scales can be gathered and linked in
the time-scale plane (FPs). The sensitivity can be adjusted by
changing the detection threshold. However, selectivity falls
sharply when the thresholdis lowered.

Itis important to note that this preliminary investigation
has performedanalyses onindividual channels only. Workis
underway toimprove the selectivity of the system by making
greater use of spatial context of epileptiform activity in the
EEG. Furtherimprovements are also likely through the incor-
poration of wide-sense temporal context in the detection
process. Alarger data set will be used to separate training and
test sets for the evaluation.

Wavelet Analysis

Waveletanalysis provides a powerfut new means of visu-
alizingand analyzing signals that are changing dramatically
in both the time domain {raw signal) and frequency domain
(spectrum). Mimetic features such as amplitude, slope and
duration of EEG waves are closely related to the properties of
multiscale edges found in the CWT. Wavelet analysis has
been shown to mimic the early stages of human percep-
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tion.7# It has considerable potential as a means to improve
the accuracy of the detection and identification of character-
istictransientsinthe EEG.

SUMMARY

Wavelet based signal analysis provides a powerful new
means for the analysis of nonstationary signals such as the
human EEG. The properties of the discrete wavelet transform
are reviewed in illustrated application examples. The contin-
uous wavelettransformis shown to provide better detection
and representation of isolated transients. An approach to
extractfeatures of edges andtransients fromthe continuous
wavelettransformis outlined. Matching pursuitis presented
as a more general transform method that covers both tran-
sients and oscillation spindies. A statistical model for the
continuous wavelet transform of background EEGis found. A
spike detection system based on this background model is
presented. The performance of this detection system has
been assessed in a preliminary clinical study of 11 EEG
recordings containing epileptiform activity and shown to have
asensitivity of 84% and a selectivity of 12%. The spatial con-
text of epileptiform activity will be incorporated to improve
system performance.
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