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INTRODUCTION
Wavelet-based signal analysis has evolved as ahighly

innovative strategy inapplications where it isdesirable to
look atsignals simultaneously in the time and frequency
domains. Distinct types ofwavelet transforms offer new per­
spectives for awide range ofsignal processing applications,
including compression, de-noising, time-frequency analysis
and feature detection. Wavelet transforms are suited tothe
representation ofnonstationaryphysiological signals such as
the EEG. Similar representations cannot be achieved with the
Fourier Transform orshort-time Fourier Transform because
they are based on analyzing intervalsofafixed length. There
are different approaches towavelet analysis: we discuss the
Discrete Wavelet Transform (DWT), Continuous Wavelet
Transform (CWT), and Matching Pursuit (MP) methods. Itis
also necessary tofind the analyzing wavelet best suited for
one's application. Interpretation ofthe transformed data is
morecomplicated than forthe FourierTransform.

In the first partolthis paperwe present ageneral and illus­
trated introduction towavelet analysis. Special attention is
given tothe way transient waveforms are represented under
the various transforms and potential pitfalls are highlighted
with EEG-related examples. Inthe second part, we illustrate
the application ofsome ofthese techniques toone ofour
areas ofparticular interest- automated detection ofepilepti­
form activity in the multichannel EEG. We describe the
wavelet-based stages ofaspike detection system we have
developed. The performance ofthis section ofthe system has
been determined inapreliminary clinical study.

DISCRETE WAVELETTRANSFORM
An orthogonal expansion breaks afunction down into a

number of uncorrelated components. In a multiresolution
expansion those components vary inlength. The most basic
orthogonal multiresolution expansion was described by the
mathematicianAlfred Haarasearlyas 1910. He found that a
function f(t) could be expanded into an infinite series of
approximation coefficients Ck and detail coefficients dj,k
according to

f(t)= I: ckt/>(t-k)+ I: I:dJ•k W(2Jt - k )
k=-oo k=-oo J=O

where cp(t) and wet) are nowadays known as the scaling
function and the corresponding wavelet function respec­
tively (Figure 1).

This expansion can be regarded as atransform toanew
basis formed by shifted (or translatecf) and scaled (or dilatecf)
instancesofcp(t) and wet). Fordigital signal processing we can
deriveavery short and efficientfilterpair/rom these functions:
cp(t) corresponds toalow-pass filter (LP) and wet) toahigh­
passfilter(HP).

Both filters are applied to asignal and subsequently down­
sample the resulting signals byafactor oftwo, byremoving
every othersample. We have effectively split up the signal into
an approximation signal and adetail signal (Figure 2). Note
thalthe overall numberofsamples isretained. When the pre­
vious step isrepeated for the approximation signal several
times, we end up with asingle approximation signal and a
series ofdetail signals. This procedure iscalled a discrete
wavelet transform (DWT) ormultiresolution decomposition.

The first approximation signal issimilar toasignal sam­
pled athalf the original sampling rate. The second approxi­
mation corresponds toaquarterofthe original sampling rate,
and soon. High frequency details inthe approximation signal
are gradually lost as we progress through the levels ofthe
decomposition. Infact, these details are carefully retained in
the detail signals, so the original signal can be reconstructed
from the wavelet coeffients. The inverse transform isper­
formed inaseriesofstepsconsisting ofupsampling (inserting
zeros between samples), LP filtering and addition olthe detail
signals. This isanother attractive feature ofthe DWT beside
its computational speed.

When the frequency characteristics ofthe Haarwavelet
filters are studied (Figure 3, top left), we find thalthe low-pass
and the high-pass overlap considerably. How can the sepa-
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Figure1.
Scaling function cp(/)andcorresponding waveletfunctionw(/)ofthe Haarwavelel.

Figure2.
MultiresolutionDecomposition structure.
Theinputsignal isfiltered with apairoffil­
ters (LPandHP) and subsequently
downsampled.The result isanapproxi­
mation and adetail signal. The procedure
isrepeated several times forthe approxi­
mation signal.
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Figure 3.
Frequency characteristics ofthe Haarwavelet filterpair and the
Daubechies'waveletsfilterpairsoforder n=2,4and 28(solidlines:
low-pass,dashed lines:high-pass).The qualityoltheband sepa­
rationincreaseswiththe orderofthe wavelet.

rationofthe two bands be improved?Itisextremelydifficult to
find a filter pair that meets all theboundary conditions
required fortheOWl Inthelate 1980s Oaubechies'discov­
ered afamilyofwavelets that combine optimal band-separa­
tion (ormaximal "flatness' ofthe filler characteristics) with
short filter lengths.These wavelets arecommonly referred to
asOaubechies-nwavelets,where nindicates the orderofthe
wavelet.The Haarwavelet isequivalentto the Oaubechies-1
wavelet. The filler characteristics of theOaubechies'
waveletsoforder2,4,and 28 are also shown inFigure 3.
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Each coefficient inaOWTcorresponds toacertainwave­
form intheoriginal signal. We have reconstructed the wave­
form ofa single detail coefficient from leveJ 5 (Figure 4).
These waveforms represent the actual wavelet functions of
theOaubechies'wavelet family.No analyticexpression exists
forthe waveletfunctions,but they can beapproximated recur­
sivelytoany accuracy. Figure4 shows how the number of
oscillations increaseswiththeorderofthe wavelets.Howev­
er, a large number ofoscillations ina filler also has draw­
backs.1t mayadd oscillations totransient events inthe signal
in applications like de-noising, a technique insignal pro­
cessing that reduces the noise level without modifying the
information in a signal. There is a trade-off between the
amount ofband separation we can achieveand the numberof
oscillations inthe corresponding filter pair.

Figure 5 shows the frequency characteristics ofacom­
plete 4-level decomposition withthe Oaubechies' wavelet.
The high-passofthe level-1 details isthe same as inFigure 3.
The detailsignal oflevels 2,3,and 4haveaband-pass char­
acteristic.Thisisthe result ofalow-passfilter,adownsam­
pIing step and ahighpass filter inthedownsampled domain.
Some sidelobes may beseen inthe low-pass and band-pass
fororder n=2(Figure5,top).These sidelobes correspond to
a crisp waveform (top leftin Figure 4). Although the side­
lobes do not appear inthe frequency characteristicsinthe fil­
terpair(Figure 3)they are addedbythe downsampling step in
the OWT. Inahigher order of the wavelet (e.g., n=28) the
sidelobes disappear and a cleanly cut partitioning of the
entirespectrum isobtained (Figure 5,bottom).

Themainadvantages ofthe OWlarehighcomputational
speedand invertabilily.Arangeofwavelets forthe OWlhave
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Figure 4.
Level-5 reconstructionsofOaubechies' wavelets filters oforder n=
2,4,10,and28.

FigureS.
Band-pass characteristicsof4-level wavelet decomposition
(dashed lines: approximations, solid lines: details) lorOaubechies'
wavelets filters oforder n=2(top) and n=28 (bollom).

Figure6
Fourtransients "A"to "0" (top row), pinknoise (middle row) and test
signal (bottom row) composed olthe sum of both. The simulated
waveforms represent two monophasicspikes, one biphasic spike
andaslow artifact. The test signal issquivalentto 4.5 s01 EEG
sampledat200Hz.

been found since Daubechies' discovery. They include near
symmetric and symmetric waveforms. Majorapplications of
the DWTare data compression and de-noising.

TRANSIENT DETECTION
To illustrate the means bywhich wavelet analysis can be

used tohelp inthe detection ofepileptiform spikes, a test
signal with transient and background features has been
devised. This will be looked atvia the short-time Fourier
Transform and two types ofwavelet transforms, with apar­
ticular emphasis onthe properties of the transforms with
respect totransient detection.

First, four transient waveforms are added to "colored"
noise (Figure 6). Transients A and Bare derived from the
same waveform butfeature slightly differentamplitudes. The
colored noise isderived from low-pass filtered white noise.
Note the variety ofsmall transients inthe colored noise.

The Short-TIme FourierTransform (STFT) ofthe test sig­
nal isexamined first. The STFTis, for example, what isused in
acompressedspectralarray.' We used awindow width of64
samples (320 ms) and split the test signal into 27 windows
(50% overlap). Transient Dis clearly visible inthe STFT (Fig­
ure 7), while the other transients generate weak responses
only. Transients Aand Bare spread out over awide range of
frequencies. Transient Cistoo wide tofitinto any ofthe win­
dows and isthus spread overseveral temporal windows.

When the window width isreduced to32 samples (55 win­
dows)we get stronger responses forthe short transients A
and B(Figure 8). Now even the fourth transient does not fit
into a single window. Thus, all four transients cannot be
detected with asingle window size appropriately.

Next the DWT (Daubechies-2 wavelet, see Figure 4) is
applied tothe signal (Figure 9). All transients are more clear­
lyvisible inthe detail signals ofthe DWT than inthe previous
STFTs. Specifically, transients Aand Bcorrespond to the
only outstanding peaks inthe level 1detail signal. Since
smaller scales correspond toshorter windows and larger
scales to wider windows all transients can be detected
through a single transform. Transient Cis represented by
the approximation signal. Significantly, transientsAand Bare
represented differently indetail signals 2and 3although they
were generated from the same waveform. This isone ofthe
major drawbacks of the DWT forour application: it is not
translation-invariant. Atransient inthe signal causes aspe­
cific pattern inthe transform but this pattern will change as
soon aswe shift the signal byacouple of samples. Thus,
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Figure7
Test signal (top row) and modulus ofthe Short-Time FourierTrans­
form with window width 64samples.

FigureS
Test signal (top row) and Short-Time FourierTransform with win­
dow width 32samples.
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Flgure9.
Test signal (top row) and 4-levlll Discrete WaveletTransform with
Daubechies-2 wavelet (frequency bands inthis Figure corre­
spond tothose inFigure 5). Note that transient two isnotdetected
bythe same scale astransient one.despite the two being identical
inform.

Figure10.
Sine wave (top row) and Discrete Wavelet Transform with
Daubechies-2 wavelet (frequency bands inthis Figure correspond
toFigure 5). Astrong interference between the wavelet and the
sine wave becomes evident. Although the frequency ofthe wave is
well localized, we cannot rely onadetection inaspecific scale at
any time instance.

although a transient may be detected, a tansient-specific
feature cannot be extracted from the OWT.

Illustration ofthe lack oftranslation-invariance iseven
clearer inFigure 10 inwhich the OWTofasine wave isshown.
The cycles ofthe sine wave are represented bythe level-4
details and the approximation intermittently, forming what isin
effect an interference pattern. Note the high amplitude olthe
wavelet coefficients when they are inphase with the wave. At
anyone time we could not rely on adetection pattern fora
cycle orhalf-cycle ofthe wave.

CONTINUOUS WAVELETTRANSFORM
Unfortunately, it is not possible todesign a transform

which is translation-invariant, orthogonal and invertible at

the same time. Ofthese attributes, translation-invariance is
the most important for spike detection. We therefore chose to
use the continuous wavelet transform (CWT) inour design.
The CWT ofasignal can be considered asthe output ofa
series ofband-pass filters. Amodulated window function is
chosen as aprototype filter called the analyzing wavelet. To
cover the whole spectrum the analyzing wavelet isre-scaled
toaseries ofscales. No samples are dropped asinthe OWT.
With the CWT one can explore scales and frequencies in
individual steps, whereas the OWT can only provide one
scale peroctave, corresponding toeach level. Waveletfilters
forthe CWT can be generated bysampling the analyZing
wavelet atvarious rates.
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Flgurell.
Complex-valued wavelets: Morlet-wavelet (top row), Senhadji's
wavelet (middle row) and psi-twavelet (bottom row).Waveforms
onleftside (solid line: real part, dashed line:imaginary part, dotted
lines:complex envelope) and corresponding frequency charac­
teristics onright side.Note that there are nomirror frequencies in
the spectra because the wavelets are complex inthe limedomain.
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Figure 13.
Continuous waveletlransform ofthe test signal.

The result isaredundant representation ofthe signal. We
end up withalarger numberofwavelet coefficients than the
signal samples fed into the transform. However, bydoing
this the chancesoffindingourtarget pattern are increased.A
window function ismodulated bymultiplying with sine and
cosine waves,which shifts the spectrum ofthe window tunc­
tion. Three complex wavelets are illustrated in Figure 11 .
Choosing the complex-valued Morlet waveleP (Figure 11 ,
top row) allows achievement ofanoptimaltime·frequency
resolution.Forspike detection application awavelet featuring
a smaller number of oscillations is required. Amodulated
Hanningwindow asproposed bySenhadji etaI.'(Figure 11 ,
middle row) forepileptiform spike detection this isa good

Figure 12.
Modulus ofthe Continuous Wavelet Transform ofasine wave
using Senhadji'swavelet. Note thatlhe transform isvirtually inde­
pendent oftime.

choice. The smallest possible number of oscillations is
achieved withthe psi-t wavelet (Figure 11 ,bottom row).5

The output ofaCWT isalso referred toas a scalogram
since itsvertical axisrelates toscale rather than frequency.
Scales are inverselyproportional tofrequencies with apro­
portionality factor, which isdependent on the wavelet filter.
For acomplex-valued wavelet filler the modulus (or absolute
value) ofthe resulting complex wavelet coefficients iscom­
monlydepicted inthe scalogram.Figure 12showsascalogram
for asine wave,with barely noticeable interterencebetween
the analyzingwavelet (Senhadji'swavelet) and the wave.The
scalogram isfairly constant over time because the complex
wavelet can accommodate all phases ofthe oscillation.Adis­
crete setofscales isused,rising lineanyfrom ascale of3to201 .
The strongest response can be seen atscale 70.

All four transients can clearly be seen inthe scalogram of
the test signal (Figure 13).The response totransients Aand B
isnow very similar.Transient Ccorresponds tothe maximum
wavelet coefficient atscale 100. Even transientfeatures olthe
background can be traced in the dendrite structure of the
scalogram.The CWTgivesa more detailed, redundant, trans­
lation-invariant representation ofthe data.Unfortunately, its
computational complexityisorders ofmagnitude larger than
that ofthe OWT and there isnosimple method toinvert the
CWT like the OWT. One compromise is tooversample the
OWTtoachieve relative invariance totranslation.Forareview
ofsuch variants with application toanalyzing seizure EEGs
see Schiff etal.6 Only the CWT allows for the application ofa
complex modulated window function asan analyzing wavelet,
which results inacontinuous estimate ofsignal power inafre­
quency band without phase interterence.

MULTISCALE FEATURES OFTRANSIENTS
The foregoingsection has provided abasis for detection

oftransient waveforms.Inaddition, itisalso often desirable to
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Figure14.
Scalogram of several sharp transients (true amplitude scaling, 18
scales peroctave). Local temporal maxima and minima are marked
with black and white dots, respectively. The analyzing wavelet
(imaginary part of psi-t) isshown in top right corner.

discriminate between and classify different transients. This
can bedone byextracting features ofeach detected transient
from the scalogram. Transients ofinterest consist oftwo or
more edges. Edges are well localized intime but poorly local­
ized infrequency. Thus they may not be fully represented by a
single point inthe scalogram asinourprevious test signal. A
good strategy istherefore totrace temporal maxima inthe
scalogram across scales. These traces have been labeled
fingerprints ormultiscale edges.7.8

Figure 14shows a testsignal comprising a series of
edges and also shows the imaginary part ofthe psi-t wavelet
asthe analyzing wavelet. Harmonic progression ofscales
with 18scales peroctave was used. As the analyzing wavelet
isreal, both local maxima (blackdots) and local minima (white
dots) aremarked in thescalogram. Forthepurpose of
description each signal feature isreferred toasa"transient"
and each line ofdots asa"multiscale edge." For each tran­
sient either (a) asingle multiscale edge (samples 480,750,
850) or(b) three multiscale edges (near samples 180,240
and 1050) are found inthe scalogram.

In Figure 15the full complex wavelet (psi-t) has been
applied. Modulus maxima are marked inthe scalogram. Now
only one multiscale edge isfound foreach transient except for
the peak near sample 800. Here two edges ofasharp peak
are covered byasingle multiscale edge. The CWT estimates
the local energy content ofa signal. Only with a complex
wavelet can this estimate bemade independent from the
phase ofthe signal. The phase ofwavelet coefficients along
the multiscale edges can becollected asadditional informa­
tion. Unfortunately, ifnoise ispresent inthe signal (samples
1100 to1800) itbecomes difficult totrace multiscale edges.
Some multiscale edges are discontinuous aswe move to
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Figure 15.
Scalogram of several sharp transients as for Figure 14 but ana­
lyzed with acomplex wavelet (shown in top right corner). Temporal
modulus maxima were marked with black dots in the scalogram.

larger scales. Forfurther analysis and parameter extraction
from multiscale edges see Berknerand Wells. 9

MATCHING PURSUIT
Inthe Fourier Transform, frequencies ardcovered by

changing the modulation of the prototype function. Inthe
CWT the scale ofthe prototype function ischanged instead.
For the CWT a wavelet with a fixed modulation ischosen
which will be sufficient formany applications. The variety of
features inthe EEG is, however, large and includes oscillatory
elements just like transients. Let usforexample take alookat
some alpha spindles.

Figure 16 shows a bipolar recording from the occipital
region that contains several alpha spindles. In the scalo­
gram the spindles are clearly visible but their frequency can­
notbedetermined very well. I!could be somewhere between
7.5 and 12.5 Hz. An isolated transient nearsample 850 isalso
found inthe scalogram.

InFigure 17the modulation oltheanalyzing wavelet has
been changed from k =2to k =8.Now one can obtain the
alpha frequency with reasonable precision asbeing close to
9Hz. Atthe same time the transient event near sample 850
disappears from the scalogram. So isitpossible tocombine
both analyzing wavelets inasingle analysis? In1993 Mallat
and Zhang10proposed anew method called matchingpursuit,
which is not limited to a single analyzing wavelet. I! has,
instead, adictionary ofwaveforms, allofwhich are normal­
ized tounit energy. The signal isfiltered with allwaveforms
and the sample with the largest magnitude among all
responses ischosen. An instance ofthe corresponding wave­
form istranslated and scaled appropriately and iscalled a
time-frequency atom of the signal. The atom issubtracted
from the signal and added toa reconstruction signal. The
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Figure 16.
Series ofalpha spindles inbipolar EEG recording (lOs,200 Hz
sampling rate) and corresponding scalogram.Senhadji'swavelet,
modulation k=2, 6scales peroctave.Afrequency scale isadded on
the righthand sideofthe scalogram.Sharp edgesofthe alpha
spindles reach intohigherfrequencies.

Figure 18.
Anexampleofmatching pursuit. The dictionary included 20scales
with 4modulationseach ofSenhadji'swavelet. Original signal (top
row) followed byreconstruction signal after5,10,15,and20 itera­
tions.Original signal issuperimposed on20-thiterationrecon­
structioninbottom row.

procedure is repeated until the difference between original
and reconstruction becomes sufficiently small.

InFigure 18the EEG trace was analyzed withadictionary
of 71 waveforms. They included 20scales(4peroctave)
and 4 modulations (k=1,2,4,6) ofSenhadji 'swavelet.' The
reconstruction signal isplotted after 5,10, 15, and 20itera­
tions. After5iterationsanalpha spindle isfound nearsample
1150 inthe reconstruction.Itisrepresented bytwo adjacent
time-frequency atoms.Therefore, the most central peak of
the spindle isattenuated inthe reconstruction.The spindle
would bebetter represented byalargermodulation (e.g.,k=
8or10).The isolated transient near sample 850 appears in

Figure 17.
Seriesofalpha spindels inbipolar EEG recording and correspond·
ing scalogram.

the reconstruction after 10iterations butits characteristic
sharp edges are lost. The sharp edge detailswould eventu­
ally bepicked upbyatoms infurther iterations. As one could
see in the previous section, edge details are distributed
across scales.With matchingpursuit,asharp edge would be
decomposed into several atoms.

Matching pursuit isthe best way tosee both "the forest
and the trees" ina signal butit is a computationally very
expensive algorithm.Inthis example, the signal had tobefil­
tered 1420 times toextract 20time-frequency atoms and,
hence, isanorderofmagnilude slower than the CWT.For the
application ofmatching pursuit tosleep spindles see Durka
and Blinowska11and Zygierewicz etal. 12

DETECTION OF EPILEPTIFORM ACTIVITY

Since the early 1970smany approaches have been taken
10findareliable detection method for epileptiform discharges.
However, the huge variety of age and status related EEG
patterns and artilacts-? makes itextremely difficult tobuild
such asystem. Most spike detection systems use some form
offeature extraction stage followed byaclassification stage.
Gotman etal." ,15measured features such assharpness and
duration ofindividualwaves and half-waves (rising and falling
edges) inanempting tomimicthe EEG reader'sapproach.
Gloveretal." and Dingle etal. 17,18combined the mimetic fea­
ture extraction stage witha rule-based expert system for
classification.Artificial neural networks were usedbyWebber
etal.19 and Gabor and Seyal.20 James etal." constructed a
hybrid system incorporating on mimetic feature extraction
and artificial neural networks and fuzzy logic forclassification.

Soon after fast algorithms forthe DWTand CWT became
available,1.6 22 theirspike detection properties were explored.
Kalayci and Oezdamar" extracted spikefeatures from the
DWT (Daubechies' wavelet, orders n=2 and n=20)fol­
lowed byanartificial neural network forclassification.Sen­
hadjietaI.' applied the eWT(Senhadji'swavelet,modulation
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Amplitude distribution of wavelet coefficients resulting from asin­
glechannel of background EEG and the Psi-1 wavelet. Distribution
of modulus (left) and log modulus (right) with fitted Chi-Square dis­
tribution (df=3,5).
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scale edges) from the scalogram, Events are then classified
asepileptiform orarfitactual.

Before describing ingreaterdepth the approach we have
taken, itisinsightful tosee an illustration olthe sensitivity ofthe
psi-1 waveletto epileptiform spikes. Inthe example shown in
Figure 19, a15sepoch ofbipolar EEG was filtered with the psi­
1 wavelet at four scales. The magnitude of theresulting
wavelet coefficients was averaged across the four scalesand
16channels. The average ofthe wavelet coefficients ("WC")
show strong peaks fortwo interictal discharges butonly small
variations foreye-blinks and eye-movements.
Distribution ofWavelet ,
Coefficients forBackground Activity

The distribution ofwavelet coefficients ofa214s epoch of
background activity from anoccipital bipolar channel is
shown in Figure 20(left); there were noartifacts oralpha
spindles onthis channel. Achi-square distribution isfitted to
the amplitude distribution and degrees offreedom (df) esti­
mated from the mean and variance of the wavelet coeffi­
cients, providing values ofdf=2.4 todf=6.4. Taking the log
magnitude ofwavelet coefficients leads toadistribution that
isless skewed (Figure 20, right); dfcan then beadjusted to
match mean, standard deviation and skewness to the log
distribution, The best match isfound fordf=3.5. The resultant
distribution ofwavelet coefficients ofbackground activity is
remarkably consistent across scales (Figure 21 ),

This consistency has also been shown to hold across
channels and individuals, Thus, the log wavelet coefficient of
asharp transient can be related tothe mean ofthe log back­
ground distribution and, hence, estimate the probability that a
given wavelet coefficient occurs bychance. We could call this
the "Richterscale fortransients inthe EEG."
Transient Detection

Epileptiform transients are detected asadeviation from
the background distribution inarange ofscales. Local maxi­
mawith alog amplitude of1.4ormore above the mean back­
ground are marked inthe scalogram foran epileptiform tran­
sient inFigure 22and called single scale transients (SSTs).
An SST indicates anunusual event in the signal and also
defines atime-frequency atom.
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k =2)and modeled the wavelet coefficients ofbackground
EEG with the chi-square distribution. They derived adetec­
tion threshold from the background distribution. Clarencon et
a1.2' implemented the CWT (Morlet-wavelet, modulation k=5,
4scales peroctave) with downsampling toreduce computa­
tional complexity. They achieved real-time operation, D'At­
telisetal. 25 used apolynomial spline wavelet forthe DWT.
They report better detection properties forthe polynomial
spline wavelet than for the Daubechies-2 wavelet and an
approximation ofthe Morlet-wavelet.

ANEW APPROACH TO DETECTION
OF EPILEPTIFORM ACTIVITY

The approach we have taken todetection ofepileptiform
activity isbased around the CWT with the complex-valued
psi-1 wavelet (see Figure 11 ).26 We present astatistical model
forthe wavelet coefficients ofbackground EEG. Detection
thresholds are derived from this background model and can­
didate spike features are extracted asfingerprints (multi-

Flgure21.
Consistency of chi-square distribution of log magnitude wavelet
coefficients across scales.

SCALEe1500 HI), l'(dI-3.5) SCAlE 12 (25,0 Hit X
'(lIa3.5)

SCAlE 24 (12.5 Hz).x'lcl-3.51, , ,

Figure19.
Generalized inIerictal discharges in a12-yearoldpatient and aver­
age wavelet filter response over4scales (psi-t wavelet with cen­
tral frequencies 60, 43, 33, and 27 Hz) and over all 16 channels,
Epileptiform spikes near samples 24315 and 26568 generatea
stronger filter response than sharp transients caused by several
eye-movements. WC: wavelet coefficients, average.
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Figure23
Spike wave complex and waveforms ofeight SSTs (those marked
bycircles inFigure 22). The Percentage Root-Mean-SquareDif­
ference (PRO) isshown foreach single scale transient (SST).
SSTs#1to#4reflect high slope aspectsoftransients inthe signal.
SST#15 features asmall PRO and, hence, represents asubstan­
tial partofthe spike.

Figure 22.
Close upofan epileptiform transient (spike and wave complex)
and corresponding scalogram (11 scales. 3scales per octave).
Local maxima that significantly exceed the background distribu­
tion are marked with dots inthe scalogram. Dots are marked bycir­
cles are referred tobelow (Figure 23).

Figure 24.
The most important SSTs loreach transient are traced across
scales.The resulting structure iscalled "time-scale fingerprinf (FP).
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Figure 25.
Stages ofthe spike detection system: EEG
recordings are analyzedbythe SSTdetec­
tor. FPs are formed from detected SSTs. lin­
eardiscriminantanalysis isused toimprove
the selectivityofthe system.

Figure 23 shows eight selected SSTs from Figure 22 and
the waveforms ofthe corresponding lime-frequency atoms.
The Percentage Root-mean-square Difference (PRO) ofthe
atoms'waveforms with respect tothe original waveform iscal­
culated. The PRO helps identify SSTs that closelyrepresent
parts ofthe signal. InFigure 23SST #15 has asmall PRO
since itclosely fits the waveform ofthe spike. SSTs #1 to#4
indicateahigh amountofactivity inthe 50 Hz band. However,
the high PRO ofthese SSTs indicates that the generating
activity isnot centered at50 Hz. Incontrast, muscle spikes
show up asSSTs with small PROs inthe 50 Hz band.
Feature Extraction

InFigure 24the most important SSTs have been linked
across scales. This structure iscalled time-scale fingerprint
(FP).7 For each SST in the fingerprint amplitude, phase,
translation, scale, log amplitude (with respect tomean back­
ground) and PRO are recorded. The root mean square of
the log amplitudes iscalculated for each FP.

Thresholds are applied tothe root mean square ofthe
log wavelet coefficients and PROs. The peak amplitude of
the FPs are evaluated in the following way: if the peak
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occurs atthe smallest scale (highest frequency) itisreject­
edasapotential muscle artifact. Conversely, if the peak is
found atthe largest scale (lowest frequency) itisrejected as
a potential eye-blink. Aspike isconsidered tohave been
detected when simultaneous FPs are seen inatleast two
channels (Figure 25). We have developed afast algorithm
forthe CWTwith the psi-twavelet which allowsustocalcu­
late the CWTon 11 scales and perform SST and fingerprint
extraction for 16channels three times faster than real-time
on a90-MHz PC.

PreliminaryClinical Evaluation
Apreliminary evaluation ofour method was carried outon

11 clinical EEG recordings with an overall duration of278 min.
The patients' ages ranged from 2weeks to84 years. Sixteen
bipolar channels were recorded with several montages and
sampled at200 Hz. Three independent raters identified 298
definite epileptiform discharges inthe recordings. Epilepti­
form activitywas classified as generalized in7cases and mul­
tifocal in4cases. The psi-t wavelet was used inaCWT with
11 even integerscales (3peroctave). SSTs were detected in
individual scales and joined tofingerprints ineach channel.
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Thresholds were applied tothe fingerprints. This results ina
sensitivity of84% and aselectivityof12%.

DISCUSSION
Spike Detection

The CWT provides areasonable statistical reference for
background EEG with epileptiform transients showing upas
deviations from the background onmultiple scales (SSTs).
Evidence from several scales can be gathered and linked in
the time-scale plane (FPs). The sensitivitycan be adjusted by
changing the detection threshold. However, selectivity falls
sharply when the threshold islowered.

It is important tonote that this preliminary investigation
has performed analyses onindividual channels only. Work is
underwaytoimprove the selectivity otthe system bymaking
greater use ofspatial context ofepileptiform activity inthe
EEG. Further improvementsare also likely through the incor­
poration of wide-sense temporal context in the detection
process.Alargerdatasetwill beusedtoseparate training and
test sets forthe evaluation.
WaveletAnalysis

Waveletanalysis provides apowerful new means ofvisu­
alizing and analyzing signals thatare changing dramatically
inboth the time domain (raw signal) and frequency domain
(spectrum). Mimetic features such asamplitude, slope and
durationofEEG waves are closely related tothe properties of
multiscale edges found in the CWT. Wavelet analysis has
been shown to mimic the early stages of human percep-
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