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Abstract
We tested in a translational approach the usefulness of plasma creatine kinase (CK) as an objective biomarker for levodopa-
induced dyskinesia (LID). Plasma CK levels were measured in five dyskinetic parkinsonian non-human primates (NHP) 
and in ten PD patients with LID who participated in a treatment trial with simvastatin. Plasma CK levels were increased in 
dyskinetic NHP and correlated with LID severity while they were not affected by LID severity in PD patients.
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Introduction

The progression of Parkinson’s disease (PD) and the use 
of dopamine replacement therapy, in particular levodopa, 
are associated with the emergence of levodopa-induced 

dyskinesia (LID). LID is unpredictable involuntary move-
ments that occur in most patients as peak-dose dyskinesia, 
i.e. when levodopa plasma levels are highest (Bastide et al. 
2015). Most patients will experience LID during the disease 
course with negative impact on health-related quality of life 
(Chapuis et al. 2005; Hechtner et al. 2014; Pechevis et al. 
2005).

Several LID rating scales were validated (Colosimo 
et al. 2010). These are challenged by the high variability of 
LID over time and the limited awareness of their presence, 
especially in patients with cognitive impairment and mood 
disorders (Amanzio et al. 2014). There currently exists no 
validated biomarker to assess LID, while such objective out-
comes are needed in light of the limitations of clinical rating 
scales (Meissner et al. 2011). Several monitoring devices 
were tested in clinical studies, but none has been specifi-
cally validated for the assessment of LID (Chung et al. 2010; 
Lopane et al. 2015; Manson et al. 2000; Mera et al. 2012a, b; 
Perez-Lopez et al. 2016; Tsipouras et al. 2012; Tzallas et al. 
2014). Plasma creatine kinase (CK) levels are sensitive to 
muscle injury and activation (Khan 2009). Rhabdomyolysis 
with high plasma CK levels was reported in PD patients with 
acute severe LID (Bektas et al. 2014; Lyoo and Lee 2011). 
Moreover, rhabdomyolysis induced by excessive muscle 
activity was also found in other medical conditions such as 
dystonic storm and status epilepticus (Singhal et al. 1978; 
Termsarasab and Frucht 2017).
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We here explored the hypothesis of increased plasma CK 
levels as an objective biomarker for the evaluation of LID 
based on a post hoc analysis of data obtained in five parkin-
sonian non-human primates (NHP) and ten PD patients from 
a small randomized, placebo-controlled, multiple cross-over 
n-of-1 trial with simvastatin (Tison et al. 2013).

Materials and methods

Animals

Five macaques were rendered parkinsonian and dyskinetic as 
previously described (Bezard et al. 2001; Tison et al. 2013). 
Briefly, animals were intoxicated with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) hydrochloride (0.2 mg/
kg i.v. for 15 days). After stability of induced parkinson-
ism (8 weeks), a daily oral administration of levodopa was 
administered for 12 weeks at a tailored dose (15–20 mg/kg/
day) producing full reversal of parkinsonian symptoms and 
moderate to severe LID (Ahmed et al. 2010; Berton et al. 
2009; Bezard et al. 2003; Fasano et al. 2010; Porras et al. 
2012; Shen et al. 2016; Urs et al. 2015).

Motor behaviour (severity of parkinsonism and LID) 
was assessed in an observation cage for 240 min after oral 
administration of levodopa (individually tailored dose rang-
ing between 15 and 20 mg/kg, days D2 and D14) and in 
OFF condition (days D1 and D21), as previously described 
(Tison et al. 2013). Day 1 assessment in OFF condition was 
performed after 1 week of levodopa wash-out. Parkinsonian 
symptom severity was quantified with an established scale (0 
meaning no parkinsonism and a score above six correspond-
ing to severe motor disability). LID was rated according to 
the NHP Dyskinesia Disability Scale (NHPDDS) from 0 (no 
dyskinesia) to 4 (severe and disabling dyskinesia) for both 
choreic and dystonic movements (Fox et al. 2012). The area 
under the curve (AUC) was calculated for motor disability 
and NHPDDS scores for each day of assessment. Blood was 
sampled 300 min after the oral application of levodopa for 
plasma CK level measure. Six macaques never exposed to 
MPTP or levodopa served for the measurement of CK levels 
in a healthy control group.

All animal experiments were performed in accordance 
with the European Union directive of September 22, 2010 
(2010/63/EU) on the protection of animals used for scien-
tific purposes in an AAALAC-accredited facility following 
acceptance of study design by the Institute of Lab Animal 
Science (Chinese Academy of Science, Beijing, China). The 
monkeys were housed in individual cages allowing visual 
contacts and interactions with other monkeys in adjacent 
cages. Food and water were available ad libitum. Animal 
care was supervised daily by veterinarians skilled in the 
healthcare and maintenance of NHPs.

Patients

PD patients participated in a randomized, placebo-con-
trolled, multiple cross-over n-of-1 trial that assessed the 
efficacy of simvastatin against LID (Tison et al. 2013). All 
encountered moderately to severely disabling LID (Unified 
PD Rating Scale IV item 33 > 1) for more than 25% of the 
waking day (item 32 > 1). As part of the trial, LID were 
assessed by the modified Abnormal Involuntary Movement 
Scale (AIMS) and plasma CK concentrations were deter-
mined at each study visit (2 weeks before the beginning of 
the study (pre-screening), on day 1 before starting treatment, 
and on days 14, 28, 42, 56, 70, 84 after randomisation). 
Written consent of all study subjects was obtained prior to 
enrolment and following ethics approval (CPP Sud-Ouest et 
Outremer 3). The clinical trial was registered in the EudraCT 
database under the number 2009-011736-35.

Statistics

Clinical data and plasma CK levels in NHP were compared 
using a non-parametric one-way ANOVA for repeated 
measures, followed, if appropriate, by Dunn’s test for mul-
tiple comparisons. A Spearman correlation was performed 
between plasma CK levels in NHP and daily NHPDDS 
scores. In PD patients, AIMS scores were classified into 
three groups, 0–2 (no or very minor LID), 3–8 (moderate 
LID) and > 8 (severe LID). Plasma CK levels were com-
pared between the three defined AIMS classes using a non-
parametric Kruskal–Wallis test, followed, if appropriate, by 
Dunn’s test for multiple comparisons. A Spearman correla-
tion was performed between plasma CK levels and AIMS 
score. Plasma CK levels were compared between periods 
on simvastatin versus placebo using a Mann–Whitney U 
test. Data are presented as median and range. A p < 0.05 
was considered significant. Analyses were performed using 
GraphPad Prism 7.0 Software.

Results

Non‑human primate model of LID

Five MPTP-lesioned macaques were monitored for plasma 
CK levels, parkinsonian motor and LID scores in OFF con-
dition and after an acute levodopa challenge. An overall 
comparison revealed a significant difference in parkinsonian 
motor scores between the 4 days of assessment (p = 0.0009, 
Fig. 1). Post-hoc testing further showed a trend for lower 
parkinsonian motor scores after levodopa treatment (p = 0.09 
for D2 and D14 compared to D1 and D21). Simultaneously, 
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an overall comparison revealed significant differences 
in NHPDDS scores between the 4  days of assessment 
(p < 0.0001). Post-hoc testing further showed significantly 
higher LID scores after levodopa treatment (D14) compared 
to both days OFF (D1 and D21, p = 0.0132, Fig. 1).

Plasma CK levels were higher during ON condition [OFF 
condition: 120 (64–243) UI/L on D1 and 150 (68–276) UI/L 
on D21; ON condition: 236 (161–467) UI/L on D2 and 332 
(222–449) UI/L on D14]. An overall comparison showed 
significant differences between the 4 days of assessment 
(p = 0.0055). Post-hoc testing further confirmed higher 
plasma CK levels in ON condition compared to OFF condi-
tion (D1 vs D2 and D14, p = 0.042, Fig. 1). We also found 
a correlation between plasma CK and corresponding NHP-
DDS scores (Spearman r = 0.62, p = 0.0036). Plasma CK 
levels in healthy NHPs were 140 (73–219) UI/L and were 
not different from measurements in MPTP-treated NHPs in 
the OFF condition on day 1.

PD patients

Data of all ten PD patients of the simvastatin treatment 
trial were available for the analysis with 8 days of AIMS 

ratings and plasma CK level measurements (Tison et al. 
2013). There was no correlation between AIMS scores and 
plasma CK levels (Spearman r = − 0.012, p = 0.91), and no 
significant differences when comparing the plasma CK lev-
els of the three defined AIMS classes [no or very minor 
LID: 93 (68–278) UI/L; moderate LID: 97 (49–371) UI/L; 
severe LID: 103 (37–395) UI/L, p = 0.9, Fig. 1]. To exclude 
any effect of simvastatin on plasma CK levels, we further 
compared CK levels between periods on active treatment 
with those on placebo and found no difference [placebo: 
98 (41–371) UI/L, simvastatin 98 (47–395) UI/L, p = 0.8].

Discussion

The aim of this pilot study was to explore in a translational 
approach the usefulness of plasma CK levels as biomarker 
for LID in parkinsonian NHP and PD patients. Indeed, 
plasma CK levels were higher in dyskinetic parkinsonian 
NHP compared to the OFF condition. However, no differ-
ence was observed in PD patients, irrespective of the LID 
status as assessed by the AIMS. Patients were initially 
enrolled in a trial assessing the efficacy of simvastatin on 

Fig. 1  Plasma CK levels and clinical scores in parkinsonian dyski-
netic non-human primates and PD patients. a Plasma CK levels, b 
AUC of motor PD scores and c NHPDDS scores in OFF condition 
(day 1 and 21) and after an acute levodopa challenge (day 2 and 14) 

in parkinsonian non-human primates. d Plasma CK levels in patients 
stratified by AIMS score were not different (*p < 0.05 post hoc 
Dunn’s test)
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LID (Tison et al. 2013). In this trial, simvastatin had no 
clinical effect on LID.

CK is an intracellular enzyme, mainly found in high-
energy demanding cells, particularly skeletal muscular 
cells. Increasing serum CK levels are generally due to mus-
cle damage or metabolic injury, leading to proteolysis and 
increasing membrane permeability (Bektas et al. 2014; Khan 
2009; Lyoo and Lee 2011; Singhal et al. 1978; Termsarasab 
and Frucht 2017). Serum CK levels are supposed to peak at 
48–72 h post-exercise and return to baseline within 7 days 
(Koch et al. 2014; Noakes 1987; Sherwood et al. 1996). 
Exercise intensity and duration influence CK levels in some 
studies, while the relationship between volume load (amount 
of work) during resistance exercise and serum CK levels 
seems weak (Koch et al. 2014; Machado et al. 2011; 2012).

Our study has several limitations. First, LID was more 
severe in parkinsonian NHP (all but one animal reached the 
maximal NHPDDS score on D2 and all on D14), thereby 
mimicking a more intense muscle activity than LID in the 
assessed PD patients (median AIMS score = 11/28). Addi-
tionally, the muscles of PD patients might have been adapted 
to chronic LID, limiting muscle injury and metabolic failure 
to such an activity. Second, the experimental conditions dif-
fered between NHP and PD patients. In NHP, we analysed 
CK levels after an acute levodopa challenge in NHP with a 
defined delay between levodopa administration and blood 
sampling, while in PD patients with more stable LID over 
time, CK was measured at each study visit with no pre-
cise timing regarding the intake of dopamine replacement 
therapy. Third, the number of PD patients was small with a 
limited power to detect significant differences.

In conclusion, plasma CK levels were increased in dys-
kinetic parkinsonian NHP, while we were not able to repro-
duce these findings in a small number of PD patients. Future 
studies with higher number of patients are required to further 
explore the usefulness of plasma CK levels for monitoring 
LID.
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