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Abstract— A microsleep is a brief lapse in performance due
to an involuntary sleep-related loss of consciousness. These
episodes are of particular importance in occupations requiring
extended unimpaired visuomotor performance, such as driving.
Detection and even prediction of microsleeps has the potential
to prevent catastrophic events and fatal accidents. In this
study, we examined detection and prediction of microsleeps
using EEG data of 8 subjects who performed two 1-h sessions
of continuous 1-D tracking. A regularized spatio-temporal
filtering and classification (RSTFC) method was used to extract
features from 5-s EEG segments. These features were then used
to train three different linear classifiers: linear discriminant
analysis (LDA), sparse Bayesian learning (SBL), and varia-
tional Bayesian logistic regression (VBLR). The performance
of microsleep state detection and prediction was evaluated
using leave-one-subject-out cross-validation. The detection per-
formance measures were AUCROC 0.96, AUCPR 0.52, and phi
0.47. As expected, prediction of microsleep states with a 0.25-s
ahead prediction time resulted in slightly lower performances
compared to the detection. Prediction performance measures
were substantially higher than those achieved with log-power
spectral features, i.e., AUCROC 0.95 (cf. 0.90), AUCPR 0.50 (cf.
0.36), and phi 0.46 (cf. 0.34).

I. INTRODUCTION

Microsleeps are brief and unintentional episodes of sleep-
related loss of consciousness [1], [2]. Microsleeps can be up
to 15 s and are commonly accompanied by behavioural cues
such as head nodding, slow eye-closure, and droopy eyes [2].
Using a 1-D pseudorandom continuous tracking task, Peiris
et al. [2] found an average of 15.2 (0.0–72.0) microsleep
events per hour. Poudel et al. [3], using a 2-D continuous
tracking task with healthy non-sleep-deprived participants,
reported an average microsleep rate of 79 h−1 with a mean
duration of 3.3 s. Innes et al. [4] found that sleep deprivation
increased the propensity of microsleeps. However, the cor-

∗ This work was supported by the University of Canterbury.
Reza Shoorangiz is with the Department of Electrical and Computer

Engineering at University of Canterbury, the Christchurch Neurotechnology
Research Programme, and the New Zealand Brain Research Institute,
Christchurch, New Zealand (email: reza.shoorangiz@nzbri.org).

Abdul Baseer Buriro is with the Department of Electrical and Computer
Engineering at University of Canterbury, the Christchurch Neurotechnology
Research Programme, and the New Zealand Brain Research Institute,
Christchurch, New Zealand (email: abdul.buriro@nzbri.org).

Stephen Weddell is with the Department of Electrical and Computer
Engineering at University of Canterbury and the Christchurch Neuro-
technology Research Programme, Christchurch, New Zealand (email:
steve.weddell@canterbury.ac.nz).

Richard Jones is with the Department of Electrical and Computer En-
gineering at University of Canterbury, the Christchurch Neurotechnology
Research Programme, and the New Zealand Brain Research Institute,
Christchurch, New Zealand (email: richard.jones@nzbri.org).

relation found between the rate of microsleeps when sleep-
deprived and when normally-rested was not significant [4].

A national survey in the United States found that 41%
of drivers who participated in this survey had fallen asleep
at least once while driving [5]. Another study estimated
that 21% of fatal crashes in the United States involved a
drowsy driver [6]. A similar study in Australia estimated that
fatigue was involved in 16% of fatal crashes [7]. Moreover,
Vanlaar et al. [8] found that 14% of participants in a public
poll in Ontario admitted falling asleep behind the wheel.
In the United States, the overall societal cost of drowsy
driving has been estimated as $109 billion per year [9]. These
studies indicate that drowsiness, and microsleeps in par-
ticular, substantially contribute to car accidents. Prediction
and ultimately prevention of microsleep events is therefore
important for high-risk occupations that require extended
unimpaired visuomotor performance, such as truck drivers,
pilots, and air-traffic controllers.

Detection and prediction of microsleeps have been the
focus of previous studies. Davidson et al. [10] employed a
long-short-term-memory (LSTM) recurrent neural network
to detect microsleep states with log-power spectral features,
in which they achieved a phi of 0.38 and area under the
curve of receiver operating characteristic (AUCROC) of 0.84.
Similarly, Peiris et al. [11] used log-power spectral and
nonlinear features (e.g., fractal dimension and approximate
entropy) to detect microsleep states. They reported that
log-power spectral features achieved their highest detection
performance with a phi of 0.39 and AUCROC of 0.84.
Ayyagari et al. [12] employed an echo-state neural network
to detect microsleep states from EEG spectral features and
achieved 0.88 and 0.44 for AUCROC and phi, respectively.
Prediction of microsleep states has also been explored with
log-power spectral features [13], [14]. Buriro et al. [15]
used interchannel relationships between EEG electrodes to
predict microsleep states. Their highest performance for
0.25-s ahead microsleep state prediction was achieved with
joint entropy features, which resulted in AUCROC of 0.95,
AUCPR of 0.50, and phi of 0.47. Despite this research, the
performance of microsleep detection and prediction is still
relatively moderate for practical use.

In this study, our aim was to investigate the spatio-
temporal EEG patterns in detection and prediction of mi-
crosleeps. We expected to achieve an improvement in detec-
tion and prediction performance by simultaneously exploit-
ing temporal and spatial patterns of EEG. We used a regu-
larized spatio-temporal filtering and classification (RSTFC)
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method [16] to extract features of the EEG, which were
then fed to linear classifiers for classification. We evaluated
the performance of detection and prediction of microsleeps
with a leave-one-subject-out cross-validation. This evaluation
method was used to ensure that the estimated performance
measures were unbiased.

II. METHODOLOGY

A. Data
The data used were from a retrospective study [2]

which comprised 15 healthy, normally-rested, and non-sleep-
deprived participants. The average night sleep for the night
prior to experiment was 7.8± 1.2 h. Participants had no
history of a sleep or neurological disorder. Participants were
instructed to perform a 1-D continuous preview tracking
task and follow a descending pseudorandom wave on the
screen to the best of their abilities. Each participant took
part in two 1-h sessions. During each session, physiological
and behavioural data were recorded. The 16-channel EEG
was sampled at 256Hz from Fp1, Fp2, F3, F4, F7, F8,
C3, C4, O1, O2, P3, P4, T3, T4, T5, and T6, relative
to linked-ears, according to the international 10-20 system.
Facial video and tracking performance were recorded at 25
frames per second and 60Hz, respectively and were used to
identify microsleeps behaviourally. The ethical approval for
the original study was obtained from the Canterbury Ethics
Committee.

B. EEG preprocessing
A band-pass filter from 0.5 to 45Hz was applied to the

EEG data. Artefact subspace reconstruction (ASR) [17] was
then applied to 2-min EEG segments with 1-min overlaps
to minimize stereotypical artefacts (e.g., eye blinks) with
a z-score over 5 [13]. Remaining muscle artefacts were
minimized using canonical correlation analysis blind source
separation [18]. The data were then re-referenced to the
common average of all electrodes and downsampled to
128Hz.

C. Behavioural gold-standard
Identification of microsleeps was done by combining two

independent scores: one from the video ratings and one
from the tracking-performance analysis. An expert scored
facial video based on a 6-scale rating similar to those of
Wierwille and Ellsworth [19], namely alert, distracted, forced
eye closure, light drowsy, deep drowsy, and microsleep [2].
Tracking performance, however, was analysed using an
automated algorithm to identify coherent and incoherent
tracking episodes [13]. Finally, video ratings and tracking-
performance analysis were merged into a single gold-
standard. In this process, a microsleep episode was defined
as a deep drowsy or microsleep video-rating in conjunction
with an incoherent and erroneous tracking performance for
an episode longer than 0.5 s. A responsive episode, on the
other hand, was defined as a coherent tracking for at least 5 s,
irrespective of the video rating. The remainder of the gold-
standard was considered uncertain and was excluded from
further analysis.

D. Feature extraction
We utilized RSTFC [16] to extract spatio-temporal features

of EEG. RSTFC is a special form of the common spatial
patterns (CSP) family to extract discriminatory EEG features,
that can simultaneously optimize temporal and spatial filters
to maximize the separability of classes. An advantage of
RSTFC is its ability to optimize different temporal filters for
each electrode. Additionally, it transforms the optimization
of temporal and spatial filters into a classical CSP formula-
tion [20], which can be solved with a generalized eigenvalue
decomposition. Let X ∈ RC×T be a single trial of EEG with
C electrodes and T time points. The spatio-temporal filter
of X can be formulated as

f
(
Xc

)
= ac

N−1∑
n=0

bnX
(n)
c , (1)

where ac is the spatial filter’s coefficient for channel c, bn
is the nth coefficient of the temporal filter, N is the order
of temporal filter, and X(n)

c is an n-point delayed copy of
Xc. To reconstruct classical CSP formulation, Eq. (1) can be
rewritten as

f
(
Xc

)
=

N−1∑
n=0

wc,nX
n
c , (2)

where wc,n = acbn. Therefore, creating an augmented copy
of data with multiple delays simplifies the optimization of the
spatio-temporal filters to optimizing the generalized Rayleigh
quotient

max
w

J(w) =
w>C1w

w>
(
C2 + ρI

)
w
, (3)

where C1 and C2 are the average covariance matrices of
augmented epochs corresponding to distinct class labels and
ρ is the regularization coefficient. Other types of regulariza-
tion have also been proposed [16], [21], [22], but this study
was restricted to the Tikhonov regularization. Generalized
eigenvalue decomposition is then used to find the solution to
the generalized Rayleigh quotient [16], [20]. Similar to CSP,
the log-powers of spatio-temporally filtered EEG data were
used as features.

In this study, we investigated the detection and prediction
of microsleep states. The EEG segments were extracted τ s
prior to the gold-standard (as shown in Fig. 1). When τ = 0 s,
the system performs microsleep detection, whereas higher
values of τ corresponds to microsleep prediction. We varied
τ from 0 to 1 s to evaluate the performance of system for both
detection and prediction with various prediction times. A
window size of 5 s was used for EEG segments, since this had
shown good performances in our previous works [13], [15],
[23]. The parameter corresponding to the number of delays
for the temporal filter of RSTFC was fixed to 32, which
resulted in 0.25 s data augmentation for EEG segments. It
should be noted that this value was chosen arbitrarily, but
one can perform a cross-validation to identify the optimum
value of this parameter. Similar to our previous work [15],
the first 2min of each session was used as a baseline for
features of that session.
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Fig. 1. Assignment of EEG segments with respect to the gold-standard.

E. Classification and performance evaluation

Three linear classifiers were used for identification of
micorsleep states: (1) linear discriminant analysis (LDA), (2)
sparse Bayesian learning (SBL) – also known as relevance
vector machine – [24], [25], and (3) variational Bayesian
logistic regression (VBLR) [26]. The LDA is a relatively
simple and robust linear classifier which assumes data of
each class is generated from a Gaussian distribution [27].
Although a simple classifier, LDA has shown comparable and
even superior performance compared to other classification
techniques [27], [28]. The SBL method is a hierarchical
Bayesian linear classifier with automatic relevance deter-
mination (ARD), where each predictor is regularized by
a Gaussian prior (L2 norm). Therefore, irrelevant features
prune out automatically during the training of SBL. Bayesian
logistic regression also uses ARD to eliminate irrelevant
features, while learning to discriminate two classes. Vari-
ational inference [26] was used for training of both SBL and
Bayesian logistic regression.

To evaluate performance of detection and prediction
systems, a leave-one-subject-out cross-validation was per-
formed. First, the data of one subject were kept separate for
testing. The data from other subjects were then concatenated
to form a training dataset. Spatio-temporal filters of RSTFC
were then estimated from the training data, which were then
applied to the test data. This process was repeated until
all subjects were used for testing. Various performances
measures, including AUCROC, AUC of the precision re-
call (AUCPR), phi coefficient, geometric mean, sensitivity,
and precision were recorded for each subject. The average
of each performance measure is reported in this study.

III. RESULTS

We included the data from the 8 participants who had
at least one microsleep in the two 1-h sessions. Table I
shows various performance measures of microsleep detection
across different classifiers. Interestingly, LDA and SBL per-
formed similarly. However, VBLR showed a slightly inferior
performance. Since LDA and SBL had similar performance
measures, the performance of microsleep prediction is only
reported for the SBL classifier (Table II). As expected,
the detection performance was higher than for prediction.

TABLE I
PERFORMANCE OF MICROSLEEP DETECTION (τ = 0 s) ACROSS

DIFFERENT CLASSIFIERS.

LDA SBL VBLR

AUCROC 0.96 0.96 0.93
AUCPR 0.52 0.52 0.48
Phi 0.47 0.48 0.43
GM 0.80 0.80 0.76
Sensitivity 0.70 0.69 0.65
Precision 0.43 0.43 0.40

TABLE II
PERFORMANCE OF MICROSLEEP PREDICTION FOR τ = 0 TO 1 s WITH

SBL CLASSIFIER.

Prediction time τ (s)

0.25 0.50 0.75 1.00

AUCROC 0.95 0.95 0.94 0.94
AUCPR 0.50 0.47 0.44 0.42
Phi 0.46 0.45 0.43 0.41
GM 0.79 0.78 0.76 0.76
Sensitivity 0.67 0.66 0.64 0.63
Precision 0.43 0.41 0.40 0.38

Likewise, increasing the prediction time resulted in lower
performances. The drop in performance was more rapid for
AUCPR and phi, which have been shown to be more sensitive
to highly imbalanced data [29].

IV. DISCUSSION

Compared to our previous work with power spectral
features [13], [14], we found performance improvements.
With 0.25-s ahead prediction, the average AUCROC, AUCPR,
and phi increased from 0.90, 0.36, and 0.34 [14] to 0.95,
0.50, and 0.46, respectively. Sensitivity of our system was
lower than the previous work, i.e., 0.67 vs 0.72, whereas
precision was higher, i.e., 0.43 vs 0.36. Our system, however,
performed relatively similar to the one with joint entropy
features [15] with similar AUCROC and AUCPR, but had
slightly lower phi and sensitivity, i.e., 0.46 vs 0.47 and 0.67
vs 0.73, respectively. Increasing prediction time from 0.25
to 1.0 s resulted in a drop of AUCPR from 0.50 to 0.42 and
a deterioration of phi from 0.46 to 0.41. The same trend
was also observed in precision with a drop from 0.43 to
0.38 for prediction of 0.25-s and 1.0-s ahead, respectively.
The decline in precision may indicate a direct association
between prediction time and false positives, where longer
prediction time resulted in higher false positives. Although
improvements in performances were achieved compared to
those studies with log-power spectral features, the detection
and prediction performances remain too low for real-life
applications.

The results of this study shows that incorporating spatio-
temporal information of EEG while extracting features has
the potential to substantially improve classification perfor-
mance. Additionally, increasing the length of temporal filter
of RSTFC may increase the accuracy of the temporal filter,
hence improve prediction performance. However, increasing
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the size of temporal filter will lead to more parameters to
tune and a larger feature space. Therefore, incorporating
L1 regularization and greedy solutions to RSTFC will be
necessary to avoid overfitting.

V. CONCLUSION

Continuous detection and prediction up to 1 s of mi-
crosleep states were investigated. RSTFC was used to si-
multaneously optimize spatio-temporal filters for feature
extraction. EEG features were extracted from 5-s segments
and the size of temporal filter was set to 32. The first
two minutes of each session was used as a baseline to
correct that session’s features. The classification task was
done using three linear classifiers: LDA, SBL, and VBLR.
The performance of detection and prediction was evaluated
based on leave-one-subject-out and the average performances
were reported.

Microsleep state detection and prediction with log-power
features of spatio-temporally filtered EEG resulted in higher
performances compared to those achieved with classical log-
power spectral features. This suggests that incorporating
spatial and temporal information of EEG during feature
extraction can improve classification performance. Despite
this improvement, the achieved performances were relatively
similar to the ones obtained with joint entropy features. Fine-
tuning the order of RSTFC’s temporal filter, the length of
EEG segment, and regularization parameters can improve
the detection and prediction performance of microsleeps.
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