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Abstract— Any occupation which involves critical decision
making in real-time requires attention and concentration. When
repetitive and expanded working periods are encountered, it
can result in microsleeps. Microsleeps are complete lapses in
which a subject involuntarily stops responding to the task that
they are currently performing due to temporary interruptions
in visual-motor and cognitive coordination. Microsleeps can
last up to 15 s while performing a particular task. In this
study, the ability of a convolutional neural network (CNN)
to detect microsleep states from 16-channel EEG data from
8 subjects, performing a 1D visuomotor was explored. The
data were highly imbalanced. When averaged across 8 subjects
there were 17 responsive states for every microsleep state. Two
approaches were used to handle the CNN training with data
imbalance – oversampling the minority class and cost-based
learning. The EEG was analysed using a 4–s epoch with a step
size of 0.25 s. Leave-one-subject-out cross-validation was used to
evaluate the performance. The performance measures used for
assessing the detection capability of the CNN were: sensitivity,
precision, phi, geometric mean (GM), AUCROC, and AUCPR.
The performance measures obtained using the oversampling
and cost-based learning methods were: AUCROC = 0.90/0.90,
AUCPR = 0.41/0.41 and a phi = 0.42/0.40, respectively. Although
the performances were similar, the cost-based learning method
had a considerably shorter training time than the oversampling
method.

I. INTRODUCTION

According to a survey conducted by Ministry of Transport
in New Zealand in the year 2016, fatigue was identified
as a contributing factor in 43 fatal crashes, 199 serious
injury crashes and 450 minor injury crashes and the total
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cost of crashes involving fatigued drivers was about $363
million. During these accidents, the drivers themselves did
not recognize the brief moment when they lost their attention
or consciousness or the adrenaline rush after the accident
disguised their drowsiness. This brief period during which
the driver has absence of sensory-motor and cognitive perfor-
mance are termed as microsleeps. They can range anywhere
from 0.5 s to 15 s [1],[2]. Microsleeps occurs generally
without warning. It is a light sleep state in which the person
having microsleep won’t be aware of the state they are
in. These kinds of lapses can even occur in a perfectly
healthy non-sleep-deprived subjects performing a repetitive
task without any prior indications such as drowsiness [3].
Thus it is very important to detect these states and warn the
subject before any serious mishap occurs.

Davidson et al. [1] used log-power spectral measures as
features, principal component analysis (PCA) for dimension-
ality reduction and a long short-term memory (LSTM) neural
network for classification. An AUCROC of 0.84 and a phi of
0.38 was achieved. Peiris et al. [4] used 6 LDA classifiers
with the same features and dimensionality reductions and
achieved an AUCROC of 0.86 and a phi measure of 0.39.
Ayyagari et al. [5] approach was similar. They used a stacked
echo state networks (ESN) with leaky neurons to achieve a
phi of 0.44, and AUCROC of 0.88. In all these studies, an
epoch length of 2 s with 50% overlap was used.

Shoorangiz et al. [6] used power spectral features to
predict microsleep states, for a prediction time of 1 s ahead
and achieved a best performance of AUCROC of 0.94, and
a phi of 0.44, using a single LDA classifier. Buriro et al.
[7] investigated the effectiveness of seven pairwise inter-
channel feature sets: covariance, Pearson’s correlation coeffi-
cient, wavelet cross-spectral power, wavelet coherence, joint
entropy, mutual information and phase synchronization index
in the prediction of microsleep states. A 5-s window of EEG
was used with a step size of 0.25 s for extracting features.
The joint entropy features with LDA classifier resulted in
the best performance of phi 0.47, AUCPR 0.50, and AUCROC
0.95, for a prediction time of 0.25 s ahead.

Conventional machine-learning techniques need to man-
ually go through the process of feature extraction, feature
selection and feature reduction. Recent exploration in the
field of deep learning have led to the application of several
popular methods, especially convolutional neural network
(CNN) in the field of image processing, video processing,
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Fig. 1: Basic Structural and functional representation of a
CNN.

and speech processing. CNNs are now one of the most sought
deep-learning approaches, especially for image processing.
The CNN is a biologically-inspired architecture emulating
the visual processing in the brain. It consists of several layers
including at least one convolution layer, rectified linear unit
(RELU) layer, pooling layer, and a fully-connected layer
at the end (Fig. 1). Unlike the neural network architecture
which is fully connected at all layers, the neurons in the
convolutional layers are only connected to a set of local
adjacent neurons in the next layer. This is analogous to
the local receptive field processing of the visual cortex. The
convolutional mask or the filter connecting the sub-regions of
the adjacent layers is common to the entire input data, thus
helping us to extract shift invariant features. A feature map
is obtained by repeated application of a function across sub-
regions of the entire image, in other words, by convolution
of the input data with a linear filter, adding a bias term and
then applying a non-linear function.

Several works have been carried out which have shed more
insight into CNN and how efficient the model is concerning
classification or prediction on biosignals, especially EEG.
Schirrmeister et al. [8] designed several CNN architectures
ranging from a 2-layer shallow architecture to a 31-layer
deep architecture and analyzed the impact of CNN design
choices and training strategies on decoding accuracies. Their
work gives insights into CNN’s perception and how they
extract discriminative feature maps to understand the EEG
signals. Bashivan et al. [9] used deep recurrent-CNN to
obtain effective learning representations that are invariant to
inter- and intra-subject differences and also to the inherent
noises associated with the EEG. Supratak et al. [10] designed
a CNN model, DeepSleepNet, to score sleep stages automat-
ically.

Inspired by the CNN’s ability in the above-mentioned
biomedical applications, this paper explores the effectiveness
of CNN in detection of microsleeps states from EEG, taking
into account the resource requirement, the substantial data
imbalance (??), and time involved in training the CNN.

II. METHODOLOGY

A. Data

Fifteen normal healthy subjects aged 18-36 years, who
had no neurological or sleep disorders and had an average
previous night sleep of 7.8±1.2 h [11], were observed during
two 1 hr sessions performing a 1D continuous tracking

Fig. 2: Tracking performance and corresponding gold stan-
dard.

task. The tracking task required subjects to control the
horizontal position of a cursor using a steering wheel over a
175◦ range. EEG, tracking performance and a video of the
subject were recorded for each session. EEG was obtained
from 16 electrodes – Fp1, Fp2, F3, F4, F7, F8, C3, C4,
O1, O2, P3, P4, T3, T4, T5, and T6, placed according to
the international 10-20 system, at a sampling frequency of
256 Hz. Of the 15 subjects, 8 subjects had one definite
microsleep in at least one of the sessions. The Institution’s
Ethical Review Board approved all experimental procedures
involving human subjects.

B. EEG pre-processing

The acquired raw EEG signals were pre-processed using a
FIR bandpass filter with cut-off frequencies of 1 Hz to 45 Hz.
To improve the SNR, the filtered signals was re-referenced to
a common average. Artifact-subspace reconstruction (ASR)
[12] with a 2-min window length and 50% overlap was used
to remove any artefacts with a z-score>5.

C. Gold-standard

Using the tracking performance and video recording dur-
ing the sessions, a gold-standard was generated. An expert
examined the video, independent of the tracking performance
and identified the behavioural clues [4],[13]. Tracking per-
formance was used to identify ‘responsive’, ‘deviated’ and
‘flat spot’ regions [12]. Both the video and tracking analysis
were used to generate the ‘gold standard’. The gold standard
has 3 states – ‘responsive’, ‘microsleep’, and ‘uncertain’.
‘Responsive’ refers to data segments where the subject
was closely tracking the target, ‘microsleep’ refers to data
segment where the subject is not tracking the target and the
video rating was either ‘deep drowsy’ or ‘microsleep’, and
‘uncertain’ refers to data segment which cannot be accurately
defined as either a responsive or a microsleep state. (Fig. 2).
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TABLE I: CNN Architecture.

Input – 16×1024 (16-channel EEG epochs sampled at 256 Hz)

Convolution Layer 1×40, 25
ReLu

Convolution Layer 16×1, 25
batch normalization

ReLu
maxpool 1×3, Stride 1×3

Convolution Layer 1×40, 50
ReLU

maxpool 1×3, Stride 1×3

Convolution Layer 1×40, 100
ReLU

maxpool 1×3, Stride 1×3

Fullyconnected Layer
Softmax

Classification Layer

D. CNN architecture

We adopted an architecture mimicking ‘deepConvNet’
used for EEG decoding and visualization [8]. The base
architecture was modified to best suit the problem in hand.
As described in Table I, our CNN has 16 layers. The convo-
lutional layer parameters are denoted by ‘filter height’×‘filter
width’ and ‘number of filters’. The pooling layer parameters
are denoted by ‘height×width’.

The input to CNN was EEG epochs of duration 4 s.
The first convolutional layer convolves with the input of
size 16×1024 (EEG sampled at 256 Hz). The resultant
feature map is processed by the second convolution layer.
The batch-normalization layer after the second convolution
layer reduces the internal covariate shift among the multiple
feature maps, thus making the weight initialization easier.
The obtained feature map is down-sized by the maxpool
layer before being passed on to the next set of layer. The
dimensionality reduction is automatically taken care of as
the layer deepens. Finally, the fully connected layer processes
the 100 feature maps of size ‘1×19’ after the final maxpool
layer. A weighted cross-entropy was used to calculate the
prediction error at the output stage. The NVIDIA GeForce
GTX1070 GPU was used to train the CNN model.

The dataset on an average (all 8 subjects combined) had
an imbalance ratio of 1:17 (microsleep:responsive). Fig. 3
gives the subject-wise class imbalance along with the number
of uncertain states in each subject. The performance of the
classifier will be affected by the class imbalance. While
training the learning algorithms insensitive to class imbalance
could classify all samples to the majority class in order to
minimize the error rate [14].

The class imbalance problem was handled in two ways:
• An over-sampling technique was used, in which the mi-
nority class (microsleep) was replicated to equal the majority
class (responsive). Although there are several over-sampling
techniques available (e.g., SMOTE, ADASYN), they can
only be used on features extracted from the EEG data. In
our case since the actual EEG signal was used as the input,

it was not possible to generate synthetic EEG epochs. Hence,
the minority class was replicated to equal the majority class
in numbers (case 1).
• A weighted cost function (cross-entropy). This was inspired
by prior work on using cost sensitive loss functions with
imbalanced datasets in neural networks and deep learning
(case 2) [15], [16].

The hyperparameters best suited for detecting microsleeps
were determined as follows:
1. Of the 8 subjects, one subject was reserved for testing.
2. The hyperparameters of the model were tuned by training
the model with the remaining 7 subjects, of which 6 were
used for training and 1 for cross-validation.
3. The model with the best AUCROC was chosen.
4. The chosen model was trained using the 7 subjects and
tested on the reserved test subject.
5. This process was repeated for all 8 subjects and the
performance measures were averaged.

The above procedure was done for both cases 1 and 2.
Finally, the model’s performance to detect microsleep states
and the average time utilised for training for cases 1 and 2
were compared.

III. RESULT

Performance measures for detection of microsleep states
are presented in Table II. The performance measures between
the two cases are similar. A model was also trained on the
imbalanced training data It was found that training CNN with
imbalanced dataset resulted in a bias towards majority class,
giving high specificity but a low sensitivity. The mini-batch
size was kept constant in both cases, thus the number of mini-
batches would vary in both cases. The average time utilized
for training the CNN in both cases 1 and 2 is illustrated in
Fig. 4.

IV. DISCUSSION

Performance of the CNN was essentially the same for
the oversampling technique and cost-based learning. This
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Fig. 3: Microsleep, responsive, and uncertain states in the 8
subjects ordered with respect to decrease in imbalance ratio.
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Fig. 4: Average training time for over-sampling technique Vs
cost-based learning.

indicates that whether over-sampling the minority class to
equal the majority class or by adding weights to the error
function proportional to the ratio of minority class to majority
class will yield almost the same performance. Thus in
situations where computing power and is critical, the cost-
based learning is advantageous.

Due to a memory constraint, when the minority class was
over-sampled, the training data exceeded the GPU memory
requirement. The training data had to be divided into 2
batches before the training process. Each training session was
performed for 50 epochs on an NVIDIA GeForce GTX1070
GPU. The training process had to be repeated 2 times to
ensure the model had seen all possible combinations at
the end of training. This is time consuming as opposed
to training the model with an imbalanced dataset. In cost-
based learning, where the training dataset is imbalanced, it
is accounted for by adding appropriate weights during the
prediction error computation. This reduces the amount of
data to be handled during training and, thus, reduces the
time needed for training (Fig. 4).

The current measures obtained are on par with some of
the prior work [1],[4], but not on par with the benchmark set
by [7].

V. CONCLUSION

The ability of CNN to detect microsleep states was inves-
tigated in this work, along with the model’s performance
when the minority class was over-sampled and when the
imbalance was maintained during training but compensated
using a cost factor while computing the prediction error.
CNN being a new approach has numerous variations that

TABLE II: State detection performance.

Over-sampled Cost-based learning Imbalanced data

Sensitivity 0.60 0.64 0.36

Specificity 0.95 0.92 0.97

Precision 0.39 0.33 0.48

phi 0.42 0.40 0.35

GM 0.73 0.76 0.54

AUCROC 0.90 0.90 0.86

AUCPR 0.41 0.40 0.39

needs to be explored in terms of hyperparameters, layers,
and CNN structure (sequential/parallel). Future work will
focus on experimenting with parallel CNN architectures,
adding customized layers to reduce inter-subject variability,
and using ensemble techniques to improve the performance
for detecting and predicting microsleeps. In spite of a longer
latency, multiple consecutive microsleep states will also
be taken into consideration and experimented with to see
whether it improves the performance of the model.
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