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Abstract— This work aims at identifying characteristic fea-
tures of EEG to demarcate a microsleep from preceding
responsive states. The EEG signals, after reference electrode
standardization technique (REST) re-referencing, were pro-
cessed through a time-varying general linear Kalman filter
(TVGLKF) to derive time-varying auto-regressive (TVAR) pa-
rameters. The time-varying effective connectivity measure of
orthogonal partial directed coherence (OPDC) was obtained
for every instant at 256 Hz. Effective connectivity matrices
formed using these OPDC measures, with the scalp electrodes as
nodes were processed further using graph theory. Community-
based measures were investigated and statistical significances
compared. Non-parametric Wilcoxon signed rank test was used
for significance analysis, with Cohen-type and Common Lan-
guage effect size (CLES) as measures of effect sizes. The results
showed a decrease in directional modularity from anterior to
posterior, in theta, alpha, and beta bands in microsleeps. The
alpha band showed the highest significance with a Cohen-
type effect size of 1.25 and a median percentage difference
of 23% across subjects, with a range of 13-28%. Flexibility
and integration also decreased with average percentage of 25%
(17–35%) and 20% (16–32%), respectively, while recruitment
increased on an average of 11% (3–16%), wherever significant
across all bands. These community-based measures can help
characterize and explain changes in brain mechanisms, and can
also serve as potential biomarkers for microsleep detection.

I. INTRODUCTION

A microsleep is a temporary episode of sleep (0-15 s)
in which an individual is unconscious and unresponsive [1],
[2]. People who experience microsleeps are often unaware
of them, instead believing themselves to have been awake
or to have temporarily lost focus.A well cited example
for a catastrophe attributed to microsleep is the Waterfall
train disaster in 2003 [3]. It is imperative that microsleeps
are studied, analyzed, understood, and characterized, to aid
in their detection or even prediction in order to reduce
microsleep related incidents.
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Fig. 1. Steps involved in processing EEG signals to obtain scalar measures
for microsleep event characterization

This work is based on effective connectivity (EC) based
graph construction and analysis. Although a substantial
amount of work was involved in [4], there is lot of un-
charted territory to be explored. Firstly, EC can be ex-
plored at the sensor level, which might give insight into
global brain dynamics rather than specific cortical areas.
Other measures of EC, such as time-varying orthogonal
partial directed coherence (tv-OPDC) and directed direct
transfer function (dDTF), can be explored towards under-
standing brain circuits. Weighted-directed graph theory can
be deployed for analysis of brain networks using more
complex network measures as opposed to binary-undirected
based measures. Both of these static and dynamic graph
techniques can be investigated. Lastly, approaches such as-
community detection, core-periphery, and eigen-connectivity
based analysis might lead to a deeper understanding of the
mechanisms underlying microsleeps. Community detection
involves dividing the electrodes/nodes of the brain network
into non-overlapping modules based on a cost function. The
quality of division is represented by level of modularity.
Community evolution measures indicate how the modules
evolve over time. Here, an effort is made to focus on these
lines for identifying community-detection-based measures,
contrasting microsleep events from preceding responsive
EEG.

II. METHODOLOGY

The current work involves characterization of EEG signals
before and during microsleeps using effective connectivity
(EC) based brain networks. Fig. 1 represents the steps
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involved in processing EEG signals to obtain scalar measures
proposed for microsleep event characterization. Time-varying
orthogonalized partial directed coherence (tv-OPDC) was
chosen for analysis, due to its ability to nullify the effects
of volume conduction. This technique reveals synchronous
exchange of information between electrodes (sensor-space)
and EC is investigated in theta, alpha, and beta bands.
The EC matrices are weighted-directed graphs, processed
using graph theory to analyze community-detection-based
measures. Only the eight subjects who had at least one
microsleep in at least one of the two sessions were considered
for analysis. The Gold standard labelling of Study A included
‘Responsive’, ‘Unknown’, and ‘Microsleep’. Unknown states
could not be classified definitely as microsleep or respon-
sive states. Hence, all analyses on Study A exclude the
Unknowns. For all statistical analysis, the microsleeps were
contrasted with the last ten definitive responsive epochs as
shown in Fig. 2. Across-events boxplots shows the range
of p-values and Cohen-type effect sizes [5] for the eight
subjects, about the median. Across-subjects boxplots shows
the range of p-values and Cohen-type effect sizes for all 16
electrodes. The table Table I shows both Cohen-type as well
as the common language effect sizes (CLES).

A. Data

The Study A dataset was the first behavioral and EEG
dataset to be acquired in NeuroTech’s Lapse research. The
main reasons for choosing Study A for initial experimenta-
tion for this work is that this dataset has been extensively
used in prior research work from which several findings
and characterizations were revealed on microsleeps, thus
establishing a baseline standard, especially for microsleep
detection [2]. In Study A, 15 healthy subjects aged 18-36
years were recruited. None of the subjects had a current or
previous neurological or sleep disorder. All of the subjects re-
ported that they had slept normally the previous night (mean
= 7.8 h) and, hence, were considered non-sleep-deprived. All
subjects performed a 1-D continuous visuomotor tracking
task in two sessions, each session lasting one hour. The
Institutions’s Ethical Review Board approved all experimetal
procedures involving human subjects.

Fig. 2. A typical RUM frame of a microsleep event

B. EEG pre-processing

Sixteen-channel EEG signals were recorded at 10-20 in-
ternational standard positions (Fp1, Fp2, F3, F4, F7, F8, T3,
C3, T4, C4, T5, T6, P3, P4, O1, and O2, with linked ears
as reference), pre-processed using a zero-phase FIR filter,
and bandlimited to 1–70 Hz. The 50 Hz powerline interfer-
ence was removed using a notch filter. Bad channels were
rejected and interpolated using the EEGLAB software. The
EEG signals were then re-referenced to common Average
Reference (cAR). Other artefacts, such as EMG, EOG, EKG,
etc., were removed by performing independent component
analysis (ICA). Poor components were removed and the EEG
was back projected to channel space. For analysis of EC,
cAR may not be ideal, as it involves subtraction of average
potentials from all electrodes [6]. This may lead to some
spurious ghost EEG in locations where there was originally
no signal present, leading to a false participation of the
electrodes in EC-based brain network. Hence, re-referencing
via reference electrode standardization technique (REST) [7]
was performed to mitigate these specious effects. In this, the
reference of the EEG signal is shifted to an infinite neutral
point (ideal). An EEGLAB plug-in, REST [7], was used for
re-referencing the EEG signal. The EC analysis was done in
sensor-space and not in source-space.

C. Effective connectivity based brain network

Time-varying multi-variate Granger causality (tv-MVGC)
analysis was performed using adaptive general linear Kalman
filter single trial (GLKF-ST) approach [8] to explore coherent
brain networks in the theta, alpha and beta bands. An update
coefficient of 0.3 was used as in [4]. Time-varying OPDC
measures [9] were derived from time-varying multi-variate
auto-regressive parameters. These OPDC measures at 256
Hz serve as the edges of weighted-directed brain networks
whose nodes are electrodes. The significance of the EC edges
or links was assessed using a surrogate dataset, by comparing
the estimated connectivity with the null distribution, setting
the significance level at p<0.05. Only significant links were
included in the subsequent analysis and in the calculation of
EEG indexes of connectivity.
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Fig. 3. Across-events modularity analysis with Cohen-type effect sizes and
p-values in green and red, respectively.
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Fig. 4. Boxplots of modularity in alpha band in posterior to anterior (P-
A) and anterior to posterior (A-P). ‘R’ represents the preceding responsive
states and ‘M’ represents the microsleep states

D. Community Detection - Graph Theory

The weighted-directed brain networks, obtained at 256 Hz,
were processed for community-based measures [10]. Com-
munity detection was explored for finding the key topological
differences between the microsleeps and preceding respon-
sive states. The communities for every epoch at 4 Hz (0.25 s),
containing 64 temporally-ordered graphs were obtained by
Newman-Girvan’s multi-layer modularity [10], followed by
Louvain’s post-processing [10]. Since direction also contains
substantial information and the literature associates anterior-
to-posterior/posterior-to-anterior directional connectivity to
different states of consciousness [11], the adjacency matrices
were split into two by separating the lower and upper
triangular values. The upper triangle represents the posterior-
anterior flows and the lower triangular values represent
anterior-posterior information flow. Directional community
detection was performed by processing both the matrices
derived separately after symmetrizing the same. In addition
to modularity, three community-evolution metrics analyzed
were:
• Flexibility [11]
• Recruitment coefficient [11]
• Integration coefficient [11]

E. Statistical Analysis

Two levels of statistical analysis, ‘Across-events or Within-
Subject’ (Level 1) and ‘Between-Subjects’ (Level 2), were
carried out to identify features that significantly differed be-
tween microsleep and preceding definitive responsive epochs.
The non-parametric Wilcoxon signed rank test was used
for analysis. Features which were consistently different at
both levels serve as potential features for classifying the
microsleep and responsive states/events, to detect or predict
microsleeps. They also convey physical meaning of brain
network patterns, which can help in understanding brain
mechanisms, during responsive and microsleep states/events.

Flexibility Recruitment Integration
-20

-10

0

10

20

30

40

P
e
rc

e
n

ta
g

e
 d

if
fe

re
n

c
e

Fig. 5. Boxplots of medians of average percentage differences of flexibility,
recruitment, and integration between responsive and microsleeps, across
subjects, for all electrodes in alpha band (A-P)

III. RESULTS

The modularity measure of the multi-layer Newman-
Girvan community detection was found to be significant
across events for all subjects in anterior to posterior (A-P)
direction, in theta, alpha, and beta bands (Fig. 3). Across-
subjects analysis also brings out the same with good Cohen-
type and common language effect sizes (Table I). A decrease
of 23% (13–30%) in modularity was observed in alpha band
with a Cohen-type effect size of 1.25 in A-P direction.
Also, theta and beta bands showed 27% (4–61%) and 17%
(3–26%) decreases in modularity with Cohen-type effect
sizes of 0.65 and 0.92, respectively. An overall decrease in
modularity was observed in the A-P direction in the alpha
band (Fig. 4) with similar results in theta and beta bands.
Fig. 4 shows the boxplots of modularity values for alpha in
A-P about median. Similar results were obtained for other
bands and directions.

Across-subjects analysis shows a significant decrease in
flexibility in microsleeps for most of the electrodes in all
bands/directions. The p-values are very close for almost all
electrodes (Fig. 6). Flexibility decreased about 24% (5–37%),
25% (13–31%), 25% (13–36%), 23% (11–30%), 26% (11–
39%), and 25% (6–30%), in theta P-A, theta A-P, alpha
P-A, alpha A-P, beta P-A, and beta A-P respectively. The
recruitment coefficient increased during microsleeps for most
electrodes about 13% (9–21%), 14% (6–26%), 15% (8–
34%), and 9% (4–30%), in theta P-A, theta A-P, alpha P-
A, and alpha A-P respectively. There were no changes in

TABLE I
ACROSS-SUBJECTS MODULARITY ANALYSIS

Band Direction P CLES %Diff Cohen-type

Theta P-A 0.055 0.62 1 0.38
Theta A-P 0.008 0.68 27 0.65
Alpha P-A 0.109 0.48 -4 0.27
Alpha A-P 0.008 0.86 23 1.25
Beta P-A 0.523 0.55 10 0.11
Beta A-P 0.016 0.7 17 0.92
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the beta band. Overall, across all bands the recruitment
coefficient increased 11% (9-15%), among the electrode
positions that showed significance. Also, the integration
coefficient decreased for most electrode positions about 17%
(10–28%), 21% (12–30%), 27% (20–52%), 22% (11–38%),
20% (9–40%), and 19% (12–28%), in theta P-A, theta A-P,
alpha P-A, alpha A-P, beta P-A, and beta A-P respectively.
Fig. 6 shows the boxplots of p-values and Cohen-type effect
sizes in red and green respectively in alpha band A-P. Other
bands/directions showed similar results except for recruit-
ment in beta band. Overall, across all bands the integration
coefficient increased about 20% (16–32%). Fig. 5 shows the
boxplots of medians of average percentage differences across
subjects, for all electrodes, in alpha band A-P. Similar results
were obtained for theta and beta bands in both P-A and A-P.

IV. DISCUSSION

The direction of information flow has an impact on
modularity and the A-P direction clearly carries information
on the occurrence of microsleeps. Yue et al. [12] explain
indicating how modularity is related to the complexity of
the task at hand. The responsive state was associated with
a simple 1-D tracking task, which might be why modularity
is high and microsleeps come under a complex phenomenon
which results in a decrease of modularity. The decrease in
flexibility may reflect a loss in cognitive processing during
microsleeps. The decrease in flexibility also suggests some
resistance in changing modules. An increase in recruitment
can be attributed to a high modular affinity of the electrodes.
A decrease in the integration coefficient could imply that the
complex communications between different parts of the brain
are disrupted, resulting in decreased overall coordination of
the brain. These collectively suggest a more segregated and
disorganized but less integrated approach of the brain during
microsleeps.

V. CONCLUSION

Changes in the mechanism of brain network before and
during microsleeps were investigated to characterize the
same using effective connectivity, obtained using surface
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Fig. 6. Across-subjects analysis of flexibility, recruitment, and integration
in alpha band, from anterior to posterior direction, green color representing
the Cohen-type effect size and red color the p-values

EEG. From the results, it can be said that the cognitive
learning of the brain is lowered, brain acts in a more
partitioned manner, and also the overall coordination of
the brain is lowered during microsleeps. These suggest a
different way of wiring of the brain during microsleeps
compared to the previous responsive states. More community
based scalar measures are being analysed. Core-periphery
topology based analysis is also being carried out. Apart from
this other global graph measures are also being investigated.
Also topological pattern based characterization using eigen-
connectivity concept is under progress.
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