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!BSTRACT
/BJECTIVE� 4HE DETECTION OF MICROSLEEPS IN A WIDE RANGE OF PROFESSIONALS WORKING IN HIGHRISK
OCCUPATIONS IS VERY IMPORTANT TO WORKPLACE SAFETY� ! MICROSLEEP CLASSIFIER IS PRESENTED THAT EMPLOYS
A RESERVOIR COMPUTING �2#	 METHODOLOGY� 3PECIFICALLY� ECHO STATE NETWORKS �%3.	 ARE USED TO
ENHANCE PREVIOUS BENCHMARK PERFORMANCES ON MICROSLEEP DETECTION� !PPROACH� ! CLUSTERED DESIGN
USING A NOVEL %3.BASED LEAKY INTEGRATOR IS PRESENTED� 4HE EFFECTIVENESS OF THIS DESIGN LIES WITH THE
SIMPLICITY OF USING A FINEGRAINED ARCHITECTURE� CONTAINING UP TO � NEURONS PER CLUSTER� TO CAPTURE
INDIVIDUALIZED STATE DYNAMICS AND ACHIEVE OPTIMAL PERFORMANCE� 4HIS IS THE FIRST STUDY TO HAVE
IMPLEMENTED AND EVALUATED %%'BASED MICROSLEEP DETECTION USING 2# MODELS FOR THE DETECTION OF
MICROSLEEPS FROM THE %%'�-AIN RESULTS�-ICROSLEEP STATE DETECTION WAS ACHIEVED USING A CASCADED
%3. CLASSIFIER WITH LEAKYINTEGRATOR NEURONS EMPLOYING �� PRINCIPAL COMPONENTS FROM ��� POWER
SPECTRAL FEATURES� 4HIS RESULTED IN A LEAVEONESUBJECTOUT AVERAGE DETECTION IN PERFORMANCE OF
φ= ����± ���� �MEAN± 3%	� !5#− 2/#= ����± ����� AND !5#− 02= ����± �����
3IGNIFICANCE� !LTHOUGH PERFORMANCE OF %%'BASED MICROSLEEP DETECTION SYSTEMS IS STILL CONSIDERED
MODEST� THIS REFINED METHOD ACHIEVED A NEW BENCHMARK IN MICROSLEEP DETECTION�

�� )NTRODUCTION

-ICROSLEEPS ARE BRIEF �≈���n�� S	 INVOLUNTARY LAPSES
IN CONSCIOUSNESS IN WHICH A PERSON HAS A COMPLETE
SUSPENSION OF PERFORMANCE DUE TO FALLING ASLEEP�
MOMENTARILY� 4HE NEURAL DYNAMICS OF SLEEP TRANS
ITION� AS SEEN IN BOTH THE %%' SPECTRAL POWER AND
TASK PERFORMANCE MEASURES IN DROWSY INDIVIDUALS
PERFORMING AN ACTIVE TASK� SUCH AS DRIVING� USUALLY
VARY RAPIDLY BETWEEN PERIODS OF WAKEFULNESS AND
SLEEP ;�=� $ESPITE THE PREVALENCE AND DANGERS OF THESE
MICROSLEEPS IN EVERYDAY LIFE ;�n�=� A COMPLETE SYSTEM
WIDE UNDERSTANDING OF THE BRAIN MECHANISMS UNDER
LYING MICROSLEEPS REMAINS ELUSIVE ;�=�

/VER THE PAST �� YEARS� OUR RESEARCH GROUP HAS
CARRIED OUT SEVERAL STUDIES USING ELECTROPHYSIOLOGICAL
AND BEHAVIOURAL TESTS TO INVESTIGATE THE NATURE AND
CAUSES OF LAPSES OF RESPONSIVENESS ;�� �n��=� 5SING
EXPERIMENTAL DATA FROM THESE STUDIES� SEVERAL STATE
OFTHEART TECHNIQUES HAVE BEEN� AND CONTINUE TO
BE� DEVELOPED TO AUTOMATICALLY IDENTIFY� CHARACTERIZE�
DETECT� AND PREDICT MICROSLEEPS�

)N A PREVIOUS STUDY� %%' RECORDINGS WERE USED
FROM ELECTRODES AT �� SCALP LOCATIONS� WHILE THE SUB
JECTS PERFORMED A �$ CONTINUOUS VISUOMOTOR TRACK
ING TASK FOR � H� IN TWO SEPARATE SESSIONS ;�� �� �� ��=�
-ICROSLEEPS WERE DEFINED OPERATIONALLY AS THE PRES
ENCE OF EITHER A VIDEOMICROSLEEP AND�OR A TRACKING
FLAT SPOT� 6IDEOBASED MICROSLEEPS WERE IDENTIFIED BY
PROLONGED EYELID CLOSURE� HEAD NODDING� AND�OR TER
MINATED BY WAKING HEAD JERKS� 4HE GOLD STANDARD FOR
IDENTIFYING MICROSLEEPS WAS GENERATED BY MANUALLY
INSPECTING THE TRACKING TASK AND THE FACIAL VIDEO�

0EIRIS ET AL ;�= REPORTED THAT DURING MICROSLEEPS�
AN INCREASE IN %%'POWER IN THE DELTA� THETA� AND ALPHA
SPECTRAL BANDS� AND A DECREASE IN THE BETA AND GAMMA
BANDS WAS OBSERVED� 4HEY ALSO REPORTED THAT �� OF THE
�� SUBJECTS HAD AT LEAST ONE MICROSLEEP� WITH AN OVER
ALL MEAN RATE OF ���� PER HOUR AND MEAN DURATION OF
��� S ;�=� ,INEAR DISCRIMINANT ANALYSIS �,$!	WAS USED
TO FORM DETECTION MODELS BASED ON INDIVIDUAL SUBJECT
DATA AND STACKED GENERALIZATION WAS UTILIZED TO COM
BINE THE OUTPUTS OF MULTIPLE CLASSIFIERS TO OBTAIN THE
FINAL PREDICTION ;�=� 4HE BEST PERFORMANCE ACHIEVED
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USED AN ,$! AND STACKED GENERALIZATIONBASED TECH
NIQUE ON %%'POWER SPECTRAL FEATURES ;�=� 4HISMAJOR
FOCUS OF OUR RESEARCH HAS CONTINUED TO BE THE DEVEL
OPMENT OF A STATEOFTHEART MICROSLEEP DETECTION
SYSTEM�

4HEMOTIVATION FOR THIS RESEARCHWAS TO INVESTIGATE
CLASSIFICATION PERFORMANCE ON THIS EARLIER MICROSLEEP
STUDY USING A NEW RECURRENT NEURAL NETWORK �2..	
ARCHITECTURE� BASED ON RESERVOIR COMPUTING �2#	�/UR
APPROACH EMPLOYS A NOVEL FINEGRAINED ARCHITECTURE
FOR FEATURE CLASSIFICATION� 0ERFORMANCE RESULTS USING
OUR METHOD ARE COMPARED TO FOUR COMMONLYUSED
CLASSIFIER CONFIGURATIONS� 4HIS STUDY PRESENTS AND EVAL
UATES ARCHITECTURAL ENHANCEMENTS� BASED ON 2# STRUC
TURE� THAT ADVANCES THE CASE FOR AN 2# MICROSLEEP
CLASSIFIER�

�� -ETHODS

���� $ATA
������ 3UBJECTS
4HE DATA IN THE CURRENT STUDY WERE RECORDED IN AN
EARLIER STUDY ;�=� IN WHICH THERE WERE �� HEALTHY
MALE PARTICIPANTS �MEAN AGE ���� YEARS� RANGE ��n��	�
6ISUAL ACUITIES WERE ��� OR BETTER IN EACH EYE� !LL SUB
JECTS HAD SLEPT NORMALLY THE PREVIOUS NIGHT �MEAN =
��� H� MIN = ��� H	 AND WERE CONSIDERED NONSLEEP
DEPRIVED� %THICAL APPROVAL FOR THE STUDY HAD BEEN
OBTAINED FROM THE #ANTERBURY %THICS #OMMITTEE�

������ 0ROCEDURE
3UBJECTS PERFORMED A VISUOMOTOR TRACKING TASK FOR �
H WHILE %%'� FACIAL VIDEO� AND TRACKING PERFORMANCE
WERE RECORDED� 4HE �$ TRACKING TASK HAD A CONTINUOUS
PSEUDORANDOMPREVIEW TARGET �BANDWIDTH �����(Z�
� S PREVIEW	 ;��� ��= AND A STEERING WHEEL� SAMPLED
AT �� (Z� TO CONTROL A CURSOR NEAR THE BOTTOM OF THE
SCREEN� (EAD AND FACIAL FEATURES WERE RECORDED FROM A
VIDEO CAMERA � M IN FRONT OF THE SUBJECT �FRAME RATE
�� (Z	� 4HE TIMESYNCHRONIZED VIDEO PROVIDED AN
INDEPENDENT MEASURE OF THE PRESENCE OF MICROSLEEPS�

%%' WAS RECORDED FROM ELECTRODES AT �� SCALP
LOCATIONS� BANDPASS FILTERED ����n���(Z	� AND DIGIT
IZED AT ��� (Z� %LECTRODES WERE PLACED ACCORDING TO
THE INTERNATIONAL ��n�� SYSTEM� "IPOLAR DERIVATIONS
WERE USED IN FEATURE CALCULATIONS� &P�&�� &�4��
4�4�� 4�/�� &P�&�� &�4�� 4�4�� 4�/�� &P�
&�� &�#�� #�0�� 0�/�� &P�&�� &� #�� #�0��
AND 0�/��

%ACH SUBJECT ATTENDED TWO SESSIONS� AT LEAST � WEEK
APART �MEAN �� DAYS� RANGE �n�� DAYS	� HELD FOLLOWING
LUNCH BETWEEN ����� PM AND ���� PM�

������ "EHAVIOURAL ANALYSIS�MICROSLEEPS
/CCURRENCES OF MICROSLEEPS� PREVIOUSLY TERMED
@LAPSES� ;�� �� �=� PLUS DETERMINATION OF THEIR START
AND END POINTS WITH A TIME RESOLUTION OF ��� S�
WERE DETERMINED OFFLINE FROM FLATSPOTS IN TRACK
ING RESPONSE �EXCLUDING WHEN TARGET VELOCITY WAS

APPROXIMATELY ZERO	 AND�OR PROLONGED EYECLOSURE�
RATED SUBJECTIVELY FROM FACIAL VIDEO� ! SUBSET OF BEHA
VIOURAL AND %%' DATA FROM THE � SUBJECTS WHO HAD AT
LEAST ONE UNEQUIVOCAL MICROSLEEP COMPRISING A CON
COMITANT FLATSPOT !.$ PROLONGED EYECLOSURE OVER
THE TWO SESSIONS WAS SELECTED FOR THE CURRENT STUDY�
DUE TO ITS FOCUS ON %%'BASED DETECTION� AS OPPOSED
TO BEHAVIOURAL CHARACTERIZATION� OF MICROSLEEPS� 4HE
SUBSET OF � SUBJECTS HAD A TOTAL OF ��� MICROSLEEPS ;�=�
I�E� AN AVERAGE MICROSLEEP RATE OF ���� H−��

���� 3YSTEM OVERVIEW
!N OVERVIEW OF OUR MICROSLEEP DETECTION SYSTEM IS
SHOWN IN FIGURE �� 4HE MICROSLEEP DETECTION SYSTEM
INCORPORATES PREPROCESSING�CONDITIONING� FEATURE
EXTRACTION� FEATURE SELECTION�REDUCTION� AND PATTERN
CLASSIFICATION STAGES� 3IGNALS FROM EYE MOVEMENTS� EYE
BLINKS� %#'� %-'� AND LINE NOISE CAN BE ORDERS OF
MAGNITUDE LARGER THAN BRAINGENERATED %%' AND ARE
THE MAIN SOURCES OF ARTEFACTS IN %%' DATA� )N ORDER TO
OVERCOME THIS PROBLEM� A COMPREHENSIVE SET OF PRE
PROCESSING METHODS WERE IMPLEMENTED ON RAW %%'
DATA� AND THIS FOLLOWED THE APPROACH TAKEN BY 0EIRIS
ET AL ;�=�

0REPROCESSING OF THE DATASET COMPRISED STAGES
ENCOMPASSING %%'DATA ACQUISITION� ARTEFACT REMOVAL�
MEAN REMOVAL� RESCALING� DATA FILTERING� AND FEATURE
MATRIX GENERATION� &OR EXAMPLE� INDEPENDENT COM
PONENTS ANALYSIS �)#!	 WAS USED TO REMOVE EYE
BLINK ARTEFACTS ;��=� 4HE ARTEFACTFREE SIGNAL WAS THEN
FILTERED TO REMOVE �� (Z MAINS POWERLINE INTERFER
ENCE USING AN INFINITEIMPULSE RESPONSE NOTCH FILTER
WITH A 1FACTOR OF ��� 4HE MEAN AND STANDARD DEVI
ATION OF THE FIRST � MIN OF THE SIGNAL WERE CALCULATED
AND ZSCORES RELATIVE TO THE BASELINE OF THE SIGNAL WERE
USED TO ALLOW COMPARISONS TO BE MADE BETWEEN SUB
JECTS AND OVER MULTIPLE SESSIONS� %POCHS OF � S CON
TAINING SAMPLES WITH AN ABSOLUTE ZSCORE >��� WERE
REJECTED AS ARTEFACTS AND EXCLUDED FROM ANALYSIS ;�=�

%%' FEATURE REDUCTION ALGORITHMS GENERATE META
FEATURES FROM ORIGINAL FEATURES� USING� FOR EXAMPLE�
0#!� SO AS TO MINIMIZE AND OPTIMIZE THE NUMBER OF
FEATURES PASSED TO THE CLASSIFIER WITH MINIMAL LOSS OF
SIGNIFICANT INFORMATION FROM THE FEATURE SETS� #ON
SEQUENTLY� THE PATTERN CLASSIFICATION STAGE ASSIGNS CLASS
LABELS TO GIVEN INPUT VALUES BASED ON THE TRAINING
ALGORITHM� )N THIS STUDY ALL CLASSIFIERS WERE TRAINED ON
CONCATENATED DATA OF SEVEN TRAINING SUBJECTS AND THIS
WAS TESTED ON DATA FROM AN EIGHTH �TEST	 SUBJECT USING
THE LEAVEONESUBJECTOUT �,/3/	 METHOD� 2ESULTS
WERE TAKEN FROM EACH TEST SUBJECT AND CANDIDATE TEST
SUBJECTS WERE ROTATED ACROSS ALL EIGHT SUBJECTS� THUS
FORMING AN AVERAGE CLASSIFIER RESULT� 4HE GENERATION OF
METAFEATURES IS DISCUSSED IN DETAIL BY !YYAGARI ;��=�

6ALIDATION OF TRAINING AND TESTING DATA REQUIRED
PROPERLYLABELLED STATES INDICATING A MICROSLEEP�
"EHAVIOURAL METRICS OF MICROSLEEPS WERE DECIMATED
TO A RESOLUTION OF � (Z� 4HE PRESENCE OF A MICROSLEEP
WAS TREATED AS A BINARY STATE� WHERE @�� INDICATED THE

�
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&IGURE ��-ICROSLEEP DETECTION SYSTEM�

PRESENCE OF A MICROSLEEP AT ANY POINT IN TIME WITHIN
THE � S EPOCH AND @�� INDICATED THE RESPONSIVE OR
BASELINE STATE� $ATA RATED BY HUMAN EXPERTS SERVED AS
THE GOLD STANDARD FOR TRAINING AND GAUGING PERFORM
ANCE OF AUTOMATED CLASSIFIERS�

���� 3IGNAL PROCESSING
)N ORDER TO ELIMINATE ELECTRODEPOP ARTEFACTS� EACH
DERIVATION WAS NORMALIZED INTO ZSCORES� 4HE ZSCORES
OF EACH EPOCH WERE COMPUTED USING THE MEAN AND
STANDARD DEVIATION OF THE FIRST �MIN OF EACH � H LONG
RECORD OF DATA OF THE SAME SESSION� 4O EXCLUDE UNAC
CEPTABLY NOISY DATA� �S EPOCHS WITH ABSOLUTE ZSCORES
OVER ��� WERE DELETED AND REMOVED FROM FURTHER ANA
LYSIS� 4HIS PROCESS RESULTED IN PRUNING ��� EPOCHS OF
THE ���� EPOCHS ACROSS BOTH � H SESSIONS PER SUBJECT
ON AVERAGE� #ORRESPONDING GOLD STANDARD EVENTS WERE
ALSO EXCLUDED FROM ANALYSIS AT AN AVERAGE OF �� FLAT
SPOT EPOCHS AND �� VIDEOLAPSE EPOCHS PER SUBJECT IN
BOTH SESSIONS�

4HIRTY FOUR SPECTRAL FEATURES PER DERIVATION ���
SPECTRAL POWER + �� NORMALIZED POWER + � POWER
RATIOS	 WERE CALCULATED FOR EACH OF THE �� CHANNELS
USING A � S SLIDING WINDOW FUNCTION� STEPPING AT �S
INTERVALS� RESULTING IN ��× ��= ��� SPECTRAL FEATURES
OVER THE �� CHANNELS� 0ROVISION WAS INCORPORATED TO
ENSURE THAT THE � S WINDOW DID NOT OVERLAP THE DIS
CONTINUITIES�

���� &EATURE REDUCTION
!N%%' FEATURE WAS DEFINED AS AN ARBITRARY TIME SERIES
EXTRACTED FROM A SINGLE %%' DERIVATION USING A GIVEN
SIGNAL PROCESSING ALGORITHM ;�=� ! FEATURE VECTOR WAS
A VECTOR OF ALL FEATURE VALUES FOR A PARTICULAR DATA
INSTANCE�

$ATA IN EACH EPOCH WERE DETRENDED TO REMOVE ANY
$# SHIFTS AND THE SPECTRUM WAS ESTIMATED USING A
��THORDER "URGMODEL� 4HIRTYFOUR SPECTRAL FEATURES�
COMPRISING �� SPECTRAL POWER �30	� �� NORMALIZED
SPECTRAL POWER �.30	� AND � POWER RATIO �02	 FEA
TURES LISTED IN TABLE � WERE CALCULATED FOR EACH OF THE
�� DERIVATIONS� GIVING A TOTAL OF ��� SPECTRAL FEATURES�

4EN FEATURE REDUCTION TECHNIQUES WERE EVALUATED
IN THIS STUDY� WITH PRINCIPAL COMPONENTS ANALYSIS
�0#!	 PROVING TO BE THE BEST OVERALL FEATURE REDUCER
;��=� /F THE ��� SPECTRAL FEATURES SECURED� �� PRINCIPAL
COMPONENTS WERE USED FROM ALL OF THE � SUBJECTS
TO TRAIN AND TEST A SUITABLE CLASSIFIER FOR MICROSLEEP
DETECTION�

4ABLE �� 3PECTRAL FEATURES CALCULATED FROM EACH %%' DERIVATION�

&REQUENCY
&EATURE BAND �(Z	

-EAN SPECTRAL POWER �NORMALIZED	
$ELTA �δ	 ���n���
4HETA �θ	 ���n���
!LPHA � �α�	 ���n����
!LPHA � �α�	 ����n����
!LPHA �α	 ���n����
"ETA � �β�	 ����n����
"ETA � �β�	 ����n����
"ETA �β	 ����n����
'AMMA � �γ�	 ����n����
'AMMA � �γ�	 ����n����
'AMMA �γ	 ����n����
(IGH >����
/VERALL ���n���
3PECTRAL POWER RATIOS �ABSOLUTE	� θ�β�
θ/α,α/β,δ/θ,α/δ,β/δ,β�/α,β�/β�

���� #LASSIFICATIONMETHODS
3EVERAL CLASSIFIERS WERE CONSIDERED FOR COMPARISON
WITH A NEW ARTIFICIAL NEURAL NETWORK FROM A FAM
ILY KNOWN AS A RESERVOIR COMPUTING� FOR THE DETEC
TION OF MICROSLEEPS� ! KEY REQUIREMENT IS TO CAP
TURE THE DYNAMICS OF INPUT SIGNALS� 4YPICALLY� THIS
REQUIRES A COMPLEX TRAINING PROCESS� (OWEVER� CAP
TURING THE FIDELITY OF SUCH FEATURES TO ENSURE ACCUR
ATE CLASSIFICATION IS A KEY QUESTION THAT WILL BE
ADDRESSED IN THIS ARTICLE� 4HREE� RELATIVELYDIVERSE CLAS
SIFIERS WERE USED IN THIS STUDY� ONE RESULTING IN FIVE
SUBTYPES�

������ ,INEAR DISCRIMINANT ANALYSIS
,INEAR DISCRIMINANT ANALYSIS �,$!	 WAS USED TO
DETERMINE WHICH CONTINUOUS VARIABLES COULD DISCRIM
INATE BETWEEN TWO ORMORE GROUPS ;��=� ,$! ASSUMES
THAT THE GROUPMEMBERSHIPS OF THE INITIAL CASES �TRAIN
ING SET	 ARE KNOWN CORRECTLY� 4HIS ANALYSIS YIELDS
INFORMATION WHICH CAN THEN BE USED TO CLASSIFY A
FUTURE CASE WITH AN UNKNOWN GROUP MEMBERSHIP
INTO A GROUP� ,$! MAXIMIZES THE RATIO OF BETWEEN
CLASS VARIANCE TO THE WITHINCLASS VARIANCE IN ANY PAR
TICULAR DATA SET� THEREBY ACHIEVING MAXIMAL LINEAR
SEPARABILITY ;��=�

,$! WAS USED BY 0EIRIS ET AL ;�= TO FORM CLAS
SIFICATION MODELS CAPABLE OF DETECTING MICROSLEEPS
AND WAS SET AS THE BASELINE FOR THE OTHER CLASSIFIER
MODELS�

�
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������ 3UPPORT VECTOR MACHINES
3UPPORT VECTOR MACHINES �36-	 ARE A SET OF SUPER
VISED LEARNING TECHNIQUES USED FOR REGRESSION� CLASSI
FICATION� AND OUTLIER DETECTION BASED ON THE CONCEPT
OF DECISION PLANES� WHICH DEFINE DECISION BOUNDARIES
;��=� 36- PERFORMS CLASSIFICATION TASKS BY CONSTRUCT
ING HYPERPLANES IN AMULTIDIMENSIONAL SPACE THAT SEP
ARATES CASES OF DIFFERENT CLASS LABELS ;��=� 3UPPORT VEC
TORS TURN HIGH DIMENSIONALITY PROBLEMS INTO LINEAR
CLASSIFICATION PROBLEMS� 36- ALGORITHMS ARE ALSO WELL
EQUIPPED TO HANDLE MULTIPLE CONTINUOUS AND CATEGOR
ICAL VARIABLES�

36-S WITH LINEAR AND 'AUSSIAN KERNEL FUNCTIONS
HAVE PREVIOUSLY BEEN USED FOR MICROSLEEP DETECTION
;��n��=� -ORE RECENTLY� ,A2OCCO ;��= APPLIED 36-S
FOR MICROSLEEP DETECTION ON THE SAME DATASET USED IN
THIS RESEARCH�-EDIOCRE PERFORMANCE WAS REPORTED FOR
AN 36-WITH A POLYNOMIAL KERNEL� AND POOR PERFORM
ANCE WAS REPORTED WITH A 'AUSSIAN KERNEL�

36-S� HOWEVER� PROVIDE A UNIQUE SOLUTION� SINCE
THEIR OPTIMALITY PROBLEM IS CONVEX ;��=� 4HIS IS
AN ADVANTAGE COMPARED TO NEURAL NETWORK SCHEMES�
WHICH HAVE MULTIPLE SOLUTIONS ASSOCIATED WITH LOCAL
MINIMA� AND FOR THIS REASON MAY NOT OFFER A ROBUST
SOLUTION OVER DIFFERENT SAMPLES�

������ 2ESERVOIR COMPUTING
2ESERVOIR COMPUTING �2#	 DENOTES A SPECIALISED
FAMILY OF 2..S THAT SUPPORT A SPARSE� RANDOMLY
CONNECTED @RESERVOIR� THAT CAN REALISE A DYNAM
ICAL SYSTEM� 4WO 2# STRUCTURES ARE THE LIQUID STATE
MACHINE �,3-	 AND ECHO STATE NETWORK �%3.	� ,3-S
ARE BIOLOGICALLYINSPIRED RECURRENT NETWORKS� WHEREAS
%3.S ARE FASHIONED AS A GENERAL ENGINEERING TOOL
;��=� "OTH 2# MEMBERS SUPPORT A SIMPLIFIED TRAIN
ING STRUCTURE� WHERE RECURRENT NODAL PATHWAYS CAN BE
USED TO ENHANCE SYSTEM DYNAMICS THAT CAN BE CAP
TURED TO A MEMORY STRUCTURE FOR SEPARATION USING A
SUPERVISED TRAINING SET ;��=�

���� 2ESERVOIR COMPUTING APPROACHES
%3.S HAVE BEEN USED IN NEUROENGINEERING FOR DETEC
TION OF EPILEPTIC SEIZURES ;��=� &URTHERMORE� ADVANCED
VARIATIONS OF %3. ARCHITECTURES HAVE BEEN SHOWN
TO PREDICT CUES WITHIN PREPROCESSED %%'� SUCH AS
MICROSLEEPS ;��� ��=� )N THIS SUBSECTION� THE BASIC
STRUCTURE OF TWO 2# ARCHITECTURES IS OUTLINED� WHEREAS
A LEAKY APPROACH TO PROLONG THE @ECHO� QUALITY OF %3.S
FOR APPLICATION TO RELATIVELY LOWFREQUENCY %%' SIG
NALS� IS DESCRIBED IN SECTION ������

������ ,IQUID STATE MACHINES
4HE BASIC PRINCIPLE BEHIND LIQUID STATE MACHINES
�,3-S	 IS THAT THE PERIOD BETWEEN NEURAL FIRING IS
NOT CONSTANT� AS THEY DECODE THE TIME BETWEEN SPIKES�
WHICH IS THOUGHT TO BE THE MAIN SOURCE OF INFORMA
TION TRANSFER BETWEEN NEURONS� ,3-S ARE BASED ON A
SPIKING NEURAL NETWORKMODEL ;��=� 4HEIR MAIN PROP
ERTIES ARE RECURRENCY AND THAT NEURONS HAVE SPIKING

ACTIVITY� USUALLY BASED ON A COMPLEX SYNAPTIC MODEL�
4HE RECURRENT WEIGHTS IN AN ,3- ARE NOT TRAINED IN
A SUPERVISED MANNER� UNLIKE 2..S� ,3-S ARE ALSO
USED IN COMPUTATIONAL NEUROSCIENCE TO STUDY FUNC
TIONAL PROPERTIES OF NEURAL CIRCUITS BY ABSTRACTION
;��=�

������ %CHO STATE NETWORKS
#HARACTERISTICALLY� ECHO STATE NETWORKS HAVE A SIMPLI
FIED TRAINING STRUCTURE AND PROVIDE A @RESERVOIR OF RICH
DYNAMICS� ;��=� "ASED ON A SET OF DISCRETIZED� TIME
VARYING INPUTS� A FIXED SPARSE MATRIX 7$2 IS USED
TO IMPLEMENT A RECURRENT NETWORK WITH ENHANCED
SPECTRAL DIVERSITY� WHERE A LINEAR READOUT 7OUT IS
TRAINED TO PRODUCE AN OUTPUT� 4HE STATE VECTOR X(N)
MAINTAINS THE RELATIONSHIP BETWEEN THE INPUT VEC
TOR U(N) AND OUTPUT VECTOR Y(N)� WHICH CAN BE
EXPRESSED AS

X(N) = ϕ
(
7INU(N)

4 +7$2 X(N− �)4

+7BACK Y(N− �)4
)
, ��	

Y(N) =Ψ
(
7OUT X(N)

4
)
, ��	

WHERE7$2 IS THE DYNAMIC RESERVOIR MATRIX�7BACK IS
THE FEEDBACK MATRIX� ϕ�·	 ANDΨ�·	 ARE INPUT AND OUT
PUT ACTIVATION FUNCTIONS� RESPECTIVELY�7OUT IS THE OUT
PUT WEIGHT MATRIX� AND N∈ [�� ��x�.]�

7ITH REFERENCE TO THE ARCHITECTURE SHOWN IN
FIGURE �� THE OPERATION OF AN %3. CAN BE DESCRIBED
AS FOLLOWS� 4HE INPUT VECTOR U(N) IS MAPPED INTO
STATE SPACE X(N) THROUGH THE ECHO STATE PROPERTY SUP
PORTED BY A SPARSELY CONNECTED RECURRENT MATRIX�
7$2� ,INEAR REGRESSION IS USED TO TRAIN THE %3.
OUTPUT MATRIX 7OUT TO FACILITATE RECOMBINATION OF
OUTPUT DATA� )NPUT AND OPTIONAL FEEDBACK MATRICES
7IN AND 7BACK� RESPECTIVELY� ARE DENSE RANDOMLY
CONNECTED MATRICES THAT FACILITATE THE DISTRIBUTION
OF INPUTS AND OUTPUT DATA TO THE DYNAMIC RESER
VOIR� ,ASTLY� AS WITH MOST !..S� AN ACTIVATION
FUNCTION ϕ�·	 IS SUPPORTED TO ENSURE DATA REMAINS
BOUND AND PROVIDES NONLINEAR OUTPUT CAPABILITY� )N
ESSENCE� THE NETWORK IS ACTING AS A SET OF FINELYTUNED�
MATCHED FILTERS�

������ %3.S WITH LEAKY NEURONS
! DISADVANTAGE OF ECHO STATE NETWORKS IS THAT THEY
DO NOT HAVE A TIME CONSTANT WHICH MEANS THAT THEIR
DYNAMICS CANNOT BE @SLOWED DOWN�� AS CAN BE PER
FORMED� FOR EXAMPLE� IN THE DYNAMICS OF A DIFFER
ENTIAL EQUATION� 4HEREFORE� GIVEN THE RELATIVELY SLOW
DYNAMIC OF %%' SIGNALS� SUCH AS LOW FREQUENCY SINUS
OIDAL WAVEFORMS� THE LEAKYINTEGRATOR %3. MODEL
;��= WAS USED� "Y EMPLOYING LEAKYINTEGRATOR %3.S�
THE TEMPORAL CHARACTERISTICS OF A LEARNING TASK CAN BE
EXPLOITED BY USING THE INDIVIDUAL STATE DYNAMICS OF
THE SYSTEM ;��=�

�
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&IGURE �� ! BASIC FORM OF THE ECHO STATE NETWORK �%3.	
ARCHITECTURE�

! LEAKY INTEGRATOR NEURON NETWORK CAN BE INTER
PRETED FROM *AEGER ET AL ;��= AS�

Ẋ=
�

τ

(
−αX+ϕ

(
7INU+7$2X+7BACKY

))
, ��	

Y=Ψ

(
7OUT[X; U]

)
, ��	

WHERE τ IS THE TIME CONSTANT� α IS THE LEAK DECAY RATE�
FUNCTIONS ϕ�·	 AND Ψ�·	 USE NONLINEAR AND LINEAR
ACTIVATIONS� RESPECTIVELY� AND WHERE THE SEMICOLON IN
[X; U] IS USED TO REPRESENT THE CONJOINING OF INPUT VEC
TOR U WITH STATE VECTOR X� 4HUS� RESERVOIR STATES ARE
EXTENDED WITH INPUT VECTOR U TO ESSENTIALLY @FEEDING�
OUTPUT UNITS Y ;��=�

&OR A DISCRETE TIMESAMPLED SYSTEM� EQUATIONS ��	
AND ��	 CAN BE REPRESENTED AS DIFFERENCE EQUATIONS
WITH STEPSIZE δ AS

X(N+ �) =
(
�− δα

τ

)
X(N)

+
δ

τ

(
ϕ
(
7INU

(
(N+ �)δ

)

+7$2X(N)+7BACKY(N)
))

,

��	

Y(N) =Ψ
(
7OUT[X(N); U(Nδ)]

)
. ��	

4O ACHIEVE OPTIMAL CLASSIFICATION PERFORMANCE�
CONSOLIDATION� IN TERMS OF NETWORK STATE DYNAMICSWAS
AN IMPORTANT REQUIREMENT� 4O ACHIEVE THIS WE INTRO
DUCED A FINEGRAINED %3. ARCHITECTURE�

���� &INEGRAINED ECHO STATE NETWORKS
%CHO STATE NETWORKS TRANSFORM THE INFORMATION AT
THE INPUT TO AN EXCITED STATE� WHERE THE OUTPUTS REP
RESENT VARIOUS CLASS HYPOTHESES FORMULATED FROM THE
INFORMATION IN STATE VECTORS ;��� ��=� 4HIS IS PER
FORMED THROUGH OPERATIONS AND INTERCONNECTIONS OF

THE OUTPUT MATRIX TO INPUTS� AND SUBSEQUENTLY� RESER
VOIR UNITS TO AN OUTPUT WEIGHT VECTOR� &OLLOWING THIS�
LINEAR REGRESSION OF TARGETS ON THE INPUT MATRIX IS
COMPUTED� 5SING THIS METHOD AS A BASIS� AN ENHANCED
%3. ARCHITECTURE WAS DEVELOPED� WHICH ACHIEVED A
HIGHLEVEL OF CLASSIFICATION PERFORMANCE�

������ &INEGRAINED RESEQUENCED STATES
! SET OF SMALL LEAKYINTEGRATOR %3. MODULES ARE GEN
ERATED� COMPRISING P NEURONS� WHERE P IS THE NUM
BER OF NEURONS �� IN THIS CASE	 AND + SEQUENCES
�+ = �	� IS CONSIDERED AN INDIVIDUAL CLASSIFIER� )NI
TIAL OBSERVATIONS SHOWED THAT EIGHT OR LESS NEURONS
OF A MODIFIED CASCADEDLEAKYINTEGRATOR STRUCTURE
PRESENTED MARKEDLY DIFFERENT DYNAMIC PROPERTIES
ACROSS THEIR RANDOM INSTANTIATIONS� 4HIS IS NOT THE
CASE FOR LARGER %3.S� WHERE INTERNETWORK DIFFER
ENCES BECAME INSIGNIFICANT WITH GROWING NETWORK
SIZE ;��=�

4O CONSOLIDATE THE RESULTS FROM COLLECTIONS OF
SMALL FINEGRAINED LEAKYINTEGRATOR MODULES� A CAS
CADED LEAKYINTEGRATOR APPROACH WAS EMPLOYED� 4HIS
REQUIRED SEGMENTATION OF A SINGLE� LARGE STATE MATRIX
INTO A SET OF SEGREGATED+ STATE SEQUENCES OF EQUAL SIZE�
WHERE + IS A SMALL INTEGER� %ACH SEQUENCE REFLECTS A
FEW� EQUALLYSPACED @SNAPSHOTS� OF STATE VECTOR DEVEL
OPMENT WHEN THE %3. READS A SAMPLE� 4HE REGRES
SION WEIGHTS IN OUTPUTMATRIX7OUT �EQUATION ��		 ARE
FIRST COMPUTED FOR ALL SEGREGATED STATES AND FORM CLASS
HYPOTHESES�

#LASS HYPOTHESES(I
M ARE GENERATED FROM �� POWER

SPECTRAL FEATURES� WHEREM∈ [��x� �] EMPLOYED FROM
TRAINING ENSEMBLES COMPRISING � OF � SUBJECTS USED IN
OUR STUDY AND OVER I∈ [��x� ,] SAMPLES� 4HIS TRAIN
ING STRUCTURE WAS REQUIRED FOR THE LEAVEONESUBJECT
OUT �,/3/	 CROSS VALIDATION TRAINING METHOD� WHICH
WAS APPLIED TO ALL CLASSIFIERS USED IN THIS STUDY�

%ACH + SEGREGATED TRAINING SAMPLE REPRESENTED
A SEQUENCE VECTOR THAT WAS CONCATENATED TO FORM A
SINGLE STATE VECTOR� WHERE THE NUMBER OF MAPPINGS
�CONNECTIONS	 FROM EACH + SEQUENCE TO THE FINAL STATE
VECTOR WAS DETERMINED BY M� WHERE M IS THE REP
LICATION FACTOR� 2EPLICATION OF STATE VECTOR SEQUENCES
PROVIDE A MEANS WHEREBY KEY DYNAMIC SEQUENCES
CAN BE MORE ADEQUATELY ACCESSED THROUGHOUT THE NET
WORK� AS COMPARED TO BASIC LEAKY %3. STRUCTURES�
'IVEN THE COARSE GRANULARITY OF THE SAMPLED INPUT�
WHICH MAY BE REFLECTED IN TERMS OF PHASE ERRORS
RESULTING IN MISCLASSIFICATION OF FEATURE VECTORS� WE
PROPOSE THAT SMALL REPLICATED �AND DISTRIBUTED	 STATE
VECTOR SEQUENCES CAN REDUCE THE INCIDENCE OF MIS
CLASSIFICATIONS BY INTRODUCING SMALL TEMPORAL OFF
SETS TO CAPTURE COMPLETE CUES� RESULTING IN IMPROVED
PERFORMANCE�

2ATHER THAN USE THE ENTIRE STATE VECTOR� DIMEN
SIONALITY WAS FURTHER REDUCED THROUGH THE USE OF SEG
MENTATION AND RESEQUENCING OF THE STATE VECTOR AND
INPUT SEQUENCES� 4HIS ALLOWED SMALLER� FINEGRAIN NET
WORKS TO COMPENSATE FOR %3.S SHORTTERM MEMORY

�
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CAPACITY� ! SCHEMATIC OF THIS SEGMENTATION AND RE
SEQUENCING IS DEPICTED IN FIGURE ��

4HEREFORE� EACH RESERVOIR IN THE CASCADEDLEAKY
INTEGRATOR %3. STRUCTURE CAN BE CONSIDERED AN
INDIVIDUAL DETECTOR FOR RANDOM� PDIMENSIONAL�
NONLINEAR� DYNAMIC FEATURES OF THE INPUT SIGNALS�
#ONSEQUENTLY� JOINING ALL + EXTENDED STATE VECTORS
CREATES A SERIES OF PNEURON %3.S WHICH CAN TRANS
FORM AN INPUT SEQUENCE INTO A STATIC �P + M	 × +
DIMENSIONAL FEATURE� (ERE� M IS THE OUTPUT VECTOR OF
DIMENSION -� AND IS THE CONTRIBUTION OF ALL RESER
VOIR STATE COMPONENTS THAT VARY ACROSS EACH OF THESE
NETWORK INSTANTIATIONS�

4HE MAJOR ADVANTAGE OF THIS INNOVATIVE ARCHI
TECTURE IS THAT SMALL NETWORKS� I�E� THOSE OF ORDER
�n� CASCADEDLEAKYINTEGRATORNEURON STRUCTURES� ARE
CAPABLE OF OUTPERFORMING NODAL STRUCTURES THAT ARE
CONSIDERABLY LARGER IN SIZE� (OWEVER� A DISADVANTAGE
OF THIS APPROACH IS THAT� BY INCREASING ARCHITECTURAL
COMPLEXITY� THE POSSIBILITY EXISTS OF OVERFITTING THE
NETWORK� 4HIS IS PARTICULARLY THE CASE IF GLOBAL NET
WORK PARAMETERS AND RESERVOIR SIZE ARE NOT CHOSEN
CAREFULLY�

������ /PTIMIZATION AND GLOBAL NETWORK PARAMETERS
4HE CASCADEDLEAKYINTEGRATOR%3. FORMULATION USES
FIVE PARAMETERS� THREE OF WHICH INCLUDE SCALING
PARAMETERS TO THE RANDOMLYGENERATED CONNECTION
WEIGHTS IN THE RESERVOIR� 4HE LEAKAGE FACTOR OR LEAKING
RATE IS THE FOURTH AND THE MOST CRUCIAL OPTIMIZATION
PARAMETER FOR THIS MODEL� !PART FROM THE SCALING
PARAMETERS AND THE LEAKAGE RATE� THE RESERVOIR SIZE CAN
ALSO BE CONSIDERED AS A FIFTH PARAMETER THAT MUST BE
DETERMINED ;��=�

4HREE SCALING PARAMETERS ARE REQUIRED FOR OPTIM
IZATION� BIAS SCALING� INPUT SCALING� AND SPECTRAL RADIUS�
"IAS SCALING IS USED TO PUSH THE RESERVOIR STATES CLOSER
TO −� OR +�� WHICH CORRESPONDS TO THE NONLINEAR
REGION OF THE HYPERBOLIC TANGENT FUNCTION� 4HEREFORE�
FOR THE HIGHER VALUES OF THE BIAS SCALING� THE RESERVOIR
TENDS TO MOVE TOWARDS NONLINEARITY ;��=� 5SUALLY�
SCALING VALUES SET FOR THE BIAS ARE EITHER �� ���� OR ��

3IMILAR TO THE BIAS PARAMETERS� THE LEAKAGE RATE CAN
HAVE A SUBSTANTIAL EFFECT ON THE FADING OF THE RESER
VOIR DYNAMICS AND CAN PUSH RESERVOIRS WITH A SPEC
TRAL RADIUS GREATER THAN � INTO MORE STABLE CONDI
TIONS� ,EAKAGE RATE IS HIGHLY DEPENDENT ON THE INPUT
FREQUENCY� &OR EXAMPLE� AN INPUT SIGNAL WITH A FRE
QUENCY COMPONENT SUBSTANTIALLY BELOW THE SYSTEM
CUTOFF FREQUENCY WILL NOT BE DAMPENED IN A LINEAR
RESERVOIR ;��=�

,ASTLY� RESERVOIR SIZE IS RELATED TO THE NETWORK
MEMORY AND NETWORK MODEL COMPLEXITY� )T IS IDEN
TIFIED AS ONE OF THE MOST IMPORTANT FACTORS WHICH
CAN INFLUENCE THE OVERALL PERFORMANCE OF THE SYSTEM�
4HESE DISADVANTAGES CAN BE OVERCOME WITH THE USE OF
THE LEAKYINTEGRATOR NEURON %3. STRUCTURES AS THEY
CAN SCALE THE RESERVOIR SIZE QUADRATICALLY� 4HEREFORE�
A RESERVOIR SIZE IS USUALLY SELECTED AT A POINT WHERE

4ABLE �� #ASCADED LEAKYINTEGRATOR %3. GLOBAL PARAMETERS FOR
OPTIMAL MICROSLEEP DETECTION�

0ARAMETER 6ALUE 0ARAMETER 6ALUE

3PECTRAL RADIUS ���� ,EAKAGE RATE ����
)NPUT SCALING ���� .EURONS�CLUSTER �n��
"IAS SCALING ����

INCREASING THE SIZE HAS LITTLE OR NO EFFECT ON THE OVERALL
PERFORMANCE OF THE NETWORK�

4HE OPTIMAL GLOBAL PARAMETERS USED FOR THE
CASCADED LEAKYINTEGRATOR %3. MODEL USED FOR
MICROSLEEP DETECTION ARE GIVEN IN TABLE ��

4HE MEMORY CAPACITY OF A NETWORK IS STRONGLY
ASSOCIATED WITH THE NONLINEARITY OF THE SYSTEM ;��=�
4HE MORE NONLINEAR THE RESERVOIR� THE SHORTER THE
MEMORY� (ENCE� CLASSIFICATION TASKS THAT REQUIRE A
LONG MEMORY USUALLY REQUIRE A VERY LARGE RESERVOIR OR
A LINEAR RESERVOIR�

���� !N %3. CLASSIFIER FOR MICROSLEEP DETECTION
4O OVERCOME THE DISADVANTAGES ASSOCIATED WITH LARGE�
SINGLESTRUCTURE %3.S FOR COMPLEX CLASSIFICATION
PROBLEMS� WE PROPOSED AN ALTERNATIVE SOLUTION FOR
MICROSLEEP DETECTION� 4HIS INCLUDES THE FUSION OFMUL
TIPLE� FINEGRAINED INDIVIDUAL NETWORKS INTO A COM
BINED CLASSIFIER MODEL� !CCORDINGLY� CLASS HYPOTHESES
FROM EACH CLASSIFIER ARE COMBINED AND THEMEAN OF THE
INDIVIDUAL VOTES CALCULATED FOR EACH CLASSIFIER� #ALCU
LATING THEMEAN OF THE VOTE COMBINATION IS PERFORMED�
AS IT AVERAGES VOTE FLUCTUATIONS DUE TO SINGLE CLASSIFIER
BIASES ;��=�

%XTENDING THE FINEGRAINED %3. METHODOLOGY
OUTLINED IN SECTION ������ A COMBINED �I�E� MULTIPLE	
CLASSIFIER APPROACH IS TAKEN� WITH THE AIMOF ENHANCING
CLASSIFICATION PERFORMANCE� 4HE ARCHITECTURE SHOWN IN
FIGURE � CAN BE DESCRIBED AS FOLLOWS�

!RTEFACTREMOVED %%' FEATURES DISCUSSED IN
SECTION ��� FORM THE BASIS OF INPUT VECTORU[N]� ! SERIES
OF BASELINE CLASSIFIERS ARE FORMED FROM FINEGRAINED
%3. STRUCTURES DURING TRAINING� %ACH CLASSIFIER USED A
DISCRETE LEAKY %3.� AS DEFINED BY EQUATIONS ��	 AND ��
AND WHERE THE SIGMOIDAL AND LINEAR ACTIVATION FUNC
TIONS WERE USED FOR RECURRENT NODES AND READOUT LAY
ERS� RESPECTIVELY� )NTEGRATION AND REORDERING OF STATE
VECTORS DESCRIBED IN SECTION ��� PROVIDES THE BASIS FOR
THIS REFINEMENT� &OR EACH CLASSIFIER OUTPUT M� VECTOR
ŶM# IS FORMED� WHEREM ∈ {� . . .-} AND # ∈ {� . . .+}�
4HIS LEVEL� PROCESS IS REFINED USING A STACKING MODEL�
WHERE COMBINED OUTPUTS ARE PASSED TO AMETALEARNER
BEFORE BEING COMBINED TO FORMOUTPUT� Ŷ[N]� AS SHOWN
IN FIGURE ��

4HE STACKING FRAMEWORK DEPICTED IN FIGURE � CON
SISTS OF LEVEL� AND LEVEL� GENERALIZERS� 4HE LEVEL
� MODELS ARE FORMED BY BASE CLASSIFIERS WHICH ARE
TRAINED USING THE INPUT DATA AND THE TARGET OUTPUT�
4HE LEVEL� OUTPUTS ARE THEN PRESENTED AS AN INPUT
TO THE LEVEL� GENERALIZER �METALEARNER	 WHICH IS ALSO
TRAINABLE�

�
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&IGURE �� 3CHEMATIC REPRESENTATION OF THE STATE VECTOR X;N= AND ITS RECONSTRUCTION� X ′;N=� USING SEGMENTED SEQUENCES� +�� +�� AND
+��

&IGURE �� 3CHEMATIC OF A COMBINED CLASSIFIER MODEL OF THE CASCADED LEAKYINTEGRATOR %3.�

4HE CLASSIFICATION PHASE OF THE STACKING SYS
TEM IS SHOWN IN FIGURE �� .EW CLASSIFICATION CASES
ARE GENERATED FOR LEVEL� MODELS� EACH PRODUCING A
CLASSIFICATION VALUE AT THEIR OUTPUT� 3UBSEQUENTLY� THE
RESULTING BASE MODEL PREDICTIONS ARE PASSED TO THE
LEVEL�MODEL AND COMBINED LINEARLY� 4HE LINEAR COM
BINATION SCALES THE OUTPUT OF EACH MODEL ACCORDING
TO ITS WEIGHT� ADDS THE NEW SCALED MODEL OUTPUTS�
AND APPLIES A THRESHOLD TO THE ADDED MODEL OUTPUT TO
MAXIMIZE CLASSIFICATION PERFORMANCE�

)N THIS STACKING FRAMEWORK� SOME OF THE TEST DATA
ARE HELD BACK AND USED TO TRAIN THE LEVEL� MODEL�
WHILE THE LEVEL� MODELS ARE TRAINED ON THE REST OF THE
DATA� /NLY AFTER ALL OF THE LEVEL� MODELS ARE TRAINED�
THE DATA THAT WAS HELD OUT IS CLASSIFIED USING THE LEVEL
� MODELS� WHICH THEN FORM THE TRAINING DATA FOR THE
SUBSEQUENT LEVEL� MODEL� !S THE HELDOUT DATA IS NOT
USED TO TRAIN THE LEVEL� MODELS� THEIR PREDICTIONS
ARE UNBIASED AND� THEREFORE� THE LEVEL� TRAINING DATA
ACCURATELY REFLECTS THE TRUE PERFORMANCE OF THE LEVEL�
MODELS�

&OR THE CLASSIFICATION PHASE OF THE STACKING SYS
TEM� NEW CASES ARE GENERATED FOR LEVEL� MODELS� EACH
PRODUCING A CLASSIFICATION VALUE AT THEIR OUTPUT� 3UB
SEQUENTLY� RESULTING BASEMODEL PREDICTIONS ARE PASSED
TO THE LEVEL� MODEL AND ARE COMBINED LINEARLY� 4HE
LINEAR COMBINATION SCALES THE OUTPUT OF EACH MODEL
ACCORDING TO ITS WEIGHT� SUMS OUTPUTS OF THE NEW

SCALED MODEL� AND APPLIES A THRESHOLD TO THE SUMMED
MODEL OUTPUT TO OBTAIN AN OVERALL PREDICTION�

,ASTLY� AN �FOLD CROSSVALIDATION APPROACH HAS
BEEN ADOPTED WHICH ENSURES THAT ALL OF THE TRAIN
ING DATA ARE USED TO TRAIN THE LEVEL� MODEL� 4HERE
FORE� EACH INSTANCE OF THE TRAINING DATA IS USED IN
ONE TESTFOLD OF THE CROSSVALIDATION AND PREDICTIONS
FROM THE MODELS BUILT FROM THE CORRESPONDING TRAIN
ING FOLD ARE USED TO BUILD THE LEVEL� TRAINING SET�
THUS GENERATING A LEVEL� TRAINING SET FOR EACH LEVEL�
TRAINING SET�

�� 2ESULTS

4ABLE � SUMMARIZES MICROSLEEP STATE DETECTION PER
FORMANCES OF STANDARD %3.� ,3-� STACKED ,$!�
36-0� AND CASCADEDLEAKYINTEGRATOR %3. CLASSIFI
ERS� TRAINED USING 0#! METAFEATURES ON BOTH THE
PRUNED AND UNPRUNED 3TUDY! %%' DATASETS� 4HESE
RESULTS ARE AVERAGES OF INDIVIDUAL DETECTION PERFORM
ANCES �PHI CORRELATION COEFFICIENT� φ	 FOR EACH OF THE
� SUBJECTS� 4HE CORRESPONDING 2/# AND PRECISION
RECALL GRAPHS FOR THE CASCADEDLEAKY %3. ARE SHOWN
IN FIGURES � AND �� RESPECTIVELY�

4HE NONPARAMETRIC 7ILCOXON SIGNEDRANK TEST
ALSO CONFIRMED THAT MICROSLEEP DETECTION BY THE
CASCADEDLEAKYINTEGRATOR %3. WAS STATISTICALLY
SUPERIOR TO THAT OF THE PREVIOUS ,$!BASED APPROACH

�
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&IGURE �� 4HE INTERNAL STRUCTURE OF THE METALEARNER USED IN
THE STACKING FRAMEWORK� 4HE OUTPUTS OF THE CLASSIFIERS ARE
DENOTED BY # ANDM REPRESENT THE NUMBER OF LEVEL�
MODELS PASSED TO THE METALEARNER BEFORE COMBINING THEM
TO FORM AN OVERALL PREDICTION�

REPORTED BY 0EIRIS ;�= FOR THE PRUNED 3TUDY ! DATASET
�0HI= ���� VS� ����� Z= ����� P= ����� ��TAIL		�

)N SUMMARY� THE MODEL SHOWED A MEAN CORREL
ATION OF φ= ����± ���� �!5#2/# = ����± �����
!5#02 = ����± ����	 AND THIS RESULT IS THE BEST
ACHIEVED IN THIS STUDY�

�� $ISCUSSION

4HIS IS THE FIRST STUDY TO USE AN %3. ARCHITECTURE FOR
DETECTION OF MICROSLEEP STATES� &URTHERMORE� USING
A NOVEL MODIFIED %3. ARCHITECTURE WE ACHIEVED AN
UNPARALLELED DETECTION PERFORMANCE FOR MICROSLEEP
DETECTION ON PRUNED DATA�

4HE RESULTS IN TABLE � INDICATE THAT THE DETECTION
PERFORMANCE OF THE CASCADEDLEAKYINTEGRATOR %3.
CLASSIFIER IS HIGHER THAN ANY OTHER CLASSIFIER SCHEME
EVALUATED FOR MICROSLEEP STATE DETECTION �φ = ����	�
3TANDARD %3. CLASSIFIERS RECORDED THE LOWEST PER
FORMANCE� WHICH WAS SOMEWHAT EXPECTED DUE TO
THE RELATIVELY LOW FREQUENCIES CHARACTERISTIC OF %%'
SIGNALS� &URTHERMORE� WE FOUND THAT THE CASCADED
LEAKYINTEGRATOR %3.S HAD A LOWER VALUE OF φ ON THE
UNPRUNED DATASETS �φ= ����	 THAN HAS BEEN ACHIEVED
USING JOINT ENTROPY �φ= ����	 ;��=� *OINT ENTROPY WAS
ALSO USED TO ACHIEVE A ����S PREDICTION OF MICROSLEEP
STATES AT A MEAN OF φ= ���� ;��=�

&ROM THE INITIAL OBSERVATIONS� IT APPEARED THAT
CERTAIN SUBJECTS HAD CONSISTENTLY LOW DETECTION VAL
UES ACROSS MULTIPLE SYSTEM CONFIGURATIONS �� CLASSI
FIERS AND � FEATURE REDUCTION SCHEMES	� %VEN ACROSS
THE 3TUDY! FEATURE SETS� CERTAIN SUBJECTS CONSISTENTLY
SCORED HIGHER OR LOWER THAN THE AVERAGE 0HI VALUES�

5NDERSTANDING THE REASONS FOR SUCCESSFUL INDIVIDUAL
SUBJECT CLASSIFICATION WAS THOUGHT TO PROVIDE INSIGHTS
INTO IMPROVING OVERALL DETECTION PERFORMANCE� #ON
SEQUENTLY� �FOLD CROSSVALIDATION WAS USED TO VAL
IDATE WITHINSUBJECT CLASSIFIER MODELS ON INDIVIDUAL
SUBJECTS� )N THIS TYPE OF CROSSVALIDATION SCHEME� THE
DATA SET IS DIVIDED INTO EIGHT SUBSETS AND THE HOLD
OUT METHOD WAS REPEATED EIGHT TIMES� %ACH TIME� ONE
OF THE EIGHT SUBSETS WAS USED AS THE TEST SET AND THE
OTHER SEVEN SUBSETS WERE PUT ASIDE TO FORM A TRAINING
SET� &INALLY� THE AVERAGE ERROR ACROSS ALL EIGHT TRIALS IS
COMPUTED�

&IGURE � PROVIDES A WITHINSUBJECT SUMMARY OF
SYSTEM PERFORMANCE OF A STACKED,$! CLASSIFIER USING
0#! FOR MICROSLEEP DETECTION ON THE PRUNED 3TUDY
! %%' DATASET� 4HIS SHOWS THE EFFECT OF WITHIN
SUBJECT CLASSIFIER VARIANCES ON THE OVERALL LAPSE DETEC
TION SYSTEM� 4HE CORRELATION VALUES FOR EACH OF THE
EIGHT SUBJECTS ARE DEPICTED IN TERMS OF PHI� 4HE HIGHEST
PHI VALUES ACROSS ALL OF THE SUBJECTS ON THE PRUNED
3TUDY! DATASET WERE SEEN IN 3UBJECT ��� �φ = ����	�
WHILE THE LOWEST PHI VALUES WERE SEEN ON 3UBJECT ���
�φ= ����	� /VERALL� THERE WERE FIVE SUBJECTS ����� ����
���� ���� AND ���	 WHO CONSISTENTLY SCORED HIGHER PHI
VALUES THAN THE MEAN PHI OF THE OVERALL LAPSE DETECTOR�
4HE DETECTION PERFORMANCES ON THE REMAINING THREE
SUBJECTS ����� ���� AND� ���	 WAS FOUND TO BE SUB
OPTIMAL ACROSS ALL OF THE CLASSIFIER MODULES EVALUATED�

4HE 2/# ANALYSIS PRESENTED INTERESTING RESULTS AS
SEVERAL OF THE CLASSIFIER MODULES WITH LOW PHI VALUES
HAD REASONABLY HIGH !5#2/# VALUES� 4HIS CAN BE
MOSTLY ATTRIBUTED TO THE LARGE MICROSLEEPRESPONSIVE
IMBALANCE IN THE DATA� RESULTING IN REASONABLY HIGH
SENSITIVITIES AND SPECIFICITIES �HENCE HIGH !5#2/#
VALUES	 BUT LOWER PRECISIONS DUE TO FALSE DETECTIONS
�HENCE LOWER !5#02 VALUES	� &OR INSTANCE� ALTHOUGH
DEMONSTRATING THE LOWEST PHI VALUES ACROSS ALL THE
SUBJECTS� 3UBJECT ��� REPORTED HIGHER TRUE POSITIVE
RATES �402= ����	 THAN SUBJECTS SUCH AS ���� ��� AND
��� �402 = ����� ���� AND� ����� RESPECTIVELY	� /VER
ALL� THE HIGHEST 2/# VALUES WERE REPORTED IN 3UBJECT
��� �!5#2/#= ����	 AND THE LOWEST IN 3UBJECT ���
�!5#2/#= ����	�

!LL FIVE OF THE CLASSIFIERS EVALUATED USED A STACK
ING FRAMEWORK AND SHOWED A SUBSTANTIAL INCREASE IN
PHI VALUES COMPARED TO THEIR BASE �LEVEL�	 MODELS�
3TACKED ,$! MODULES REPORTED THE SECOND GREATEST
INCREASE IN DETECTOR PERFORMANCE AFTER CASCADEDLEAKY
%3.S� WITH MEAN PHI CORRELATION OF ���� COMPARED TO
MEAN PHI OF ���� ON THE SINGLE CLASSIFIER MODULES�

�
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&IGURE �� 4HIS GRAPH ILLUSTRATES THE 2/# ANALYSIS� IN TERMS OF SENSITIVITY AND FALSE POSITIVE RATE� PLOTTED ON THE 9 AND 8AXIS�
RESPECTIVELY� AND IS BASED ON THE 0#! FEATURE SELECTION FOR A CASCADEDLEAKYINTEGRATOR %3. CLASSIFIER� 4HE VERTICAL BARS INDICATE
STANDARD ERROR� AND THE COLOUR BAR ON THE RIGHT INDICATES WHICH CLASSIFICATION THRESHOLD RESULTS AT A CERTAIN POINT ON THE CURVE� I�E�
FROM A PAIR OF SENSITIVITY AND FALSE POSITIVE RATE VALUES�

&IGURE �� 4HIS GRAPH INDICATES THE !5#02 ANALYSIS PRECISION AND RECALL� PLOTTED ON THE 9 AND 8AXIS RESPECTIVELY� FOR THE
00#!BASED LEAKY INTEGRATOR %3.S� 4HE VERTICAL BARS INDICATE STANDARD ERROR ON BOTH GRAPHS� 4HE COLOUR SCALE ON THE RIGHT HAND
SIDE OF THE GRAPH INDICATES WHICH CLASSIFICATION THRESHOLD RESULTS IN A CERTAIN POINT ON THE CURVE� I�E� FROM A PAIR OF PRECISION OR
RECALL VALUES�

�
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&IGURE �� #OMPARISON OF WITHINSUBJECT MEAN DETECTION PERFORMANCES FOR �A	 0HI� AND �B	 !5#2/#� ON THE PRUNED DATASET FOR
THE ,$! CLASSIFIER USED IN THIS STUDY� 4HE RESULTS FOR EACH OF THE REMAINING FOUR CLASSIFIERS USED IN THIS COMPARISON� AS SHOWN IN
TABLE �� SHOWED CONSISTENT VARIANCES BETWEEN SUBJECTS�

4ABLE �� $ETECTOR PERFORMANCES OF MICROSLEEP STATES ON PRUNED
AND UNPRUNED DATASETS FOR STANDARD %3.� STACKED ,$!� ,3-�
36-0� AND CASCADEDLEAKY INTEGRATOR %3.BASED CLASSIFIERS�

#LASSIFIER -ICROSLEEPS

5NPRUNED %%' STUDY�A DATASET�
φ �MEAN± 3%	
3TANDARD %3. ����± ����
3TACKED ,$! ����± ����
,3- ����± ����
36-0 ����± ����
#ASCADEDLEAKY %3. ����± ����
0RUNED %%' STUDY�A DATASET�φ
�MEAN± 3%	
3TANDARD %3. ����± ����
,3- ����± ����
3TACKED ,$! ����± ����
36-0 ����± ����
#ASCADEDLEAKY %3. ����± ����

5SING EIGHT LEVEL� MODELS AND A METALEARNER�
THE CASCADEDLEAKYINTEGRATOR %3. MODEL RESULTED
IN A MEAN PHI CORRELATION OF ����� WHEREAS LUMP
ING ALL THE FEATURES FROM SEVEN SUBJECTS TO CREATE A
SINGLE MODEL AND VALIDATING THE LUMPED MODEL ON
THE EIGHTH SUBJECT RESULTED IN A MEAN PHI OF ����� !
REASON FOR THE PERFORMANCE OF THE CASCADEDLEAKY
INTEGRATOR %3.S TO BE HIGHER THAN ANY OTHER MODEL
IS CONSIDERED TO BE DUE TO THE LEAKY %3. APPROACH
WAS BUILT INTO A MULTIPLE CLASSIFIER SCHEME �SIMILAR
TO MINIBAGGING	 DEPICTED IN FIGURE �� 4HE INDIVIDUAL
CLASSIFIER OUTPUT FROM THE CASCADEDLEAKYINTEGRATOR
STRUCTURES FIGURE � WAS LATER APPLIED TO THE STACKING
FRAMEWORK SHOWN IN FIGURE �� MAKING THE OVERALL CLAS
SIFIER MODEL ROBUST� 4HEREFORE� THE PREDICTIVE OUTPUTS
OF THE CASCADEDLEAKY %3. MODELS ARE MUCH STRONGER
DUE TO RIGOROUS LEARNING THAT OCCURS BECAUSE OF THESE
METALEARNER MODELS�

'ENERALLY� LUMPING OF DATA PRIOR TO MODEL FORM
ATION RESULTED IN THE MODEL BEING BIASED TOWARDS CER
TAIN SUBJECTS� PARTICULARLY THE ONES WITH THE MOST
LAPSES� RESULTING IN A LOSS OF GENERALISATION ABILITY�

4HEREFORE� TO PREVENT SUCH BIAS� A STACKING APPROACH
WAS APPLIED� 4HE STACKING APPROACH RESULTED IN
IMPROVED PERFORMANCE� AS THE LEVEL� MODELS WERE
ADJUSTED BY THE METALEARNER ACCORDING TO HOW
WELL THEY GENERALIZED OVER THE TRAINING SET� )T WAS
ALSO EXPECTED THAT THE MEAN DETECTOR PERFORMANCE
WOULD INCREASE PROPORTIONALLY WITH THE SIZE OF THE
TRAINING SET�

)N SUMMARY� WE BELIEVE THE EFFECTIVENESS OF OUR
CLASSIFICATION APPROACH IS DUE TO� �I	 THE TYPE OF
NEURON USED� WHERE PRINCIPAL FEATURES HAVE RELATIVELY
SLOW TIMESCALES THAT ARE MORE COMPATIBLE �@TUNE
ABLE�	 USING LEAKYINTEGRATOR %3.S� �II	 THE REMAP
PING OF THE STATE VECTOR TO PROVIDE EACH FINEGRAINED
NETWORK ACCESS TO SPECIFIC MICROSLEEP FEATURES AS
A FUNCTION OF INPUT VECTORS� I�E� @SNAPSHOTS�� BASED
ON A SET OF HYPOTHESES� �III	 THE USE OF MULTIPLE�
FEATUREBASED� FINESCALED NETWORKS WHICH HELPS SUP
PORT SHARP ADAPTATION TO A TRAINING SET� AND �IV	 EFFECT
IVELY COMBINING SMALL �FINEGRAIN	 NETWORKS FROM
VARIOUS LAYERS WITHIN THE STACKING FRAMEWORK� SUCH
THAT A @CLOUD� VOTE WILL MORE LIKELY BE DIRECTED TOWARDS
THE CORRECT HYPOTHESIS�

�� #ONCLUSION AND FUTURE WORK

2ESULTS HAVE BEEN PRESENTED FOR MICROSLEEP DETECT
ORS WHICH WERE TRAINED USING THE METAFEATURES FROM
BOTH LINEAR TECHNIQUES� NONLINEAR TECHNIQUES� AND
COMBINATIONS THEREOF FOR OUR PRUNED AND UNPRUNED
3TUDY ! %%' DATASET� 4HE BEST DETECTOR PERFORM
ANCE �IN TERMS OF THE HIGHEST MEAN φ	 WAS ACHIEVED
USING THE DETECTOR MODEL CREATED USING FINEGRAINED
CASCADEDLEAKYINTEGRATOR %3. MODELS WITH �� PRIN
CIPAL SPECTRAL COMPONENTS FROM THE 0#! FOR PRUNED
DATA�

/NGOING AND FUTURE WORK INCLUDES THE DEVELOP
MENT OF A REALTIME MICROSLEEP DETECTION SYSTEM AND
PREDICTING THE ONSET OFMICROSLEEPS� AS DISTINCT TO STATE
DETECTION�
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