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A B S T R A C T   

Accurate segmentation of substantia nigra (SN) and red nucleus (RN) is challenging, yet impor-
tant for understanding health problems like Parkinson’s disease (PD). This paper proposes an 
algorithm to segment SN and RN from quantitative susceptibility mapping (QSM) MRI and use the 
results to investigate PD. Algorithm-derived segments (based on level set and watershed trans-
form) are compared to expert manually-derived segmentations in 40 participants. Using Bayesian 
regression models, we compare QSM values between PD and control groups, and investigate 
relationships with global cognitive ability and motor severity in PD. The proposed algorithm 
produces high quality segmentations, validated against expert manual segmentation. We show 
moderate evidence of increased QSM values in SN in PD relative to controls, with moderate 
evidence for association between QSM, global cognitive ability, and motor impairment in the SN 
in PD. We suggest an improved midbrain segmentation algorithm may be useful for monitoring 
iron-related disease severity in Parkinson’s.   

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease involving the loss of dopaminergic neurons in the substantia nigra (SN). 
This cell death affects purposeful movement and eventually results in loss of motor coordination. By the time of diagnosis, approxi-
mately 60–80% of dopaminergic neurons within the SN have been lost. In addition to cell death, the SN also experiences increased iron 
accumulation [1], which may play a role in the pathogenesis of PD. Though its exact role remains unclear, iron accumulation may 
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encourage oxidative stress, alpha synuclein aggregation, and the formation of Lewy pathology [2]. 
Quantitative susceptibility mapping (QSM), an emerging magnetic resonance imaging (MRI) technique, allows high-resolution 

quantification of magnetic susceptibility, producing images of the small midbrain structures with excellent contrast [3]. Iron is 
highly paramagnetic and therefore induces a large local magnetic distortion, which is detectable with QSM in vivo. Recent work 
employing QSM has reported increased susceptibility in PD relative to controls in basal ganglia structures, including the SN and red 
nucleus (RN), and even cortical regions [4, 5]. 

The red nucleus is a pair of small gray matter structures which lies adjacent to the substantia nigra in the midbrain. It is also an iron 
rich structure and is thought to be involved in motor coordination and cognitive functions. Several studies have reported increased iron 
deposition in the RN of PD patients [6, 7] using QSM, R2*, and susceptibility-weighted imaging (SWI). 

Accurate and precise identification of the structures is key to understanding the processes underlying PD progression in the SN and 
RN. However, segmentation of these nuclei is challenging because of their small size, unclear boundaries, morphometric variability 
and similar intensity profiles with the adjacent structures on standard T1- and, to a lesser extent, T2-weighted MRI. Furthermore, 
tremor is one of the defining characteristics of PD, and therefore motion on all types of brain imaging can confound identification of 
these, and other, structures. QSM in these midbrain structures (and other subcortical structures) exhibits excellent image contrast, 
reflecting their intrinsic levels of iron content. Previous work has implemented expert manual tracing of SN [8], but an accurate 
automated segmentation is preferable to manual segmentation because of the absence of operator bias, the potential for greater 
consistency, and application to large cohorts in a systematic way. However, there is limited literature available for automated seg-
mentation of these midbrain structures [9–15], potentially due to the relatively recent development of high quality, high contrast 
imaging capable of visualizing these smaller structures. Currently, atlas-based methods are the most popular method for segmentation 
of midbrain nuclei. These are performed either in standardized space (warping subjects to normalized space) or in subject space 
(inverse warping standard regions to subject space) and depend on accurate and robust warping protocols. However, morphometric 
variability of midbrain structures limits the accuracy of these segmentation methods. Moreover, many methods proposed in the 
literature require a substantial number of ‘gold standard’ reference images for training, which is computationally expensive and not 
always feasible. Therefore, work presented in this paper addresses these issues and focused on developing the segmentation method 
which are independent of atlas registration or label-fusion based methods. 

In order to effectively investigate the relationship between iron accumulation and PD, we developed and evaluated a new seg-
mentation algorithm that uses information from QSM images to segment both SN and RN. After comparing algorithm-derived seg-
mentations to ‘gold standard’ segments manually identified by experienced radiologists, we investigated differences in QSM values 
between PD and controls, and associations with cognitive and motor dysfunction in PD, from both gold standard and algorithm-derived 
SN and RN segmentations. 

The rest of the paper is organized as follows. The materials and methodology used in this work is introduced in Section 2. The 
results are presented in Section 3, followed by discussion in Section 4. Finally, the paper is summarized in Section 5. 

2. Materials and methods 

A convenience sample of 20 participants meeting the UK Parkinson’s Disease Society’s criteria for idiopathic PD was recruited from 
volunteers at the Movement Disorders Clinic at the New Zealand Brain Research Institute, Christchurch, New Zealand. Exclusion 
criteria included atypical Parkinsonian disorders; prior learning disability; previous history of other neurological conditions including 
moderate-severe head injury, stroke, vascular dementia; and major psychiatric or medical illness in the previous 6 months. Twenty 
healthy controls matched to the PD group by mean age and sex ratio, were also recruited. 

Participants completed neuropsychological testing, clinical assessment, and an MRI scanning session. All participants gave written 
informed consent, with additional consent from a significant other when appropriate. The study was approved by the regional Ethics 
Committee of the New Zealand Ministry of Health (No. URB/09/08/037). 

2.1. Diagnostic criteria and assessment 

Motor function was assessed using the Movement Disorders Society Unified Parkinson’s Disease Rating Scale part 3 (UPDRS-III) 
and cognition by comprehensive neuropsychological testing fulfilling the Movement Disorders Society (MDS) Task Force Level II 
criteria [16]. Five cognitive domains were examined (executive function; attention, working memory and processing speed; learning 
and memory; visuospatial/visuoperceptual function; and language; see Supplementary Table 1 for a list of the specific tests). Within 
each cognitive domain, standardized scores from the constituent neuropsychological tests were averaged to provide individual 
cognitive domain scores; global cognitive performance for each participant was expressed as an aggregate z score obtained by aver-
aging all domain scores. Of the 20 PD participants, seven had normal cognition, eight had mild cognitive impairment, and five had 
dementia. Motor, cognitive, and MRI assessments were performed on medication, with no change to patients’ usual drug regimen. 

2.2. MRI acquisition 

All 40 participants (20 healthy and 20 PD patients) were scanned on a 3T General Electric HDxt scanner (GE Healthcare, Waukesha, 
USA) with an eight channel head coil. To quantify magnetic susceptibility in the brain, a 3D spoiled gradient recalled echo (SPGR) 
acquisition with 8 echoes was used to obtain real and imaginary pairs with the following parameters: echo time (TE) = 3.5, 7.3, 11.1, 
14.9, 18.7, 22.5, 26.3, 30.2 ms (3.8 ms intervals), repetition time (TR) = 42.8 ms, flip angle = 20 deg, acquisition matrix = 512 × 512 
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× 60, field of view (FOV) = 240 mm, slice thickness = 2 mm, voxel size = 0.47 × 0.47 × 2 mm3. In addition, we acquired a con-
ventional T1-weighted 3D SPGR acquisition (TE/TR = 2.8/6.6 ms, inversion time (TI) = 400 ms, flip angle = 15 deg, acquisition 
matrix = 256 × 256 × 170, FOV = 250 mm, slice thickness = 1 mm, voxel size = 0.98 × 0.98 × 1.0 mm3), a T2-weighted, and T2 
weighted fluid-attenuated inversion recovery images to facilitate a clinical read. All MRI scans were screened by a consultant 
neuroradiologist (RJK) to exclude significant non-PD cerebral pathology. 

2.3. QSM reconstruction 

Morphology Enabled Dipole Inversion (MEDI) algorithm was used to generate quantitative susceptibility maps from the real/ 
imaginary pairs [17]. The total field was estimated using a nonlinear field map estimation followed by graph-cut-based phase 
unwrapping [18]. We used the Laplacian-boundary value technique for background field removal [19] and morphology enabled dipole 
inversion with automatic uniform ventricular cerebrospinal fluid zero referencing (MEDI+0) to produce the quantitative susceptibility 
maps. A brain mask was extracted from the averaged magnitude image using FSL’s (v6.0.3) Brain Extraction Tool (BET). 

CAT12 (r1278, http://www.neuro.uni-jena.de/cat/), a toolbox of SPM12 (v7219, http://www.fil.ion.ucl.ac.uk/spm/), running in 
MATLAB 9.3.0 (R2017b), was used to process T1-weighted structural images. Each individual’s T1-weighted structural image was first 
re-oriented (using SPM12’s coregistration routine) to be in rough alignment with Montreal Neurological Institute (MNI) space; the 
average magnitude image was then coregistered to the T1-weighted structural image, along with each individual QSM map, to ensure a 
relatively consistent orientation in subject space. 

T1-weighted images were bias corrected, spatially normalized via DARTEL (using the MNI-registered template provided within 
CAT12), modulated to compensate for the effect of spatial normalization, and classified into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF), all within the same generative model. QSM images were warped into MNI space using the T1-derived 
deformation fields and averaged to create a study-specific, average QSM image. 

2.4. Substantia nigra seeding 

On the normalized, study-specific average QSM image, a single voxel was manually placed within the SN on each of six slices, 
creating left and right SN seed images in MNI space (MNI coordinates are given in Supplementary Table 2). These MNI-space seeds 
were then inverse-warped into QSM subject space using the inverse deformation fields produced during the structural T1-weighted 
image processing. This produced seeds within the left and right SN in each individual; these seeds were used to initiate the SN and 
RN segmentations. 

2.5. Segmentation method 

Full details of the segmentation method are described in the following conference paper [20]. Briefly, our method consisted of the 
following steps: 

A. Contrast enhancement 
The first step in the segmentation process was contrast enhancement. The proposed contrast enhancement technique was based on 

the local and global gray level information of the input image. The global gray level information was computed by calculating the 
global mean gmean of an input image A(x, y) from its entire sample as follows: 

gmean =
1
MN

∑M

x=1

∑N

y=1
A(x, y) (1)  

where M, N denote the image size (width, height respectively) in pixels. 
The local gray level information was estimated by computing the mean of each non-overlapping 3 × 3 sub-image using an 

average filter (local mean). Let the sub-image of specified size be centered on (x, y). The contrast enhancement was performed on each 
sub-image as follows: 

I(x+ i, y+ j) = A(x+ i, y+ j) + [lmean(x, y) − gmean] (2)  

where i, j = − 1 , 0 , 1, A(x + i, y + j) is the input image, lmean(x,y) is the local mean at (x, y), and I(x + i, y + j) is the contrast 
enhanced sub-image. The overall contrast enhanced image I(x, y) was computed by repeating the process in (2) for all the sub-images. 

B. Level set method 
Li et al. [21] proposed a model by embedding the local image information, which helps to segment images with intensity in-

homogeneities, common in medical images. The energy functional for this model is given by, 

F(ϕ, f1, f2) =
∑2

i=1
λi
∫ (∫

Kσ(x − y)|I(y) − fi(x)|2Mε
i (ϕ(y))dy

)

dx

+ v
∫

|∇Hε(ϕ(x))|dx+ μ
∫

1
2
(|∇ϕ(x)| − 1)2dx

(3) 

D. Basukala et al.                                                                                                                                                                                                      

http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/


Computers and Electrical Engineering 91 (2021) 107091

4

where f1(x) and f2(x) approximate the local intensities in the regions outside and inside the contour respectively. Kσ is a Gaussian 
kernel with a scale parameter σ > 0. Hε is a smooth Heaviside function, Mε

1(ϕ) = Hε(ϕ) and Mε
2(ϕ) = 1 − Hε(ϕ), v ≥ 0 and μ is a 

positive constant. The minimization of energy functional F(φ, f1,f2) with respect to φ was obtained by the gradient descent method, 

∂ϕ
∂t = − δε(ϕ)(λ1e1 − λ2e2) + vδε(ϕ)div

(
∇ϕ
|∇ϕ|

)

+ μ
(

∇2ϕ − div
(

∇ϕ
|∇ϕ|

))

(4)  

where δεis the smoothed Dirac delta function. 
C. Wavelet transform 
In our work, we used a dual-tree complex wavelet transform (DT-CWT) for the purpose of smoothing. 
Dual-tree complex Wavelet transform 
The one-dimensional (1-D) DT-CWT [22] decomposes an input signal f(x) in terms of a complex shifted and dilated mother wavelet 

ψ(x) and scaling function ϕ(x). Mathematically, 

f (x) =
∑

l∈Z
Bj0 ,lφj0 ,l(x)+

∑

j≥j0

∑

l∈Z
wj,lψ j,l(x) (5)  

where Z is the set of natural numbers, j0 represents the number of decomposition levels, j and l refer to the index of shifts and dilations, 
respectively. Bj0 ,l and φj0 ,l(x) are the scaling coefficient and scaling function, respectively. wj,l represents the complex wavelet coef-
ficient, while ψj,l(x) is the complex wavelet function. 

Similarly, the two-dimensional (2-D) DT-CWT decomposes an image f(x, y) through a sequence of dilations and translations of a 
complex scaling function and six complex wavelet functions. Mathematically, 

f (x, y) =
∑

l∈Z2

Bj0 ,lφj0 ,l(x, y) +
∑

θ∈β

∑

j≥j0

∑

l∈Z2

wθj,lψθj,l(x, y) (6)  

where θ ∈ β= { ± 15∘
,±45∘

,±75∘
} provides the directionality of the complex wavelet function. 

D. Watershed transformation 
The watershed transform is a popular segmentation method that has been widely used in medical image segmentation. It is a 

simple, fast, and intuitive method that produces a complete division of the image into distinct regions, even when the contrast is poor, 
thus avoiding the need for any kind of post-processing work, such as contour joining. 

Distance transform was computed before applying the watershed transform. The watershed transformation subsequently per-
formed on the distance transformed image results in over-segmentation—the main drawback of this algorithm—because of the 
presence of several local minima. Therefore, an extended-minima transform was used to modify the distance transformed image for 
accurate and effective segmentation. 

Extended-minima transform 
The extended minima transform was defined as the regional minima of the corresponding H-minima transformation. 

Mathematically, 

EMINh(f ) = RMIN[HMINh(f )] (7)  

where, 

HMINh(f ) = Rεf (f + h) (8)  

is the H-minima transformation and is obtained by performing the reconstruction by erosion of f with respect to f + h. 

2.6. Implementation 

The bounding box for SN and RN segmentation was obtained by substantia nigra seeding. Contrast enhancement was performed on 
the values within the bounding box using (2) for all the sub-images. The contrast enhanced image helped in directing the evolution of 
the level set function towards the desired direction. 

The boundaries of the segmentations were obtained with the level set method while DT-CWT smoothened the jagged output and 
resolved over-segmentation resulting from the level set method. Watershed transformation was performed on the modified distance 
transformed image to separate and segment SN and RN effectively. The implementation detail of the algorithm can be found in [20]. 

2.7. Qualitative assessment of segmentations 

The SN and RN were segmented using three different methods: (1) our proposed method, (2) a level set method based on mini-
mization of region scalable fitting (RSF) energy for segmentation of images with intensity inhomogeneities proposed by Li et al. [21], 
and (3) a different level set method proposed by Li et al. [23] that is based on the local intensity clustering and is capable of handling 
images with intensity inhomogeneities. We selected these two level set methods as comparisons as they are established methods for 
segmentation of smaller structures in medical imaging. 
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Two experienced radiologists separately performed subjective evaluation of the segmentations produced by the three methods, 
described above. Subjective evaluation was performed blinded to method, group, and demographic information. A score ranging from 
1 to 5 (very poor, poor, fair, good, very good) was used for the subjective assessment of the segmentations. 

2.8. Quantitative assessment: expert (‘gold standard’) manual segmentations 

An experienced radiologist (AL) performed the manual segmentations of SN and RN on all 40 subjects. A second experienced 
radiologist (MH) verified the manual segmentations drawn by the first radiologist; in the case of disagreement, the manual seg-
mentation was adjusted until both radiologists were in agreement. Radiologists were blinded to all clinical and demographic char-
acteristics. These manual segmentations were considered as the gold standard for further analyses. 

Dice score [24], a commonly used similarity metric to measure the spatial overlap between two segmentations, was used to assess 
segmentation accuracy of our proposed method; specifically, manual segmentations performed by the radiologists were compared with 
the results generated by our automated segmentation method. The value of Dice score ranges between 0 (no overlap) and 1 (complete 
overlap). 

Median QSM values were extracted from gold standard SN and RN segments, as well as from segments produced with our proposed 
method (right and left were extracted independently). Pearson correlation coefficients were used to assess the correlation between 
QSM values extracted from the two methods; reliability was measured using the intraclass correlation coefficient (ICC) type (A,1) and 
(C,1) [25]. 

2.9. Parkinson’s disease-related differences in susceptibility 

Median QSM values from both ‘gold standard’ and our proposed method SN and RN ROIs were compared across group, global 
cognitive ability, and motor impairment using Bayesian regression models. Bayesian models were fitted using the “brms” (v2.9.0) 
package in R (v3.6.3). In each model, four chains with 5000 iterations each were used to generate the posterior sample. Given previous 

Fig. 1. Results of the proposed segmentation method and comparison with different methods. Column 1: Bounding box obtained by substantia nigra 
seeding. The box is represented in red. Column 2: Area within the bounding box to initiate the segmentation. Column 3: Segmentation result of our 
proposed method. The result of automated segmentation is shown as a white contour. Column 4: labeled mask of the proposed segmentation method 
is shown in red (SN) and blue (RN). Column 5: Result of the level set method based on minimization of region-scalable fitting energy. Column 6: 
Result of the level set method in the presence of intensity inhomogeneities with application to MRI. SN and RN both are labeled as green since level 
set method cannot separate them. Column 7: Manually labeled structures of SN (red) and RN (blue). SN = Substantia nigra, RN = Red nucleus. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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research, we examined hypotheses of increased QSM in PD relative to controls, a negative association with global cognitive ability, and 
a positive association with motor impairment. Parameter estimates, 95% uncertainty intervals, and probabilities of hypotheses being 
true are presented.  

• Group differences: We first tested for evidence of varying susceptibility (QSM value) between PD and healthy control groups. For 
each segmentation method (gold standard/proposed method), we modeled QSM as a function of age, sex, group (PD/control), side 
(left or right), ROI (SN/RN), and the interactions age-by-ROI (allowing the relationship between age and QSM to vary by ROI), 
group-by-ROI (allowing the difference in QSM between PD and controls to vary between ROI), and group-by-side (allowing the PD 
effect to vary between left and right side), with an intercept varying by subject, side, and ROI.  

• Cognitive ability: In PD participants only, we modeled QSM as a function of age, sex, side (left or right), ROI (SN/RN), global 
cognitive ability (aggregate cognitive z score), and the interactions age-by-ROI, cognitive score-by-ROI, and cognitive score-by- 
side, with an intercept varying by subject, side, and ROI.  

• Motor impairment: In PD participants only, we modeled QSM as a function of age, sex, side (left or right), ROI (SN/RN), UPDRS III, 
and the interactions age-by-ROI, UPDRS III-by-ROI, and UPDRS III-by-side, with an intercept varying by subject, side, and ROI. 

3. Results 

We used the following parameters for the level set method in our experiments: λ1 = 1.0, λ2 = 2.0, μ = 1, v = 0.003 × 255 × 255 and 
σ = 10.0. The level set parameters were defined after evaluation with several variations, especially the scale parameter σ. A smaller σ 
could be used in the experiments, but it would require large number of iterations for accurate computation. 

3.1. Algorithm performance 

The proposed methodology produced good results. Segmentations using different methods are displayed in Fig. 1. The proposed 
segmentation method received the highest subjective score from both radiologists. The alternative level set methods did not segment or 
separate SN and RN effectively. In the quantitative analysis, our proposed method produced good Dice scores (Fig. 2). The Dice score 
(mean (standard deviation)) of the left SN and right SN between the gold standard segmentation and the proposed method were 0.75 
(0.09) and 0.76 (0.07), respectively; left RN and right RN were 0.81 (0.07) and 0.77 (0.07), respectively. Fig. 3 presents the rela-
tionship between gold standard and proposed method QSM values in both SN and RN. Slope (m) and Pearson correlation coefficients 
(r), with 95% confidence intervals, were as follows: left SN: m = 0.94 [0.82, 1.06], r = 0.93 [0.87, 0.96], right SN: m = 0.92 [0.76, 
1.07], r = 0.89 [0.80, 0.94], left RN: m = 0.92 [0.83, 1.00], r = 0.96 [0.93, 0.98], right RN: m = 0.98 [0.87, 1.09], r = 0.95 [0.90, 0.97]. 
ICC showed moderate-good agreement and excellent consistency (Table 1). 

3.2. Application to Parkinson’s disease 

Demographic and clinical data are summarized in Table 2. 
A. Group differences: Table 3 and Fig. 4 report the results from comparisons between healthy control and PD groups in SN and RN 

for both the gold standard segmentations and those from the proposed method. We observed moderate evidence of increased QSM 
values in the SN in the PD group relative to controls (probability P = 98% (proposed) and P = 99% (manual segmentation) of the PD 
group having higher QSM values than the control group), with weak evidence within the RN (P = 75% (proposed) and P = 84% 
(manual). Furthermore, we found moderate evidence for an association with age in the SN (probability P = 92% of a positive asso-
ciation, proposed method), but no evidence in the RN (P = 29%), and no evidence of a difference between anatomic side (probability P 
= 48% probability of right side having greater QSM values). 

Fig. 2. Boxplot of Dice scores of the proposed segmentation method for the left and right sides of SN and RN. Dots are Dice scores for all the slices of 
images used in the experiment from all 40 subjects. SN = Substantia nigra, RN = Red nucleus. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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B. Cognitive impairment, motor impairment, and QSM: Table 4, Figs. 5 and 6 report the relationship between QSM, global cognitive 
ability, and motor impairment. We observed moderate evidence of a negative relationship between QSM and global cognitive z score in 
SN (94% (proposed) and 87% (manual segmentation) probability of a negative association between QSM and global cognitive ability). 

Fig. 3. Relationship between gold standard QSM values and proposed method QSM values. SN = Substantia nigra, RN = Red nucleus, R = Pearson 
correlation coefficient, p = p value. The line of best fit is displayed in blue, with 95% confidence intervals shaded in gray. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Intraclass correlation coefficient for agreement and consistency.   

ICC(A,1): Left ICC(A,1): Right ICC(C,1): Left ICC(C,1): Right 
SN 0.56 [− 0.04, 0.86] 0.62 [− 0.08, 0.88] 0.93 [0.87, 0.96] 0.89 [0.80, 0.94] 
RN 0.84 [− 0.04, 0.96] 0.77 [− 0.06, 0.94] 0.96 [0.93, 0.98] 0.94 [0.90, 0.97] 

Values are ICC [95% CI]. ICC(A,1) = Intraclass correlation coefficient for agreement, ICC(C,1) = Intraclass correlation coefficient for consistency. CI: 
Confidence interval. 

Table 2 
Demographic and clinical information.  

Measure Control (n = 20) Parkinson’s disease (n = 20) 
Sex (M:F) 14:6 14:6 
Age 72 (8) 74 (6) 
Global cognitive ability 0.8 (0.4) − 0.8 (1.0) 
MoCA 27 (2) 22 (4) 
UPDRS-III – 41 (12) 
Duration of diagnosis (years) – 8 (5) 

Data are mean (SD: standard deviation). Sex is reported as a ratio. M: Male; F: Female. MoCA: Montreal Cognitive Assessment; 
UPDRS-III: Unified Parkinson’s Disease Rating Scale part 3. Global cognitive ability was calculated as an aggregate of stan-
dardized scores across five cognitive domains. 

Table 3 
QSM differences between Parkinson’s disease and control participants.   

Gold standard Proposed method 
Region SN RN SN RN 
Control group (ppb) 85 [68, 101] 84 [67, 101] 115 [98, 132] 104 [86, 121] 
PD vs controls (ppb) 20 [6.1, 34] 8.7 [− 5.7, 23] 18 [3.7, 33] 5.9 [− 8.9, 20] 
Posterior probability of PD > controls 99% 84% 98% 75% 

ppb = parts per billion. Posterior probability refers to the probability of PD being greater than controls. 
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There was no evidence of association within RN (66% (proposed) and 61% (manual segmentation)) and no evidence of a difference in 
association between left and right (− 0.11 ppb/cognitive z point [− 15, 15]). There was moderate evidence for a positive association 
with motor impairment in SN (87% (proposed) and 95% (manual segmentation)) and within RN (96% (proposed) and 98% (manual 
segmentation)). 

4. Discussion 

In this study, we proposed an effective automated method for SN and RN segmentation by combining contrast enhancement, level 
set method, DT-CWT and a watershed transform. Segmentations from our proposed method were compared to radiologist-drawn ‘gold 
standard’ segmentations. The extracted QSM values were then tested in a cohort of 20 healthy and 20 PD participants; consistent 
results between the two methods suggests our proposed segmentation algorithm may be used in the future with confidence. 

The proposed automated segmentation method of combining various techniques progressed in the following manner. The contrast 
enhancement technique, which is based on the local and global mean, greatly improved the contrast of the region within the bounding 
box, which in turn helped in enhancing the contrast of the ROI. Specifically, contrast enhancement helps to increase the accuracy and 
effectiveness of segmentation, as well as directing the evolution of the level set function towards the desired direction. In our work, the 
proposed level set method used local image intensities rather than global intensities, which made it capable of handling images with 
intensity inhomogeneities. Moreover, the level set method also avoided the need for time consuming and expensive re-initialization 
processes. However, the naive level set method resulted in jagged output, over-segmentation, and did not separate SN from RN in 
some slices. Therefore, DT-CWT was used while evolving the level set function to address these issues, producing smooth output and 
resolving over-segmentation. However, mid-brain nuclei were still not effectively separated with this approach. Hence, a watershed 
transform based on the extended-minima transform was introduced to effectively separate and segment SN and RN. The combination 
of the above techniques resulted in the best segmentation that adequately matched expert manual segmentation. 

The level set [21, 23], a classical and effective segmentation method based on the change of gray level, was employed for 
comparative analysis in this study because it is frequently used in medical imaging. However, the level set method was unable to 
separate and segment SN and RN effectively and efficiently, specifically due to the similarity in intensity profile with the adjacent 

Fig. 4. QSM values of left and right sides of SN and RN between healthy control and PD. Dots are raw QSM values. Violin plots in gray and boxplots 
represent the distribution of QSM values adjusted for covariates from 200 draws from the posterior probability distribution. SN = Substantia nigra, 
RN = Red nucleus, PD = Parkinson’s disease. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 4 
Associations between QSM, global cognitive ability, and motor impairment.   

Gold standard Proposed method 
Region SN RN SN RN 
Global cognitive ability (ppb/point) − 10 [− 25, 5] − 2 [− 17, 12] − 14 [− 29, 0.8] − 4 [− 18, 12] 
Posterior probability of a negative association 87% 61% 94% 66% 
UPDRS-III (ppb/point) 13 [− 0.2, 27] 18 [4, 32] 10 [− 5, 25] 17 [2, 31] 
Posterior probability of a positive association 95% 98% 87% 96% 

The reported value [95% uncertainty interval] is the slope of the association: parts per billion per one point in global cognitive z score/UPDRS-III, 
accounting for age, sex, and anatomic side. UPDRS-III = Unified Parkinson’s disease rating scale part 3. 
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areas, as well as the blurry boundary that exists between the smaller nuclei. We also observed that the level set method either 
underestimated or overestimated the SN and RN. Moreover, the level set method resulted in over-segmentation of the midbrain nuclei 
in the form of holes, which did not make anatomical sense, according to expert clinicians’ perspective. 

Quantitative assessment was performed using Dice score, the most commonly used similarity metric, to measure the fraction of 
spatial overlap between binary regions. The Dice score obtained in this study is comparable to acceptable levels in the current 
literature on SN and RN [9, 12, 15]. Such comparisons must be made with care, however, as image acquisition parameters, quality of 
manual segmentations, and specific sample heterogeneity may all influence this metric. For example, the partial volume effect and the 
absolute faint contrast of the midbrain nuclei present in some slices of few subjects limit segmentation accuracy and may reduce the 
overall Dice score. The Dice score for the level set methods was not calculated as these comparison methods were not able to separate 
the smaller midbrain structures. While we have taken the expert manual segmentation as the ‘gold standard’, there is a certain amount 
of uncertainty associated with these segments, as with any manual segmentation. However, we attempted to minimize this uncertainty 
by requiring agreement between two experts which resulted in good reliability. 

In the current work, we applied our novel segmentation method to a cohort of PD patients. Quantitative susceptibility mapping 
allows in vivo investigation of iron accumulation in brain tissue, and recent work suggests increased iron deposition in SN in PD [26, 

Fig. 5. Correlations between QSM values of left and right sides of SN and RN with global cognitive ability (aggregate cognitive z score) in Par-
kinson’s disease. Black points represent raw values. Lines of best fit, adjusted for covariates, from 200 draws of the posterior probability distribution 
are displayed in gray. SN = Substantia nigra, RN = Red nucleus, ppm = parts per million. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. Correlations between QSM values of left and right sides of SN and RN with motor impairment (UPDRS-III) in Parkinson’s disease. Black 
points represent raw values. Lines of best fit, adjusted for covariates, from 200 draws of the posterior probability distribution are displayed in gray. 
SN = Substantia nigra, RN = Red nucleus, UPDRS-III: Unified Parkinson’s Disease Rating Scale part 3, ppm = parts per million. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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27]. Our findings, of moderate evidence of increased QSM values in PD in the SN and in the RN, are consistent with the expected 
increase in iron accumulation in PD patients. QSM values with SN and RN exhibited moderate evidence of an association with motor 
severity in PD. This further suggests that iron accumulation may continue as the disease progresses, providing an imaging marker that 
tracks motor impairment. While pathology within the SN, and RN to a lesser extent, is generally associated with early disease and the 
emergence of motor impairments in PD, we also showed a moderate association between QSM values within the SN and global 
cognitive ability. A widespread pattern of abnormal iron deposition in both cortical and subcortical regions may also underlie cognitive 
impairments [4, 5]. Interestingly, these two recent studies (identifying SN manually or atlas-based) did not identify correlations with a 
global cognitive score (the Montreal Cognitive assessment) or the UPDRS-III. The combination of improved segmentation of the SN 
using the proposed method along with more comprehensive neuropsychological assessments may help explain our moderate 
associations. 

Our study has some limitations. First, the proposed algorithm is primarily based on the intensity and texture of the image. 
Therefore, the performance of the algorithm drops when the contrast is poor. Thus, better imaging modalities providing adequate 
contrast of the midbrain nuclei could be used for improved performance and segmentation accuracy. Second, the sample size used in 
the study for both groups was relatively small, which may not capture the full range of QSM and SN variability during PD progression. 
Third, we only considered the entire SN, aggregating pars compacta, pars reticulata, and dorsal and ventral sub-regions into the full SN. 
While dopaminergic cell death is prominent within the pars compacta in PD, studies investigating iron accumulation have reported 
increase in both the pars compacta and pars reticulata [28]. A recent study [29], assessed iron separately in the ventral and dorsal 
levels of the SN in PD and specifically found significant iron increment in the ventral SN of the PD patients relative to healthy controls. 
While the specificity of iron accumulation in specific sub-regions of the SN is of interest and should be explored in the future, we 
focused on segmentation of the whole SN given its small size, relatively large imaging voxels, and lack of obvious contrast within the 
QSM images. Thus, we are unable to comment on any differences across the differing SN sub-regions, however future extension of the 
current segmentation algorithm should allow identification of SN sub-regions. 

Having validated the proposed SN and RN segmentation method, we now have the opportunity to apply this technique to a large 
longitudinal cohort of PD patients and controls, to allow a multi-modal examination including QSM, R2*, volume, diffusion tensor 
imaging (DTI) parameters and cerebral blood flow (CBF) of these two key midbrain nuclei across groups and in the evolution of 
cognitive and motor decline in PD. Additionally, this segmentation method may be applied to other disease groups, such as those with 
Alzheimer’s disease (AD), given the recent findings of increased iron accumulation in AD [30]. 

5. Conclusion 

We presented a new automated method for the segmentation of SN and RN from QSM images by combining contrast enhancement 
technique, level set method, DT-CWT and watershed transform. The proposed method produced high quality segmentations of SN and 
RN, validated against expert manual segmentations, and facilitated in vivo assessment of midbrain nuclei iron content. Specifically, we 
showed increased QSM values in SN in PD relative to controls, and moderate evidence of association between SN and RN QSM values 
with motor impairment; these results were comparable between both our proposed segmentation and expert manual segmentation. 
Work presented here suggests that an improved midbrain segmentation algorithm may be useful for monitoring iron-related disease 
severity in Parkinson’s disease. 
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[15] Garzón B, Sitnikov R, Bäckman L, Kalpouzos G. Automated segmentation of midbrain structures with high iron content. Neuroimage 2018;170:199–209. 
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