Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease

Samantha J. Murray a, Katharina N. Russell a, Tracy R. Melzer e, Steven J. Gray b, Stephen J. Heap c, David N. Palmer a, d, Nadia L. Mitchell a, d, e

a Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
b Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
c McMaster & Hep Veterinary Practice, Christchurch, 8025, New Zealand
d Department of Radiology, University of Otago, Christchurch, 8140, New Zealand
e Department of Medicine, University of Otago, Christchurch and the New Zealand Brain Research Institute, Christchurch, 8011, New Zealand

ARTICLE INFO
Keywords:
Neuronal ceroid lipofuscinosis
Sheep
Intravitreal
Electroretinography
Gene therapy
AAV9
CLN5
CLN6

ABSTRACT

Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases primarily affecting children. A common feature across most NCLs is the progressive loss of vision. We performed intravitreal injections of self-complementary AAV9 vectors packaged with either ovine CLN5 or CLN6 into one eye of 3-month-old CLN5−/− or CLN6−/− animals, respectively. Electoretinography (ERG) was performed every month following treatment, and retinal histology was assessed post-mortem in the treated compared to untreated eye. In CLN5−/− animals, ERG amplitudes were normalised in the treated eye whilst the untreated eye declined in a similar manner to CLN5 affected controls. In CLN6−/− animals, ERG amplitudes in both eyes declined over time although the treated eye showed a slower decline. Post-mortem examination revealed significant attenuation of retinal atrophy and lysosomal storage body accumulation in the treated eye compared with the untreated eye in CLN5−/− animals. This proof-of-concept study provides the first observation of efficacious intravitreal gene therapy in a large animal model of NCL. In particular, the single administration of AAV9-mediated intravitreal gene therapy can successfully ameliorate retinal deficits in CLN5−/− sheep. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt neurological and retinal disease in CLN5 Batten disease.

1. Introduction

Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of fatal inherited neurodegenerative diseases of childhood with a prevalence of up to 1 in 12,500 live births (Rider et al., 1988). Currently 13 variants of NCL have been identified (CLN1-8, 10–14), all resulting from different genetic mutations but typically with a shared disease phenotype (Mole and Cotman, 2015). A pathological hallmark of NCL is the accumulation of lysosome-derived storage bodies in cells throughout the body, including neuronal cells of the brain (Cooper et al., 2015). There is also widespread brain atrophy, retinal degeneration and heightened neuroinflammation. Affected children progressively develop blindness, motor degeneration, epilepsy and dementia, eventually reaching total dependency and premature death (Kousi et al., 2012; Mole et al., 2005, 2011). Medications are commonly used to manage symptoms but few effective disease-modifying therapies exist for NCL (Kohlschütter et al., 2019; Williams et al., 2017). There is only one clinically approved enzyme-replacement therapy for the CLN2 disease and several brain-directed gene- and enzyme-replacement therapies are currently showing promise in clinical trials (Mole et al., 2019) however none of these directly address the retinal degeneration and vision loss observed across all forms of NCL.

Batten disease occurs naturally in many other mammals, including a CLN5 form in Borderdale sheep (Frugier et al., 2008; Jolly et al., 2002), and a CLN6 form in South Hampshire sheep (Jolly and West, 1976; Tammen et al., 2006). Sheep with CLN5 or CLN6 Batten disease display a similar disease course to the human condition, with progressive blindness, stereotypical motor deficits, reduced mentation and premature death before two years of age (Jolly et al., 1989, 2002, 1989; Mayhew et al., 1985; Mitchell et al., 2018). Affected sheep also have severe
cortical atrophy, neuroinflammation, and accumulation of lysosomal storage, mirroring the human disease post-mortem (Mitchell et al., 2018; Oswald et al., 2005).

Blindness in NCL consists of a central and a peripheral component, as both the occipital lobe and the retina are affected. A significant reduction in the grey matter thickness of the primary visual cortex has been reported for both forms of ovine NCL (Jolly et al., 2002; Mitchell et al., 2018; Oswald et al., 2005). In both humans and sheep, retinal atrophy results from an almost complete loss of rod and cone photoreceptors, as well as cells in the outer nuclear layer (ONL), whereas the inner layers of the retina are relatively spared (Goebel et al., 1974; Graydon and Jolly, 1984; Jolly et al., 1982; Mayhew et al., 1985). Lysosomal storage is observed in the ganglion cell layer (GCL) and retinal pigment epithelium (RPE), and there is evidence of gliosis throughout the retina and the optic nerve (Goebel et al., 1974, 1982, 1974; Radke et al., 2015). Abnormal or abolished electroretinography (ERG) recordings have been reported for most forms of human NCL (Harden and Pampiglione, 1982; Welleber, 1998; Welleber et al., 2004), and also more recently for the ovine CLN5 and CLN6 diseases (Russell et al., 2021). Given CLN5 and CLN6 affected sheep exhibit similar loss of function and histopathology to human patients, these sheep represent an ideal model in which to perform a proof-of-concept study of intravitreal gene therapy.

Intracerebroventricular delivery of CLN5 packaged in an adenovirus-associated virus (AAV) has been shown to halt stereotypical disease progression in the CLN5 sheep model, however the animals still lost their sight, albeit later than if no treatment is given (Mitchell et al., 2018). This suggests that while brain-directed gene therapy can attenuate cortical atrophy and associated clinical signs, the therapy does not reach the eye in sufficient quantities to protect the retina. Similar observations have been noted following brain-directed gene therapy in other animal models of NCL (Katz et al., 2015; Sondhi et al., 2013; Whiting et al., 2016).

It is estimated that more than 80% of the information that the brain receives comes from the visual system. Visual dysfunction can negatively impact on human lifestyle and significantly lower the quality of life. AAV-mediated intravitreal gene therapy approaches have been tested in models of inherited retinal neurodegeneration with positive outcomes leading to several clinical trials, including gene therapies for Leber’s hereditary optic neuropathy (ClinicalTrials.gov NCT02652780) and X-linked retinoschisis (ClinicalTrials.gov NCT02416622). Here, in a proof-of-concept study, we show that the intravitreal (IVT) administration of AAV9-mediated gene therapy in pre-symptomatic NCL sheep affords protection against retinal dysfunction, degeneration, inflammation, and the accumulation of pathological lysosomal storage.

2. Methods

2.1. Animals

Borderdale and South Hampshire sheep were diagnosed at birth (Frugier et al., 2008; Tammen et al., 2006) and maintained at the Lincoln University research farm under US National Institutes of Health guidelines for the care and use of animals in research and the NZ Animal Welfare Act (1999). All experimental protocols were approved by the Lincoln University Animal Ethics Committee. Six pre-symptomatic 3-month-old ewes, consisting of three CLN5−/− Borderdales and three CLN6−/− South Hampshires, were randomised into treatment groups for this study (Table 1).

2.2. Vectors

Recombinant self-complementary AAV9 constructs, expressing codon-optimised ovine CLN5 or CLN6 (GenBank accession numbers NM_001082595 and NM_001040289 respectively) under the control of the C6n promoter (scAAV9.CLN5 and scAAV9.CLN6), were produced by the University of North Carolina Gene Therapy Center Vector Core (NC, USA) by triple transfection of HEK293 cells, iodixanol gradient centrifugation and ion-exchange chromatography as described (Grieger et al., 2016). Vectors were formulated in 350 mM phosphate buffered saline (PBS) containing 5% sorbitol, and titres determined by quantitative PCR (Grieger et al., 2016).

2.3. Ocular injections

The surgical procedure was performed by Stephen Heap (Veterinary Ophthalmologist, McMaster and Heap Veterinary Practice, Christchurch, NZ), based on methods previously established in dogs (Gearhart et al., 2010). Sheep were sedated by intravenous injection of 0.5 mg/kg live weight diazepam (IIum, Troy Laboratories NZ Pty Ltd, Auckland, NZ) and 10 mg/kg live weight ketamine (Phoenix Ketamine Injection, Phoenix Pharm Distributors Ltd, Auckland, NZ) prior to endotracheal intubation and maintenance on inhalation anaesthesia (isoflurane in oxygen, 1.5–3% v/v to effect). Sheep were placed in lateral recumbency on their right side. The surface of the left eye was prepared using 10% povidone-iodine solution (Betadine®, Avrio Health L.P., Stamford, CT, USA). The bulbar conjunctiva on the dorsolateral aspect of the eye was grasped with forceps, and the eye globe was rotated ventro-medially. The vector solution was injected using a 28-gauge ½ inch needle, inserted approximately 7 mm posterior to the sclera on the lateral aspect of the eye. The needle was angled posteriorly to avoid the lens, and the material was injected as close to the retina as possible without disturbing the retinal surface. Sheep received a single injection of 100 µl of scAAV9.CLN5 or scAAV9.CLN6 respectively into their left eye, at a total dose of 4 × 10^11 viral genomes. Their right eye served as an internal control and was not treated. Following surgery, the animals were administered 0.5% chloramphenicol eye drops (Chlorafast, Teva Pharma Ltd, Auckland, NZ) 2–3 times daily for 7 days. Eye health, behaviour and rectal temperatures were monitored daily for 3 weeks post-surgery. Long term clinical monitoring included body weight, body condition, and general observation of abilities in the field.

2.4. Electroretinography

Electroretinography was conducted monthly using an Eickemeyer Veterinary ERG system (Eickemeyer - Medizintechnik für Tierärzte KG, Tuttingen, Germany) as described previously (Russell et al., 2021). Pupils were dilated prior to recordings by the administration of 1% Tropicamide eye drops (Mydriacyl®, 10 mg/mL; Alson NZ Ltd, Auckland, NZ). Sheep were anaesthetised via intravenous injection of diazepam (0.5 mg/kg live weight) and ketamine hydrochloride (10 mg/kg

| Table 1 |

<table>
<thead>
<tr>
<th>Sheep used in the current study.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal ID</td>
<td>Genotype</td>
</tr>
<tr>
<td>1146/17</td>
<td>CLN5−/−</td>
</tr>
<tr>
<td>1147/17</td>
<td>CLN5−/−</td>
</tr>
<tr>
<td>1149/17</td>
<td>CLN5−/−</td>
</tr>
<tr>
<td>1040/17</td>
<td>CLN6−/−</td>
</tr>
<tr>
<td>1045/17</td>
<td>CLN6−/−</td>
</tr>
</tbody>
</table>

E: Ewe, scAAV9: self-complementary AAV9 vector.
lateral to the midline in the direction of the eye being measured. The ground electrode was placed on the dorsal surface of the skull 1 cm lateral to the lateral canthus, and a second subdermal electrode was placed on the dorsal surface of the skull 1 cm lateral to the midline in the direction of the eye being measured. The light stimulus was placed within 1 cm of the eye, and delivered 2–3 cd/m² white light four times consecutively with a 0.8 s delay. Measurements were made following 5 min of dark adaptation. Sheep were administered lubricating eye drops (POLY-TEARS®), at the conclusion of each recording session. The order of assessment of the treated and untreated eye was determined randomly between animals and between timepoints.

2.5. Histology

Sheep were sacrificed by penetrating captive bolt to the cervical spine followed by rapid exsanguination at approximately 18 months of age (Table 1). Eye globes were enucleated at the time of death, fixed in 10% formalin, approximately 2 h, and sent to Gribbles Veterinary Pathology, Christchurch, NZ for post-fixation in Bouin’s solution (Sigma-Aldrich, St Louis, MO, USA, HT10132). 4 h, followed by wax embedding. Retinal paraffin sections were cut at 3 μm, mounted and a subset stained with Hematoxylin and Eosin (H + E) histological stain by Gribbles Veterinary Pathology for analysis of retinal thickness and layer differentiation. Brains were also collected at the time of death and processed for histology as previously described (Oswald et al., 2005).

2.6. Immunohistochemistry

Retinal paraffin sections were stained with either the inflammatory marker rabbit anti-cow glial fibrillary acidic protein (GFAP) or lysosome-associated membrane protein 1 (LAMP1). Sections were dewaxed twice in xylene (5 min) and rehydrated through a graded ethanol series to water. Following re-hydration sections underwent antigen retrieval in 10 mM Sodium Citrate buffer (pH 6) at 90 °C for 30 min, then allowed to cool for 20 min. Sections were then washed in TBST (Tris-buffered saline, pH 7.6, containing 0.3% Triton X-100) and blocked in 10% Normal Goat Serum (NGS) at 4 °C. Sections were washed in TBST and then incubated in goat anti-rabbit Alexa Fluor® 594 secondary antibody (1:500; Invitrogen A-11012, Carlsbad, CA, USA) and 10% NGS in TBST, 1 h, in the dark at room temperature. Sections were then washed and incubated in DNA stain DAPI (4′,6-diamidino-2-phenylindole dihydrochloride; Sigma 10236276001) for 3 min at room temperature. DAPI was washed off in dH₂O and sections were coverslipped in BrightMount plus anti-fade mounting medium (Abcam ab103748).

A subset of unstained retinal paraffin sections and sagittal sheep brain sections were coverslipped in glycerol to assess autofluorescent storage body accumulation. Adjacent brain sections were stained with a standard cresyl violet Nissl stain as previous (Oswald et al., 2005), to detect cortical thickness and neuronal cytoarchitecture. Detection of CLN5 and CLN6 transduced cells in the sheep brain was performed with respective sheep-specific antibodies (1:500, R19122 and R19121ViraQuest, North Liberty, IA, USA) as previous (Mitchell et al., 2018). Brain and retinal sections from historical 18-month-old healthy control (n = 2–4) and affected (n = 2–4) animals were included in all histological procedures and analyses.

2.7. Image analysis

All H+E stained and unstained retinal sections were imaged on a Nikon Eclipse 50i microscope (Nikon Instruments Inc., Tokyo, Japan) paired to a Nikon Digital Sight DS-U3 camera and NIS-Elements BR software (v. 4.50 Nikon Instruments). Ten total retinal thickness measurements per eye were taken from the surface of the nerve fibre layer (NFL) to the base of the RPE in both the central retina (within 5 mm of the optic nerve head) and the peripheral retina (10–20 mm from the optic nerve head). Individual retinal layer thicknesses were then calculated from ten measurements per eye taken from the central retina. Autofluorescent lysosomal storage was imaged using a GFP Brightline® 490 excitation/510 emission filter set (GFP-3035C; Semrock Inc, IDEX Corporation, IL, USA). Ten images from the central retina were collected for each eye and thresholding analysis on ImageJ (NIH, version 1.52P) was used to determine the percentage of fluorescence present per sampled area. The RPE and photoreceptor layers were excluded from thresholding analysis due to the endogenous fluorescence present in these cellular layers in the healthy control sheep eye.

Twenty-five cortical thickness measurements were taken through the primary visual cortex on Nissl stained brain sections as previously described (Oswald et al., 2005).

Immunofluorescent images were captured on a Zeiss 510 laser scanning confocal microscope with Zen 2009 imaging software (Carl Zeiss Microscopy). Image collection parameters (laser power, scan speed, pixel dwell time, detector gain, and pinhole size) were optimised for each channel and remained consistent for all sections in each staining run. High magnification Z-stacks were captured using a 40x/NA 1.3 oil objective and post-processing was performed in ImageJ.

2.8. Statistics

All statistical analysis was performed on GraphPad Prism© (v 8.2.0, GraphPad Software).

ERG amplitudes were calculated by the provided software (Eickemeyer). Animals were grouped by treatment and the repeated measurements were allocated into age-groups. Due to some missing data points a two-way repeated measures ANOVA was unable to be performed, therefore a mixed-effects model, fit using Restricted Maximum Likelihood (REML), was performed with Tukey’s multiple comparisons test for each set of measurements to investigate the effects of time and treatment on the dark-adapted b-wave amplitude. ERGs were also compared between groups and over time using Bayesian regression models, fitted to the “brms” (v2.13.5) package in R studio (v1.3.1056) (Bürkner, 2017). For each experimental group, ERG was modelled independently as a function of age, treatment, and age-by-treatment interaction, with a varying intercept and slope for each sheep; four chains with 2000 iterations each were used to generate posterior samples. Parameter estimates and 95% credible intervals are presented.

For histological analyses, results were reported as mean ± the standard error of the mean (SEM). Differences between the treated eye, untreated eye, and healthy and affected controls were assessed using a one-way ANOVA with Tukey’s multiple comparisons test. Where homoscedasticity was not assumed, Brown-Forsythe and Welch ANOVA tests were performed with Dunnett’s T3 multiple comparisons test to assess between group differences. Differences were regarded significant where the multiplicity adjusted p-value was < 0.05.

3. Results

3.1. Safety

The intravitreal treatment was well tolerated. One sheep (1149/17) developed posterior uveitis one-week post-injection, however this resolved within a week following three-time daily treatment with 0.5%
Bayesian regression model comparing rate of decline in ERG responses between the control, affected, treated, and untreated eyes in CLN5 sheep.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Treated eye</th>
<th>Untreated eye</th>
<th>CLN5 affected</th>
</tr>
</thead>
</table>

Bayesian regression model comparing rate of decline in ERG responses between the control, affected, treated, and untreated eyes in CLN5 sheep.
(98.1 ± 1.1 g, n = 16) but in line with CLN5 affected controls (71.2 ± 1.5 g; n = 13). Similarly, there was significant atrophy of the visual cortex in treated sheep compared with healthy controls, and similar to CLN5 affected controls (Fig. 5). Immunostaining for CLN5 was carried out as previously described (Mitchell et al., 2018), however no CLN5-positive cells were detected across the brain indicating a lack of viral transduction in the brain following IVT delivery of scAAV9.CLN5. Assessment of autofluorescent signal in the lateral geniculate nucleus and primary visual cortex of treated animals was comparable between hemispheres and to age-matched CLN5 affected sheep (data not shown).

3.1.2. Ocular gene therapy in CLN6−/− sheep

As in CLN5 sheep, the b-wave amplitude following 5 min of dark adaptation was found to be the best and earliest predictor of retinal dysfunction in CLN6 sheep (Russell et al., 2021). Hence results presented here are the 5-min data adapted b-wave amplitudes.

Healthy control animals had stable ERG amplitudes from 3- to 19-months of age, with an average rate of decline of 0.44 μV/month, which was not significantly different from a rate of decline of zero (Table 3). The ERG amplitudes of affected animals rapidly declined from 3 months of age and were significantly reduced from 11 months onwards, with an average rate of decline of 14.4 μV/month (Fig. 6A, Table 3). By 17 months of age ERG amplitudes of affected animals were essentially extinguished, with an average amplitude of 14 ± 8 μV, compared to 211 ± 17 μV in control animals (Fig. 6A).

In the ocular gene therapy animals, there was a general trend of reduction in both a-wave and b-wave amplitudes in both treated and untreated eyes (Fig. 6A, Table S1). Whilst the rate of decline in b-wave amplitude of the treated eye (8.5 μV/month) was smaller than the rate decline of the untreated eye (14.0 μV/month), this difference was not significant (Table 3). At 17 months of age there was no difference in the average ERG amplitude between the treated (109 ± 46 μV) and untreated (110 ± 41 μV) eyes (Fig. 6A). At 5 and 17 months of age raw ERG traces look similar between the treated and untreated eye (Fig. 6B).

Total retinal thickness in the treated eye was significantly higher than the untreated eye in both the central and peripheral retina (Fig 7E, Fig. 2. Retinal thickness of CLN5−/− sheep following intravitreal delivery of AAV9.CLN5. Representative photomicrographs of H + E histological staining in the treated and untreated eyes compared to age-matched controls. Images and thickness measurements were taken in two locations; central retina (A–E) and peripheral retina (F–J). (E) Mean (±SEM) retinal thickness (μm) in the central retina of the treated (dark green, n = 3) and untreated (light green, n = 3) eyes compared with healthy (blue, n = 4) and CLN5 affected (red, n = 4) retina. (J) Mean (±SEM) retinal thickness (μm) in the peripheral retina of the treated and untreated eyes compared with healthy and CLN5 affected control retina. (K) The thickness of each retinal layer was measured in the central retina of treated (n = 3) and untreated (n = 3) eyes, and in eyes from healthy (n = 4) and CLN5 affected (n = 4) controls. * indicates P < 0.05, **** indicates P < 0.0001. NFL, nerve fibre layer; GCL, ganglion cell layer; IPL; inner plexiform layer; INL; inner nuclear layer; OPL, outer plexiform layer; ONL; outer nuclear layer; IS/OS; inner and outer segments of photoreceptors; RPE, retinal pigment epithelium. Scale bar 50 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 3. Lysosomal storage in CLN5 affected sheep retina following intravitreal delivery of AAV9.CLN5. Representative images of co-localisation of autofluorescent signal with lysosomal marker LAMP1 was assessed in the treated and untreated retina compared to healthy and CLN5 affected controls. (A–D) Autofluorescent (AF) signal, (E–H) LAMP1 immunoreactivity, (I–L) DAPI nuclear stain, (M–P) Merged image of the 3 channels. Insets in O and P show zoomed images of co-localisation of AF and LAMP1 in cells in the GCL. NFL; nerve fibre layer, GCL; ganglion cell layer, IPL; inner plexiform layer, INL; inner nuclear layer, OPL; outer plexiform layer, ONL; outer nuclear layer, IS/OS; inner and outer segments of photoreceptors, Scale bar 20 μm.

Fig. 4. GFAP immunoreactivity in the retina of CLN5−/− sheep following intravitreal delivery of AAV9.CLN5. Representative confocal images of GFAP immunoreactivity in the treated and untreated eyes compared to controls. (A–D) GFAP immunoreactivity, (E–H) DAPI nuclear marker, (I–L) Merged images of the 2 channels. NFL; nerve fibre layer, GCL; ganglion cell layer, INL; inner nuclear layer, ONL; outer nuclear layer, IS/OS; inner and outer segments of photoreceptors, Scale bar 20 μm.
Individual layer thickness measurements revealed significant atrophy of the NFL, GCL, outer plexiform layer (OPL), and ONL in the untreated eye compared to the treated eye (Fig. 7K). The inner and outer photoreceptor segments (IS/OS) layer showed significant atrophy in both the treated and untreated eyes at comparable levels to CLN6 affected retina. This was confirmed by ONL row counts of approximately 10 rows of nuclei in the healthy control retina but only 2–4 rows in the treated, untreated, and CLN6 affected retina (Fig. 7L). This significant loss of photoreceptors seen on post-mortem correlated well with the reduction in a-wave amplitude evident at late stage disease (Table S1).

Healthy control retina had low levels of endogenous autofluorescent signal, again primarily confined to the IS/OS (Fig. 8A). Although there was no significant difference in the percentage of fluorescence between the treated retina and the healthy control (1.14% versus 0.67% fluorescence per area, Fig. S1), LAMP1 staining demonstrated the autofluorescent puncta in the GCL of the treated retina to be localised to the lysosome (Fig. 8B). However, significantly more lysosomal burden was evident in the ganglion cells of the untreated retina (2.4%), at levels comparable to a CLN6 affected retina (2.37% fluorescence per area).

GFAP immunoreactivity in the central retina was primarily confined to the NFL and comparable across treated, untreated, and CLN6 affected eyes (Fig. 9). Healthy control retina had little GFAP immunoreactivity.

The brain weights and primary visual cortex thickness in animals that received CLN6 ocular gene therapy were compared to historical healthy and CLN6 affected controls (Fig. 10). Mean brain weight for the treated sheep was 65.5 ± 1.1 g, significantly less than healthy controls (98.1 ± 1.1 g, $n = 16$) but in line with CLN6 affected controls (66.0 ± 2.4 g; $n = 13$). The thickness of the visual cortex in ocular gene therapy animals was significantly reduced compared to both healthy and CLN6 affected controls. Autofluorescent storage body accumulation was comparable to CLN6 affected controls and, whilst immunohistochemistry detected endogenous CLN6 protein in the healthy control brain, there were no transduced cells evident in the treated sheep brain (data not shown).

4. Discussion

This proof-of-concept study provides the first observation of efficacious intravitreal gene delivery in a large animal model of Batten...
disease. We have shown that a single administration of AAV9-mediated gene therapy to the vitreous of the eye can attenuate decline of retinal cell activity, retinal atrophy, and pathological storage body accumulation in sheep with naturally occurring CLN5 disease. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt both the neurological and retinal disease, particularly in CLN5 disease.

Monthly assessment of retinal function using ERG showed near normalisation of function in the scAAV9.CLN5 treated eye, with a rate of decline comparable to that of healthy controls. In contrast, the untreated eye followed the typical decline of CLN5 affected sheep. Post-mortem histological analyses of the retina corroborated this finding, revealing significant degeneration and pathological lysosomal storage accumulation in the untreated retina, which had thicknesses comparable to that of an age-matched CLN5 affected controls. In contrast, the thickness of the CLN5 treated retina was comparable to age-matched healthy controls, with intact cellular/layer morphology and little lysosomal storage or inflammation.

As the scAAV9.CLN5 treated sheep did not receive any brain-directed treatment, they still developed stereotypical neurological disease and were humanely euthanized at approximately 18 months of age. Observations of these sheep in the field showed low head carriage, reduced herding and ultimately absent menace responses, indicative of vision loss. Post-mortem analyses revealed subnormal brain weights and significant atrophy of the primary visual cortex, similar to that reported for affected CLN5 sheep. This would suggest that although the treated retinal cells were still able to react to visual stimuli (e.g., ERG flashes of light), this information could not be processed by the damaged visual cortex, resulting in cortical blindness.

ERG amplitudes in the scAAV9.CLN6 treated eye of CLN6/− animals were similar to the untreated eye, and while both were higher than CLN6 affected controls, they were not normalised to that of healthy control sheep. Post-mortem analyses showed minor attenuation of atrophy and lysosomal storage body accumulation in the retina of the CLN6 treated eye compared with the untreated eye but there was no therapeutic effect on the inflammatory response.

The sheep eye represents a good animal model of the human eye. It has an axial length of 26 mm, similar to the human eye (24 mm) while...
Fig. 8. Lysosomal storage in CLN6 affected sheep retina following intravitreal delivery of AAV9.CLN6. Representative images of co-localisation of autofluorescent signal with lysosomal marker LAMP1 was assessed in the treated and untreated retina compared to healthy and CLN6 affected controls. (A–D) Autofluorescent (AF) signal, (E–H) LAMP1 immunoreactivity, (I–L) DAPI nuclear stain, (M–P) Merged image of the 3 channels. Insets in O and P show zoomed images of co-localisation of AF and LAMP1 in cells in the GCL. NFL; nerve fibre layer, GCL; ganglion cell layer, IPL; inner plexiform layer, INL; inner nuclear layer, OPL; outer plexiform layer, ONL; outer nuclear layer, IS/OS; inner and outer segments of photoreceptors. Scale bar 20 μm.

Fig. 9. GFAP immunoreactivity in the retina of CLN6 sheep following intravitreal delivery of AAV9.CLN6. Representative confocal images of GFAP immunoreactivity in the treated and untreated eyes compared to controls. (A–D) GFAP immunoreactivity, (E–H) DAPI nuclear marker, (I–L) Merged images of the 2 channels. NFL; nerve fibre layer, GCL; ganglion cell layer, INL; inner nuclear layer, ONL; outer nuclear layer, IS/OS; inner and outer segments of photoreceptors, Scale bar 20 μm.
surgical ILM peeling. In sheep, pre-treatment with an unmodified, protease-mediated digestion, saturation of ILM viral binding sites, or AAV2 administration with the aim of saturating viral binding sites on non-penetrating AAV2 vector was performed prior to capsid-modified tight junctions in the RPE (Willett and Bennett, 2013). This combined feasibility of ocular gene therapy between sheep and humans.

duction efficiency of AAV vectors by disrupting the ILM, primarily by poses a lower risk of physical trauma to the retina.

livery, although less specifically targeted, is much less invasive and additional element of risk to this delivery route. Conversely intravitreal de

Sub-retinal delivery is generally the preferred delivery route for treating diseases affecting the outer retina due to its direct targeting of PR and the macula or fovea of human eye, it has two similar cone-enriched areas. However, sub-retinal injections involve retinal detachment at the photoreceptor-RPE boundary which adds an addi-

CLN5 and CLN6 expression profiles between human and mouse retina varying affinities to particular cell types and have differing abilities to penetrate barriers, such as the inner limiting membrane (ILM) of the retina (Kiss, 2020). Several studies have attempted to increase transduction efficiency of AAV vectors by disrupting the ILM, primarily by protease-mediated digestion, saturation of ILM viral binding sites, or surgical ILM peeling. In sheep, pre-treatment with an unmodified, non-penetrating AAV2 vector was performed prior to capsid-modified AAV2 administration with the aim of saturating viral binding sites on the ILM and therefore increasing transduction (Ross et al., 2020).

Unfortunately, this did not have the desired effect as no gene expression was detected in the target outer retinal cells. Surgical ILM peeling has produced mixed results in large animals (Boyd et al., 2016a; Takahashi et al., 2017) however digestion of the ILM by pre-treatment with non-specific proteases has shown promise in both small and large ani-

The current study utilised AAV9 as this was in use in similar brain-directed gene therapy studies in NCL sheep (Mitchell et al., 2018). If AAV9-mediated gene therapy was effective in both brain and retina, it would simplify dosing in clinical trials, as treatments could be given concurrently requiring only one procedure and exposure to only one AAV serotype. Whilst AAV9 is not typically the first choice for targeting retinal cells, and has not been tested in large animal eyes to date, it does bind to the ILM of the retina following intravitreal injections in rodents, and can produce gene expression in the inner retina when the ILM is disrupted (Dalkara et al., 2009). However, caution should be taken when translating positive results in the rodent eye to a larger animal eye, as evidenced by studies utilising capsid-modified AAV2 and AAV8 whereby the robust and moderate transduction observed in mouse and dog retina, respectively, was unable to be replicated in the sheep retina (Boyd et al., 2016b; Kay et al., 2013; Ross et al., 2020).

The results seen in the CLN5 sheep eye treated with AAV9.CLN5 in the current study were encouraging, yet further investigation is needed to elucidate the mechanism of action leading to this attenuation of retinal dysfunction and pathology. Unfortunately, localisation of CLN5 (and CLN6) proteins in the sheep retina has not been possible to date. Currently available antibodies against CLN5 and CLN6 work in central nervous system tissues but do not produce staining in either 5 μm paraffin embedded or 50 μm fixed retinal sections (data not shown), making it difficult to assess the number and types of cells transduced in the current study. In the human eye CLN5 expression is highest in Müller cells, the glial supporting cells of the retina, which fits with data showing high levels of CLN5 expression in glia in both the human and mouse brain (Holmberg et al., 2004; Schmit et al., 2012; Uhlen et al., 2018; v20.proteinatlas.org). In contrast, CLN6 expression is most highly expressed in human and mouse retinal bipolar cells (kleine Holthaus et al., 2018; Uhlen et al., 2015, v20.proteinatlas.org). The similarities in CLN5 and CLN6 expression profiles between human and mouse retina suggest similar profiles could be expected in the sheep retina, particularly given the high degree of homology between human, mouse, and sheep protein sequences (Frugier et al., 2008; Tammen et al., 2006). However, given the current challenges around localising and quantifying CLN5 and CLN6 immunoreactivity in the sheep retina, we plan to
administer AAV9.GFP intravitreally and assess the distribution of GFP to determine the transduction efficiency and cell specificity of AAV9 in the sheep retina.

The phenomenon of cross-correction likely accounts for the difference in efficacy between CLN5 and CLN6 animals (Sands and Davidson, 2006). Whilst the sheep ILM is not particularly well characterised, unmodified AAV2 vector has been shown bind to it resulting in gene expression in the inner retinal layers (Ross et al., 2020). This may mean that even if AAVs cannot penetrate to the outer retinal layers following intravitreal delivery, perhaps the functional protein secreted by transduced inner retinal cells can. CLN5 is a soluble protein, therefore only a subset of transduced cells producing the functional protein may be sufficient to rescue disease pathology and phenotype (Parenti et al., 2015). This has been demonstrated in ocular gene therapy studies in CLN1 mice, where defects are present only in the outer retinal layers because transduced cells are unable to cross the ILM barrier (Ross et al., 2020). GLP1R knockdown models of CLN5 disease in Borderdale sheep demonstrated that transduction of outer retinal cells using AAV9 can lead to rescue when delivered into the eye (Ross et al., 2020). This has been confirmed in sheep with CLN5 disease, where transgenic inner retinal cells were able to produce sufficient protein to rescue disease phenotype. This suggests that cell-specific promotores should be considered for improving future intravitreal gene therapies in these sheep.

2020; kleine Holthaus et al., 2018), therefore a similar approach using cell-specific promotors should be considered for improving future intravitral gene therapies in these sheep.

5. Conclusions

This pilot study provides proof-of-concept evidence of the efficacy of intravitreal gene therapy for the ocular changes associated with CLN5 Batten disease. A single administration of scAAV9.CLN5 into the eye of sheep with naturally occurring CLN5 disease was able to slow the deterioration of vision and attenuate retinal atrophy and accumulation of pathological storage material in the retina. Conversely, intravitreal delivery of scAAV9.CLN6 to CLN6 affected sheep did not prevent retinal dysfunction and pathology. This intravitreal approach is now being trialled in conjunction with brain-directed therapy on CLN5 sheep at delivery of scAAV9.CLN6 to CLN6 affected sheep did not prevent retinal sheep with naturally occurring CLN5 disease was able to slow the Batten disease. A single administration of scAAV9.CLN5 into the eye of intravitreal gene therapies in these sheep.

5. Conclusions

This pilot study provides proof-of-concept evidence of the efficacy of intravitreal gene therapy for the ocular changes associated with CLN5 Batten disease. A single administration of scAAV9.CLN5 into the eye of sheep with naturally occurring CLN5 disease was able to slow the deterioration of vision and attenuate retinal atrophy and accumulation of pathological storage material in the retina. Conversely, intravitreal delivery of scAAV9.CLN6 to CLN6 affected sheep did not prevent retinal dysfunction and pathology. This intravitreal approach is now being trialled in conjunction with brain-directed therapy on CLN5 sheep at various disease stages.

Declaration of competing interest

SJJ received patent royalty income from Asklepios Biopharmaceuticals for IP not used in this study, and also patent royalty income from Neurogene.

Acknowledgements

This work was supported by CureKids New Zealand, the Canterbury Medical Research Foundation (CMRF), Neurogene Inc. and the Batten Disease Support and Research Association (BDBSA).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.exer.2021.108600.

