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Abstract
Microsleeps are brief lapses in consciousness with complete suspension of performance. They are the cause of fatal accidents in
many transport sectors requiring sustained attention, especially driving. A microsleep-warning device, using wireless EEG
electrodes, could be used to rouse a user from an imminent microsleep. High-dimensional datasets, especially in EEG-based
classification, present challenges as there are often a large number of potentially useful features for detecting the phenomenon of
interest. Thus, it is often important to reduce the dimension of the original data prior to training the classifier. In this study, linear
dimensionality reduction methods—principal component analysis (PCA) and probabilistic PCA (PPCA)—were compared with
eight non-linear dimensionality reduction methods (kernel PCA, classical multi-dimensional scaling, isometric mapping, nearest
neighbour estimation, stochastic neighbourhood embedding, autoencoder, stochastic proximity embedding, and Laplacian
eigenmaps) on previously collected behavioural and EEG data from eight healthy non-sleep-deprived volunteers performing a
1D-visuomotor tracking task for 1 h. The effectiveness of the feature reduction algorithms was evaluated by visual inspection of
class separation on 3D scatterplots, by trustworthiness scores, and by microsleep detection performance on a stacked-
generalisation-based linear discriminant analysis (LDA) system estimating the microsleep/responsive state at 1 Hz based on
the reduced features. On trustworthiness, PPCA outperformed PCA, but PCA outperformed all of the non-linear techniques. The
trustworthiness score for each feature reduction method also correlated strongly with microsleep-state detection performance,
providing strong validation of the ability of trustworthiness to estimate the relative effectiveness of feature reduction approaches,
in terms of predicting performance, and ability to do so independently of the gold standard.
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1 Introduction

Microsleeps are brief (≲ 15 s) involuntary sleep–related lapses
in consciousness, during which a person falls asleep momen-
tarily and has a brief suspension of performance [1]. They are

more likely when one is drowsy but can also occur when not
sleep-deprived [1–3], and, for the most part, occur with no
prior warning [4]. Occurrence of microsleeps when driving,
can result in fatal accidents [5, 6]. Therefore, the detection of
microsleeps, especially in subjects working in high-risk occu-
pations, is very important to workplace safety.

A real-time microsleep-warning device, using wireless dry
EEG scalp electrodes, in which an individual’s state of respon-
siveness is monitored continuously, could be used to trigger
an alert to rouse a user from an imminent microsleep, potent-
ially avoiding a (multi-)fatal accident. Such a microsleep-
prevention system, incorporating advanced signal process-
ing and optimal machine learning classification algorithms
for detecting/predicting microsleeps from the underlying
EEG, would be of considerable importance in many high-
risk occupations, such as commercial truck drivers, pilots,
air-traffic controllers, and medical staff.
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For classification/detection, multiple feature sets are ex-
tracted from the raw data and input to a classifier. Ideally,
these features contain orthogonally-useful (additional) infor-
mation for distinguishing between classes, while minimising
irrelevant information. An EEG feature is defined as an arbi-
trary time-series extracted from a single EEG referential or
bipolar derivation using a given signal processing algorithm
[7]. A feature vector is a vector of all features for a particular
epoch. Due to the high dimensionality of EEG datasets and the
intrinsic tendency of most classifiers to overfit to the training
data (especially non-linear classifiers), forming a high-
performance classifier model becomes challenging. The ex-
ploration of new potentially useful features can produce very
large feature vectors which are impractical for learning, as the
space of the classifier model becomes too large to search [8].

In fields such as image processing, speech processing, and
biomedical engineering, measured data vectors are usually
high-dimensional [9]. Hence, there is often a need to substan-
tially reduce the number of features so as to simplify the com-
plexity of the problem and to pass only features containing at
least partially orthogonal information to a classifier—i.e., the
processes of feature selection and/or feature reduction.

Feature selection methods, such as filter and wrapper
methods [10, 11], can be used to efficiently discard large
numbers of irrelevant features but can have substantial draw-
backs [12]. In contrast, feature/dimensionality reduction aims
to transform high-dimensional data into a meaningful repre-
sentation of reduced dimensions by extracting essential infor-
mation from a dataset [13]. Ideally, the reduced representa-
tions should contain a minimum number of parameters needed
to account for the observed properties of the data [14]—i.e.,
the intrinsic dimensionality of the data. The importance of
feature reduction lies in its ability to mitigate the curse of
dimensionality of high-dimensional datasets [9]. In most
cases, high-dimensional datasets (e.g., multi-channel EEG)
present many challenges, as not all of the features are neces-
sary for optimal classification of the phenomena of interest.
While certain non-linear (and computationally expensive)
methods can construct predictive models with high accuracy
from high-dimensional data, it is important in most applica-
tions to reduce the dimension of the original data prior to
modelling the data [15].

Feature reduction schemes can be extremely useful in tasks
such as classification, visualisation, and compression of high-
dimensional data. Traditionally, feature reduction has been
performed using standard linear techniques such as principal
component analysis (PCA) [16, 17] and factor analysis [18].
PCA has proven an extremely useful tool for approximation of
datasets with inherent low dimensionality but, when it comes
to higher dimensional datasets, non-linear feature reduction
techniques can yield better performance as they are better able
to handle complex non-linear data [19, 20]. Consequently, in
the past few decades, there has been a substantial increase in

the number of non-linear techniques for feature reduction [20,
21].

Most real-world tasks involve datasets which are non-
linear in nature. Therefore, using non-linear feature reduction
techniques would appear likely to offer distinct advantages.
This is supported by numerous studies which have shown that
non-linear feature reduction techniques outperform their linear
counterparts [22–24]. Motivated by the success of such non-
linear feature reduction methods, our aim was to compare
several advanced non-linear-dimensionality reduction tech-
niques against classical PCA and probabilistic linear PCA
(PPCA), which have been widely used as benchmarks to pro-
vide comparisons with the newer non-linear methods [25, 26].
We hypothesised that PCA and PPCA would not perform as
well as the non-linear feature reduction methods. We chose
eight non-linear feature reduction methods largely on the basis
of their popularity in the literature [22–26] and what we con-
sidered to be their computational efficiency for real-time
microsleep detection.

2 Methods

2.1 Feature reduction—linear techniques

2.1.1 Linear principal component analysis

In a mean square error sense, linear PCA is the ideal method as
it provides a linear-dimension-reduction solution and is based
on the covariance matrix of the variables. PCA has been used
in a wide range of research areas as a non-parametric method
for extracting relevant information from complex and often ill-
defined datasets and is a well-established unsupervised di-
mensionality reduction technique [27].

PCA seeks to reduce the dimension of the data by finding
orthogonal linear combinations—principal components
(PCs)—of the original variables which accommodate the larg-
est variance in an unsupervised manner. PCA has also been
used as a baseline for comparison with non-linear-feature re-
duction methods due (i) its widespread usage and (ii) its use in
previous microsleep detection studies [7, 28, 29].

Despite having proven an extremely useful tool, PCA has
its limitations: (i) The covariance matrix is difficult to accu-
rately evaluate, (ii) even the simplest invariance cannot be
captured by PCA unless the training data explicitly provides
this information, and (iii) directions in data maximising the
variance do not always maximise information [20, 23, 30].

2.1.2 Linear probabilistic principal component analysis

Linear probabilistic PCA (PPCA) obtains a probabilistic for-
mulation of PCA from a Gaussian latent variable model,
which is closely related to statistical factor analysis; this
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allows a likelihood measure which in turn enables comparison
with other probabilistic techniques, while facilitating statisti-
cal testing [31]. PPCA has been particularly used as a method
to estimate the principal axes when any data vector has one or
more missing values [23]. PPCA has been applied in many
signal processing applications and, interestingly, is not based
on a probability model but rather is determined through
maximum-likelihood estimation of the parameters in a latent
model closely related to factor analysis [31, 32].

PPCA is based on an isotropic error model. It seeks to relate
a p-dimensional observation vector y to a corresponding k-
dimensional vector of latent (or unobserved) variable x, which
is normal with zero-mean and covariance I(D). The relation-
ship is established as follows:

yT ¼ W� xT þ μþ ε; ð1Þ

where y represents the column vector of observed variable,
x represents the row vector of latent variables, μ represents
column vector and ε is defined as an isotropic error term
which is Gaussian with zero-mean and covariance of υ ×
I(D), where υ is the residual variance. In the case of PPCA,
k needs to be smaller for the rank of the residual variance to be
greater than zero. Linear PCA, where the residual variance is
zero, is the limiting case of PPCA. W is a matrix of observa-
tions relating to the latent and observed values.

Here, the values of y are conditionally independent and
identically distributed, given the values of x. Therefore, it is
possible that the values of x can explain the correlations be-
tween values of y and error ε, and can also explain the vari-
ability unique to a particular element of y. The marginal prob-
ability of the observation given model parameters can be
expressed as follows:

y ¼ N μ;W�WT þ υ� I Dð Þ� �
: ð2Þ

Tipping and Bishop [31] suggested that there is no closed-
form solution for both W and υ, and, therefore, estimates are
determined by iterative maximisation of log-likelihood using
an expectation maximisation algorithm. As such, PPCA has
been proposed as a powerful alternative in several image pro-
cessing, time-series prediction, and pattern recognition tasks.

2.2 Feature reduction—non-linear techniques

2.2.1 Kernel Principal component analysis

Kernel PCA (KPCA) is a reformulation of traditional linear
PCA in a high-dimensional space that is constructed using a
kernel function. KPCA achieves non-linear feature reduction
through the use of kernel functions. KPCAwith a linear kernel
is the same as traditional PCA. Since KPCA is a kernel-based
feature reduction method, the mapping function from the
KPCA is highly reliant on the type of the kernel function

being used. There are multiple variants for a non-linear kernel,
such as Gaussian and polynomial [33].

The kernel matrixK is computed for the data points xi and
yi, and the entries are defined as follows:

kij¼ k xi; x j
� �

; ð3Þ

where к represents the kernel function and к can be any
function that generates a positive-semi-definite kernelK [30].
Consequently, к is centred with the following modification to
the entries as follows:

kij ¼ kij−
1

n
∑
il
kil−

1

n
∑
jl
kjl þ 1

n2
∑
lm
klm: ð4Þ

In KPCA, the centring operation corresponds to subtracting
the mean of the features in traditional PCA. The kernel
centring operation determines that the features in higher di-
mensional space are defined by the kernel function and con-
tain a zero mean. Finally, the principal eigenvectors of the
centred kernel matrix are computed by the following:

αi ¼ 1ffiffiffiffiffi
λi

p vi; ð5Þ

where αi represents all the eigenvectors of the covariance
matrix in the higher dimensional space and vi represents the
scaled versions of the eigenvectors of the kernel matrix. From
this relationship, it is evident that the eigenvectors of the co-
variance matrix can be scaled versions of the eigenvectors of
the kernel matrix.

To obtain low-dimensional data representation Y via,
KPCA, the data is typically projected onto the eigenvectors
of the covariance matrix αi. The resulting Y is denoted as
follows:

Y ¼ ∑
j
α1K x j; x

� �
;∑

j
α2K x j; x

� �
…………∑

j
αdK x j; x

� �
:

ð6Þ

2.2.2 Classical multi-dimensional scaling

Multi-dimensional scaling (MDS) is a widely accepted tech-
nique for data visualisation of EEG, fMRI, and other biomed-
ical and biomolecular based analyses [34, 35]. MDS was pro-
posed as a classical approach to the problem of finding under-
lying attributes or dimensions via a visual representation of the
pattern of proximities (i.e., similarities or distances) among a
set of objects [36]. TheMDS algorithm represents a collection
of non-linear techniques which can map high-dimensional
data to a much lower dimensional representation whilst
retaining the pairwise distances between the observable
datapoints as much as possible [30]. MDS is often considered
as an extension of the Sammon mapping problem [37].
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MDS uses a stress function φ to express the quality of
mapping, which is a measure of the error between the pairwise
distances in both low- and high-dimensional representations
(Y and X, respectively) of the observable data. The stress
function is defined as follows:

φ Yð Þ ¼ X kxi−x jk−kyi−y jk
� �2

; ð7Þ

where kxi − xjk represents the Euclidean distance between
the high-dimensional observations xi and xj, and kyi − yjk rep-
resents the Euclidean distance between the low-
dimensional observations yi and yj, and k represents
the nearest neighbours.

2.2.3 Isometric mapping

Isometric mapping (Isomap) is one of the earliest ap-
proaches for manifold learning and is widely accepted
as an extension for MDS or KPCA methods [38].
Isomap seeks a low-dimensional embedding which
maintains geodesic distances between all points. The
geodesic or curvilinear distance is the distance between
two points measured over the manifold. Manifold learn-
ing algorithms are based on the idea that the dimension-
ality of many data sets is only artificially high). Isomap
uses the same principles as the MDS algorithm. The
key steps in Isomap are as follows:

1. Obtain a matrix of proximities (distances between points
in a dataset)

2. Calculate the distance matrix via inner products
3. Carry out an Eigen-decomposition of the distance matrix

to derive lower dimensional embedding

A substantial difference between Isomap and MDS is the
way in which the distance matrix is constructed. In Isomap,
the geodesic distances between observations xi are computed
by constructing a neighbourhood graph G, in which every
datapoint xj is connected with its k nearest neighbours xij in
the dataset X.

The shortest path between two points in the graph
forms a good estimate—i.e., an over-estimate of the
geodesic distance between these two points, which can
be computed via Dijkstra’s shortest path algorithm [39].
In the Isomap algorithm, distances between points are
considered as the weight of the shortest path in a point-
graph. The pairwise geodesic distance matrix is formed
from the geodesic distances between all observations in
X. Finally, the low-dimensional representations yi of the
observations xi in the low-dimensional space Y are
computed by applying the MDS framework to obtain a
distance matrix.

2.2.4 Nearest neighbour estimation

The nearest neighbour estimation (NNE) algorithm is based
on the estimation of the number of neighbouring observations
covered by a hypersphere of radius r. The NNE algorithm
does not explicitly count the number of observations inside
the hypersphere but computes the minimum radius r of the
hypersphere necessary to cover k nearest neighbours [30]. The
nearest neighbour estimator computes the following:

C kð Þ¼ 1

n
∑Tk xið Þ; where C¼ 1; if xi−x j

�� ���� �� < r
0; if xi−x j

�� ���� �� > r

�
ð8Þ

where Tk (xi) signifies the radius of the smallest
hypersphere with centre (xi) which covers k neighbouring ob-

servations. The dimensionality of a dataset bd is estimated by
the following:

bd ¼
log C k2−C

�
k1

� �� �
log k2−k1ð Þ : ð9Þ

2.2.5 Stochastic neighbourhood embedding

Stochastic neighbourhood embedding (SNE) is a probabilistic
approach in which features described by high-dimensional
vectors or by pairwise dissimilarities are placed in a low-
dimensional space with their neighbour identities preserved.
In essence, SNE is only slightly different to MDS in terms of
the distance measure that it uses as a minimalist cost function.
In SNE, a Gaussian is centred on each object in the high-
dimensional space and a few dissimilarities under this
Gaussian are used to define a probability distribution over
all of the potential neighbours of the features [40].

In SNE, the matrix P denotes the distribution of all the
individual probabilities pij for all the observations xi and xj
generated by the same Gaussian. SNE models the similarity
of datapoint xi to datapoint xj as the conditional probability pij,
that xi would pick xj as its neighbour if neighbours were pick-
ed in proportion to their probability density under a Gaussian
centred at xi.

The probabilities pij are calculated using the Gaussian ker-
nel function:

wij ¼ e−
xi−x jk k2
2σ2 ; ð10Þ

where wij represents the individual weights of the observa-
tions and σ represents the variance of the Gaussian. The algo-
rithm then sets the coordinates of the low-dimensional repre-
sentations yi.

Following this, the probabilities for the low-dimensional
counterparts yi and yj of the high-dimensional datapoints xi
and xj and a similar conditional probability qij can be
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generated by the same Gaussian computed and stored in the
matrix Q which uses the same Gaussian kernel.

The SNE algorithm aims to minimise the difference be-
tween the probability distributions P and Q. Hinton and
Roweis [40] stated that in a perfect low-dimensional represen-
tation of the data, the matricesP andQ are identical. In SNE, a
natural cost function is the sum of the Kullback-Leibler diver-
gences [41], which is the natural distance measure to measure
the difference between two probability distributions, given by
the following:

φ Yð Þ¼∑
ij
Pijlog

Pij

Qij
: ð11Þ

SNE aims to minimise the sum of Kullback-Leibler diver-
gences by applyingmethods such as the gradient descent tech-
nique [40].

2.2.6 Autoencoder

Autoencoders are multi-layered and are a type of feed-forward
neural network possessing an odd number of hidden layers
[42, 43]. An autoencoder uses an unsupervised learning rule
that applies backpropagation, setting the target values to be
equal to the inputs yi = xi. Hence, autoencoder networks are
trained to minimise the mean square error (MSE) between the
input and the output of the network.

When a set of data is passed through an autoencoder, the
network compresses (encodes) an input vector to fit a smaller
representation and then tries to reconstruct (decode) the infor-
mation back. The training algorithm aims to find the most
efficient encoding representation for an input sequence.
Autoencoders also try to convert a vector of n-dimensional
space to an m-dimension, while retaining all of the necessary
information and, at the same time, removing noise.

In order to train an autoencoder to model a non-linear map-
ping between the high-dimensional and low-dimensional data
representation, sigmoid activation functions are typically
used. Autoencoders with linear activation functions resemble
PCA [32].

2.2.7 Stochastic proximity embedding

Stochastic proximity embedding (SPE) is considered an ex-
tension to multi-dimensional scaling. SPE runs an iterative
algorithm to minimise the raw stress function ϕ of MDS:

φ Yð Þ¼ ∑
ij

dij−rij
� �2

; ð12Þ

where rij is the proximity between the high-dimensional
data points xi and xi, and dij is the Euclidean distance between
their lower dimensional counterparts yi and yj in the current
approximation of the embedded space [30].

The SPE algorithm updates the current estimate of the low-
dimensional data representation. SPE also has a behaviour
comparable to that of the isomap in that SPE can be readily
applied to retain only distances in a neighbourhood graph G
defined on the data by setting dij and rij to 0 if (i, j) ∉ G.

The updating in the SPE algorithm is performed using up-
dated rules:

yi←yiþλ
rij−dij
2dijþε

yi−y j

� �
; ð13Þ

y j← y jþλ
rij−dij
2dijþε

y j−yi
� �

; ð14Þ

where λ is defined as a learning parameter and λ decreases
with the number of iterations, and ε is a regularisation
parameter.

2.2.8 Laplacian Eigenmaps

Lastly, the Laplacian Eigenmaps (LE) algorithm bears a resem-
blance to the Isomap in that it constructs a graph representation of
all observations. The LE algorithm is based on the pairwise dis-
tance between the neighbours. LE computes a low-dimensional
representation of the data in which the distances between a
datapoint and its k nearest neighbours are minimised [30].

The LE algorithm begins by constructing a neighbourhood
graph G in which every observation xi is connected to its k
nearest neighbours. For all the points xi and xj in the graph G
that are connected by an edge, theweight of the edge is computed
using a Gaussian kernel function leading to a sparse adjacency
matrixW [44]. The cost function in the low-dimensional repre-
sentations is minimised and represented as follows:

φ Yð Þ ¼ ∑
ij

yi−y j

� �2
wij: ð15Þ

A degree matrixM and a graph Laplacian L are computed
for a graph G which allows for formulating the minimisation
problem as the Eigen problem [45]. The degree matrix M of
W is a diagonal matrix, whose entries are the row sums of
w = (mii =∑jwij).

The graph Laplacian L is computed by L =M –W. It can
be shown that the following holds

φ Yð Þ ¼ ∑
ij

yi−y j

� �2
wij ¼ 2 YTLY: ð16Þ

Therefore, minimising ϕ(Y) is proportional to minimising
YTLY. The low-dimensional data representation Y can thus be
found by solving the generalised eigenvector problem as follows:

Lυ¼λMυ; ð17Þ

where ν is a vector that minimises the objective function.
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2.3 Data

Subjects This study used previously collected behavioural and
EEG data from 8 healthy male non-sleep-deprived volunteers,
aged 18–36 years (mean = 26.5), performing a 1D-visuomotor
tracking task for 2 sessions (at least 1 week apart) of 1-h
duration [1, 7]. None of the 8 subjects had a current or previ-
ous neurological or sleep disorder and all had visual acuities of
6/9 (= 20/30) or better in each eye. All subjects considered that
they had slept normally the previous night (mean =7.8 h, SD =
1.2 h, min = 5.1 h) and, hence, were considered non-sleep-
deprived.

Continuous tracking task Subjects used a steering wheel
(395 mm diameter, wheel-to-screen gain = 1.075 mm/deg)
to control an arrow-shaped cursor located near the bottom of
the screen in a 1D visuomotor tracking task. The eye-to-screen
distance was 136 cm. A pseudo-random target (bandwidth
0.164 Hz, period 128 s), with an 8-s preview, scrolled down
the screen at 21.8 mm/s. The target signal was generated by
summing 21 sinusoids evenly spaced at 0.00781-Hz intervals
and with random phases [7]. Subjects were instructed to keep
the point of the arrow (which could onlymove horizontally) as
close as possible to the target waveform. Subjects performed
the task continuously for 1 h and undertook two sessions, 1
week apart.

Neurophysiological and behavioural measures During this
task, EEG was recorded from electrodes at 16 scalp locations,
band-pass filtered (0.5–100 Hz), and digitised at 256 Hz with
a 16-bit A-D converter. Eye-blink artefacts were removed via
ICA followed by notch filtering at 50 Hz to remove mains
activity. The mean and standard deviation of the first 2 min
(baseline) of the signal were calculated and the signal was
transformed into z-scores relative to the baseline of the signal.
Epochs of 2.0 s containing samples with an absolute z-score >
3.0 were rejected as artefacts and excluded from analysis in
the signal processing algorithms. Bipolar derivations were
used to calculate power spectra: Fp1–F3, Fp1–F7, Fp2–F4,
Fp2–F8, F3–C3, F4–C4, F7–T3, F8–T4, T3–T5, C3–P3,
P3–O1, T5-O1, C4–P4, T4–T6, P4–O2, and T6–O2 [7].
Bipolar derivations were chosen over referential due to
minimisation of common-mode artefacts.

Facial video was also recorded during the tracking ses-
sions. Video-based microsleeps were primarily identified by
prolonged eye-lid closure. Video-based transitions were rated
at 1/s [7].

Generation of the gold standard Validation of training and
testing data required binary-labelled microsleep (‘1’) and re-
sponsiveness (‘0’) states. This behavioural gold standard was
created by human experts from tracking and video measures
and was used to estimate feature reduction performance.

Lapses in tracking performance are most obvious when the
response cursor simply stops moving for an extended period
while the target is moving (i.e., ‘flat spots’) or when the track-
ing response is non-coherent with the target. Only flat spots
were included in an intentionally conservative analysis, as
lapses in the second category are difficult to identify with
confidence. Flat spots occurring when the target velocity
was approximately zero (at turning points) were not counted,
as at these times the subject could track adequately without
moving the response cursor.

Spectral features A 2.0-s window with a 1.0-s overlap (50%)
between successive windows was used for all signal process-
ing algorithms. The sliding process generated feature samples
at a rate of 1 Hz, resulting in 3600-element-long feature vec-
tors for a 1-h recording. The 2.0-s window was chosen to
obtain a reasonable degree of spectral resolution (where ap-
propriate) and the overlap of 1.0-s was chosen to ensure rea-
sonable temporal resolution (an estimate every second) for the
features. This was important since a key requirement of the
desired microsleep detection system was its ability to detect
short microsleeps (~1 s).

Data in each 2.0-s epoch were detrended to remove any DC
shifts and the spectrumwas estimated using a 40th-order Burg
model [46]. Thirty-four spectral features, comprising 13 spec-
tral power (SP), 12 normalised spectral power (NSP), and 9
power ratio (PR) features (Table 1), were calculated for each
of the 16 derivations, giving a total of 544 spectral features.

Table 1 Spectral features calculated from each EEG derivation

Feature Frequency band

Mean spectral power a

Delta (δ) 1.0–4.5 Hz

Theta (θ) 4.5–8.0 Hz

Alpha 1 (α1) 8.0–10.5 Hz

Alpha 2 (α2) 10.5–12.5 Hz

Alpha (α) 8.0–12.5 Hz

Beta 1 (β1) 12.5–15.0 Hz

Beta 2 (β2) 15.0–25.0 Hz

Beta (β) 12.5–25.0 Hz

Gamma 1 (γ1) 25.0–35.0 Hz

Gamma 2 (γ2) 35.0–45.0 Hz

Gamma (γ) 25.0–45.0 Hz

High >45.0 Hz

Overall 0.1–100 Hz

Spectral power ratios b

θ/β, θ/α, α/β, δ/θ, α/δ, β/δ, β2/α, β1/β2 –

a Absolute values and normalised values
b Absolute values only
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Classification of the gold standard and performance analysis
A stacked-generalisation-based linear discriminant analysis
(LDA) model [7, 47] was used to form the microsleep detec-
tion system capable of classifying the microsleep and respon-
siveness states from the generated gold standard data.
Stacking determines how best to combine base models via
an additional meta-learner algorithm [7, 47]. The performance
of this microsleep detection system was calculated in terms of
ability to detect the microsleep state in consecutive 1-s epochs.
Classification performance was determined by leave-one-
subject-out cross-validation corresponding to the 8 subjects
on session 1. Pearson correlation (phi) was considered the
primary performance metric because of it being largely inde-
pendent of the substantial class imbalance ratios (number of
microsleep states vs. number of responsive states, ranging
1:813–1:2.26) and due to it primarily representing a combina-
tion of both sensitivity and precision.

2.4 Comparison of feature reduction methods

2.4.1 Visual inspection of class separation

Data visualisation techniques can guide a feature reduction
algorithm in identifying meaningful coordinate projections
for datasets with high dimensionality [48]. Visual inspection
as an information retrieval task is one of the core ingredients
of exploratory data analysis as it provides a detailed under-
standing of the underlying mathematical principles of the ma-
chine learning algorithms. To this end, different exploratory
techniques have been proposed to interpret the essential struc-
tural characteristics of a dataset.

Some of the classical approaches used for visual inspection
include interpretation of data using tree maps, graph-based
visualisation, scatterplots, parallel coordinate maps, and outli-
er maps [49]. In this research, 3-D scatterplot analysis was
performed on each of the ten feature reduction algorithms to
visualise the degree of class separation achieved. Further jus-
tification behind the implementation of this scatterplot analy-
sis was to determine the efficacy of the underlying feature
reduction algorithm and to select inputs for a linear discrimi-
nant analysis classifier.

2.4.2 Trustworthiness

The trustworthiness metric was specially proposed for low-
dimensional embedding. Venna and Kaski [22] proposed
trustworthiness as a measure of feature reduction perfor-
mance. Trustworthinessmeasures the proportion of points that
are too close together in low-dimensional space [20, 22]. The
trustworthiness T(k) measure is defined as follows:

Ttrust kð Þ ¼ 1−A kð Þ∑N
i¼1 ∑

j∈Uk ið Þ
r i; jð Þ−kð Þ; ð18Þ

where i, j are low-dimensional datapoints, and r(i, j) repre-
sents the rank of a low-dimensional datapoint j to the pairwise
distances between the low-dimensional datapoints. U(k)(i) in-
dicates the set of points that are amongst the k nearest neigh-
bours in the lower dimensional datapoint i.

The term A(k) normalises the measure to between 0 and 1.
The error gets its maximum value when the ranks in the input
and output space are reversed. The scaling term can then be
found by considering the maximum error in each data point’s
neighbourhood as the sum of the k last ranks (minus the
neighbourhood size k). Thus, the scaling term for N data sam-
ples becomes

A kð Þ ¼
2

Nk 2N−3k−1ð Þ ; if k <
N
2

2

N N−kð Þ N−k−1ð Þ ; if k≥
N
2

8>><
>>: ð19Þ

Essentially, the trustworthiness measure is closely re-
lated to the precision measure for the case where the
objects are ranked based on their relevance [20]. The
neighbourhood size k in the trustworthiness measure de-
fines the number of items retrieved. There is a distinct
advantage over measuring the reconstruction errors
when evaluating the trustworthiness and generalisation
errors, because a high reconstruction error does not nec-
essarily imply that the dimensionality reduction tech-
nique performed poorly [22, 30].

2.4.3 Validation via classification performance

The reduced features from each of the feature reduction
methods were separately used to train an LDA classifier run-
ning a level-1 stacking framework, as also used by Peiris et al.
[7]. The LDA classifier was implemented on each of the 8
subjects, on session 1 only, to:

(1) Detect the occurrence of microsleep states in 1-s epochs
(2) Compare leave-one-subject-out cross-validation classifi-

cation performances for each of the 8 subjects on each of
the 10 feature reduction algorithms in terms of phi coef-
ficient and AUC-ROC

(3) Compare the mean phi performances with the mean
trustworthiness scores for each of the 10 feature reduc-
tion methods in terms of Pearson correlation

The mean phi correlation (φ) and area under the
receiver-operator characteristic curve (AUC-ROC) were
used as the primary performance metrics because of
their reasonable independence from class distributions,
in addition to being, from our experience, the best in-
tegrated measures of the other performance metrics for
unbalanced data.
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2.5 Statistics

The non-parametric Wilcoxon signed-rank test [50] was used
for all paired comparisons between trustworthiness metrics
and between LDA classifier phi correlations for the 10 feature
reduction methods. Because of the small number of compar-
isons, no correction was made for multiple comparisons. All
comparisons were 2-sided.

3 Results

3.1 Spectral features

From feature reduction via PCA in particular, we could iden-
tify the more important features making up the low-
dimensional meta-features. The first principal components
(PCs), PC1–PC7, indicated highest weights for high-
frequency gamma features (particularly >45 Hz). In contrast,
the alpha bands (alpha, alpha 1 and 2) were the highest-
weighted features in PCs 10–20, and PCs 8 and 9 had a mix-
ture of high and mid-ranged frequency features.

3.2 Visual inspection of class separation

Ten 3-D scatterplots for a typical subject (subject 1) are shown
in Fig. 1 (linear) and Fig. 2 (non-linear).

3.2.1 Principal component analysis

Figure 1(a) depicts the 3-D scatter pattern of the meta-features
generated by PCA from the 544 spectral features for subject 1.
The spectral features containing events are identified with red

circles (microsleep states) and the features without an event
are identified with blue circles (responsive state). This figure
not only depicts how the meta-features are interpreted from a
processed dataset using PCA but also depicts the innate intri-
cacies of the current microsleep classification problem on the
whole. As evident from the plot, the meta-features corre-
sponding to both classes (microsleep and responsive) are clus-
tered on top of each other, emphasising the challenge of this
classification problem. The corresponding trustworthiness
score reported was TN = 8 = 0.49.

3.2.2 Probabilistic principal component analysis

Figure 1(b) depicts the application of the PPCA algorithm to
subject 1. It is clear that PPCA is superior to PCA and KPCA.
Furthermore, PPCA reported the best trustworthiness scores
with the highest mean TN = 8 = 0.54. There is also compelling
evidence that PPCA-based approaches work well on time-
series and pattern recognition problems [31].

3.2.3 Kernel principal component analysis

The 3-D scatter plot in Fig. 2(a) demonstrates the application
of the non-linear KPCA technique using the Gaussian kernel
on subject 1. The three most significant meta-features (PCs)
are plotted against the x, y, and z-axes. Although KPCA is
considered to give superior feature reduction to traditional
PCA (due to its kernel functions), visual comparison of the
scatter plots in Fig. 1 do not reveal any obvious new insights
or improvement in separation between the two classes. Both
scatter plots indicate that any classifier, be it linear or non-
linear, would struggle to achieve ideal separation between
the two classes. Notwithstanding, the scatter pattern in

(a)

PCA

P
C

1

PC2 PC3

PPCA

P
C

1

(b)

PC2 PC3

Fig. 1 Visualising the class distributions and separations of the linear
feature reduction algorithms investigated on Subject 1. The three axes
represent the top 3 PCs and/or meta-features 1–3. Blue circles represent

the class ‘responsive state’ and red circles the ‘microsleep state’.
Subfigures a and b depict the first 3 PCs of the 50 reduced meta-
features from the PCA and PPCA schemes
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KPCA is a little less disarranged to that of PCA in Fig. 1(a),
together with a moderate trustworthiness score TN = 8 = 0.40.

3.2.4 Classical multi-dimensional scaling

Figure 2(b) depicts the 3D scatter plot of the MDS approach
on the microsleep detection problem for subject 1. Based on
the visualisation of the MDS algorithm, it is inconclusive to
determine whether or not this approach could offer a better
separation between the classes. Although MDS works by pre-
serving distances between points in the data, the individual
clusters of each class appear to be close to one another.

A major disadvantage of this approach is that it is based on
Euclidean distances and does not take into account the distri-
bution of the neighbouring observations. This was also dem-
onstrated on the current dataset with a low mean trustworthi-
ness score of TN=8 = 0.15.

3.2.5 Isometric mapping

Figure 2(c) depicts the isomap application of the microsleep
detection problem on subject 1. From the 3D scatter plot, it
can be seen that performance of the Isomap algorithm is very
poor. A possible reason behind this is that the Isomap algo-
rithm failed to attain a topological stability due to being rid-
dled with several erroneous connections while computing the
neighbourhood graph G. The corresponding trustworthiness
score was TN = 8 = 0.10, the lowest mean trustworthiness score
of all 10 of the algorithms investigated.

3.2.6 Nearest neighbour estimation

Figure 2(d) depicts NNE applied to subject 1. From the
scatterplot it can be seen that the NNE algorithm was able to
reasonably distinguish and separate both classes, albeit with
some errors, and do so less than PCA (Fig. 1(a)). The trust-
worthiness score for the NNE-based algorithm was TN=8 =
0.40.

3.2.7 Stochastic neighbourhood embedding

Figure 2(e) represents the application of SNE to subject 1. The
3D scatter plot indicates that, due to the probabilities, distri-
butions of the SNE majority of the class distributions are
spread around in the corner of the image. This led to a reason-
ably high trustworthiness TN=8 = 0.38.

3.2.8 Autoencoder

Figure 2(f) depicts the 3D cluster plot from the application of
the autoencoder schemes to subject 1. It is evident from the
class distribution in the cluster pattern that the autoencoder-
based-neural network would not perform well, which may be

due to overfitting within the data. This is supported by a low
mean trustworthiness score of TN=8 = 0.12.

3.2.9 Stochastic proximity embedding

Figure 2(g) provides an illustration of the 3D scatter plot from
the application of SPE to subject 1. There was a reasonable
mean trustworthiness score of TN = 8 = 0.38. SPE is computa-
tionally inexpensive and can accommodate a large number of
iterations for updating its embedded coordinates.

3.2.10 Laplacian Eigenmaps

Figure 2(h) represents the 3D cluster plot of the LE algorithm
on subject 1. The visualisation of the scatter plot depicts re-
sults which are inconclusive as the class separation is uneven-
ly spread in the plane. The mean trustworthiness score of TN =

8 = 0.15 is low.

3.3 Trustworthiness

The trustworthiness scores of the 10 feature reduction ap-
proaches for each of the 8 subjects are shown in Table 2.
The 3 PCA-based methods had superior mean T scores with
PPCA having the highest, followed by standard PCA. Other
methods with reasonable mean T values were NNE, SNE, and
SPE. Despite being neighbourhood-based approaches,
Isomap, and autoencoder performed poorly, both subjectively
by way of their 3D scatter patterns and quantitatively in their
trustworthiness scores.

It is also notable that the both the linear feature reduction
methods PPCA and PCA outperformed all the other non-linear
methods (p < 0.012). PPCA was the best feature reduction
method, outperforming both PCA (p = 0.021) and all of the
non-linear methods. However, PCA also outperformed all of
the other non-linear techniques (p < 0.012) on the microsleep
dataset, despite the ability of the other non-linear techniques to
learn the structure of complex non-linear manifolds.

3.4 Validation of the feature reduction methods using
a linear discriminants-based classifier

Table 3 provides a summary of leave-one-subject-out system
performance for an LDA-based microsleep detector using
each of the 10 feature reduction schemes.

Linear detectors based on PPCA and PCA provided the
best generalisation performances with φ = 0.42 and φ =
0.40, respectively, followed by the detectors based on NNE
(φ = 0.37), KPCA (φ = 0.36), SNE and SPE (φ = 0.34). The
high performances observed in terms of φ were also con-
firmed by observing largest meanAUC-ROC values as shown
in Fig. 3. The highest mean AUC-ROC scores were seen on
the PCA-based techniques, with PPCA meta-features at 0.91,
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followed by PCA meta-features at 0.88 and KPCA meta-
features at 0.84. The lowest mean AUC-ROC scores were
seen on the autoencoder meta-features with AUC-ROC =
0.70 and Isomap with AUC-ROC = 0.71, respectively. The
neighbourhood-based methods of NNE, SNE, and SPE had
AUC-ROC scores marginally higher than the non-linear para-
metric Isomap and autoencoder and Laplacian Eigenmaps
schemes with AUC-ROC scores at 0.81, 0.79, and 0.78,
respectively.

PPCAwas superior to PCA in terms of trustworthiness (p =
0.021) but not in terms of phi (p = 0.11). Also, all of the 8 non-
linear techniques were worse than PCA in terms of trustwor-
thiness (p < 0.017).

Furthermore, the mean trustworthiness score for each of the
feature reduction methods correlated strongly (r = 0.992) with
the mean phi for microsleep-state detection over the 8 sub-
jects. This provides strong validation of the ability of trust-
worthiness to (i) estimate the relative effectiveness of feature
reduction approaches in terms of ability to predict perfor-
mance of an LDA classifier and (ii) do so independent of the
gold standard. Figure 4 shows the linear correlation between
the matched pairs mean trustworthiness scores and mean phi
correlation.

4 Discussion

We have determined and compared the effectiveness of two
linear and eight non-linear techniques on their ability to

optimally reduce EEG-based features and separate microsleep
versus responsive states for input to a classifier for EEG-based
microsleep detection. We have shown that, for EEG-based
microsleep detection, the linear probabilistic PCA scheme is
superior for feature reduction over all other methods. We have
also shown that the two linear feature reduction techniques,
PCA and probabilistic PCA, were able to outperform all of the
eight non-linear methods, despite the ability of the latter to
learn the structure of complex non-linear manifolds.
Furthermore, despite being neighbourhood-based approaches,
Isomap and autoencoder performed particularly poorly, both
subjectively by way of their 3D scatter patterns and quantita-
tively in their trustworthiness scores. In terms of trustworthi-
ness, probabilistic PCA outperformed the other linear method,
PCA, but PCA, in turn, outperformed all of the other non-
linear techniques. It was also demonstrated that the linear de-
tectors based on PPCA and PCA feature sets provided the best
generalisation performances. We also demonstrated a very
high correlation between mean trustworthiness scores for each
of the feature reduction methods and their microsleep-state
detection performance. This provides strong validation of
the ability of trustworthiness to (i) estimate the relative effec-
tiveness of feature reduction approaches in terms of ability to
predict performance of an LDA classifier and (ii) do so inde-
pendent of the gold standard.

We have provided a comparative study of traditional
linear PCA-based and non-linear techniques for feature
reduction used in microsleep detection. Our results indi-
cate that the non-linear techniques for dimensionality re-
duction are, despite their large variance of the parameters,
not yet capable of outperforming traditional PCA-based
methods (PCA and probabilistic PCA). A possible reason
for the relatively low detector performances and trustwor-
thiness scores of the non-linear feature reduction methods
may be attributed to the overfitting of the training data
with random noise. In general, our results indicate that
overfitting was more likely associated with the non-
linear and non-parametric models which had more flexi-
bility when learning the target function [51].

�Fig. 2 Visualising the class distributions and separations of the non-
linear feature reduction algorithms investigated on Subject 1. The three
axes represent the top 3 PCs or meta-features 1–3. Blue circles represent
the class responsive state and red circles the microsleep state. Subfigure a
depicts the first 3 PCs of the 50 reduced meta-features from KPCA.
Subfigures b, c, d, and g depict the top 3 meta-features from the 50
reduced features of the MDS, Isomap, NNE and SPE schemes.
Subfigures e, f, and h depict the top 3 meta-features from the 10, 40
and 60 reduced features of the SNE, Autoencoder, and LE schemes,
respectively

Table 2 Trustworthiness scores of the feature reduction algorithms evaluated

Subject PCA PPCA KPCA MDS Isomap NNE SNE Autoencoder SPE LE

1 0.74 0.89 0.61 0.29 0.13 0.63 0.52 0.10 0.56 0.29

2 0.62 0.66 0.57 0.17 0.07 0.44 0.46 0.19 0.40 0.17

3 0.08 0.11 0.03 0.01 0.00 0.02 0.03 0.00 0.04 0.01

4 0.67 0.74 0.49 0.11 0.21 0.54 0.41 0.11 0.51 0.11

5 0.32 0.33 0.23 0.09 0.01 0.30 0.26 0.09 0.21 0.09

6 0.51 0.50 0.44 0.14 0.1 0.47 0.34 0.11 0.33 0.14

7 0.33 0.37 0.27 0.17 0.04 0.27 0.11 0.17 0.35 0.17

8 0.72 0.74 0.60 0.22 0.22 0.55 0.62 0.21 0.68 0.22

Mean 0.49 0.54 0.40 0.15 0.10 0.40 0.34 0.12 0.38 0.15
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Furthermore, since the behavioural gold standard was hu-
man-rated, errors/noise in the gold standard rating process are
more than likely to have reduced the classifier performances
and increased likelihood of overfitting of the non-linear
models. Other limitations in the current study include the
small dataset size (in terms of number of subjects), the vari-
able quality of EEG features between subjects, and the fea-
tures being specific to microsleeps. Thus, while our conclu-
sions on the relative performance of several feature reduction
techniques are compelling, we cannot, and are not, contending
that they would necessarily apply to larger datasets and/or
other transient events in the EEG.

Notwithstanding, the value of this research has been well
demonstrated in the quantification of characteristics of
microsleeps and EEG-based detection of microsleeps, with
high temporal resolution [7, 28, 29, 52]. Despite the findings
presented in this research, considerable future work in the field
of EEG-based microsleep detection remains. As such, future
work will look into development of linear and non-linear tech-
niques for dimensionality reduction that (i) do not suffer from

trivial optimal solutions and (ii) do not rely on neighbourhood
graphs to model the (local) structure of the data manifold. We
are also exploring reservoir-computing approaches to
microsleep detection [53] and deep convolutional neural net-
works [54] due to the latter’s intrinsic advantage in not need-
ing explicit dimensionality reduction; of course, this advan-
tage does not necessarily confer superior classification perfor-
mance [55, 56].

Future studies could also explore enhancements on the sig-
nal processing front, for example analysis on the higher order
spectra, which might make a substantial contribution towards
improved lapse detection system. Higher order spectra have
been shown to be of value in other EEG-based classification
models, such as in the detection of epileptic activity in the
EEG [57].

An interesting observation is that the first principal compo-
nents from PCA indicated high weights for high-frequency
gamma features. As EEG gamma and EMG spectra have a
substantial overlap, and as frontal EMG tends to reduce on
going from wake to sleep [58, 59], this raises the possibility

Table 3 Leave-one-subject-out performance (phi coefficient) of LDA-based classifier on the feature reduction algorithms

Subject PCA PPCA KPCA MDS Isomap NNE SNE Autoencoder SPE LE

1 0.78 0.83 0.66 0.57 0.50 0.73 0.64 0.59 0.63 0.48

2 0.57 0.60 0.50 0.50 0.33 0.54 0.53 0.39 0.51 0.47

3 0.09 0.09 0.04 0.04 0.02 0.03 0.03 0.04 0.03 0.02

4 0.13 0.14 0.10 0.07 0.07 0.09 0.10 0.09 0.41 0.04

5 0.56 0.53 0.41 0.34 0.29 0.48 0.51 0.29 0.26 0.39

6 0.49 0.53 0.43 0.29 0.34 0.47 0.40 0.24 0.34 0.34

7 0.20 0.24 0.35 0.13 0.15 0.27 0.18 0.17 0.11 0.13

8 0.41 0.40 0.38 0.22 0.24 0.35 0.36 0.29 0.62 0.38

Mean 0.40 0.42 0.36 0.27 0.24 0.37 0.34 0.26 0.34 0.28
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Fig. 3 LDA-based classifier
performance of the feature
reduction methods in terms of
mean AUC-ROC
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that changes in frontal EMG power this raises the possibility
that changes in frontal EMG power, particularly from fore-
head (frontalis) and eye closure (orbicularis oculi) muscles,
may contribute to EEG-based detection of microsleep states.

5 Conclusion

Towards the development of an EEG-based system for
detection and warning of microsleeps—the cause of many
fatal accidents, especially in transport sectors—we have
explored ten feature reduction techniques in recognition
of the importance of the feature reduction step prior to
training a detection classifier. From visual inspection of
3D scatterplots, trustworthiness scores, and microsleep
detection performance, we have demonstrated that PPCA
was not only superior to PCA but also that PCA was
superior to all eight non-linear feature reduction tech-
niques; thus, negating our hypothesis on the expected su-
periority of the non-linear feature reduction approaches.
Furthermore, we demonstrated that unsupervised trust-
worthiness scores strongly correlate with gold standard–
supervised microsleep-state detection performance, hence
validating the ability of trustworthiness to estimate the
relative effectiveness of feature reduction approaches
and to do so independent of the gold standard.
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