
  

  

Abstract— A microsleep (MS) is a complete lapse of 

responsiveness due to an episode of brief sleep (≲ 15 s) with eyes 

partially or completely closed. MSs are highly correlated with 

the risk of car accidents, severe injuries, and death. To 

investigate EEG changes during MSs, we used a 2D continuous 

visuomotor tracking (CVT) task and eye-video to identify MSs 

in 20 subjects performing the 50-min task. Following pre-

processing, FFT spectral analysis was used to calculate the 

activity in the EEG delta, theta, alpha, beta, and gamma bands, 

followed by eLORETA for source reconstruction. A group 

statistical analysis was performed to compare the change in 

activity over EEG bands of an MS to its baseline. After 

correction for multiple comparisons, we found maximum 

increases in delta, theta, and alpha activities over the frontal 

lobe, and beta over the parietal and occipital lobes. There were 

no significant changes in the gamma band, and no significant 

decreases in any band. Our results are in agreement with 

previous studies which reported increased alpha activity in MSs. 

However, this is the first study to have reported increased beta 

activity during MSs, which, due to the usual association of beta 

activity with wakefulness, was unexpected. 

I. INTRODUCTION 

Harrison and Horne [1] defined a microsleep 
physiologically as “a short period (between 5 and 14 s) of sleep 
identified by an EEG dominated by theta activity (4–7 Hz), 
and an absence of alpha activity (8–12 Hz)”. Poudel et al. [2] 
concluded that losing the struggle to stay awake means having 
shifted from the drowsiness state to the sleep state. The sleep 
state can be divided into two parts based on duration: sleep 
event (> 15 s) and a MS (≲ 15 s), with the latter falling under 
the definition of a complete lapse because of its specific albeit 
arbitrary time limits [3]. MSs can be observed through 
behavioural signs, such as head nodding, eye-closure, and loss 
of response to external stimuli [4].  MSs are usually associated 
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with increased response-time on monotonous tasks [5] and 
when sleep-deprived (SD) [6], although they can occur in non-
SD subjects [2, 7]. They are directly involved in many fatal 
accidents on the road [8]. Little research has been done to 
investigate the neural signature of MSs during continuous 
tasks with EEG [7, 9, 10]. This earlier research was limited in 
terms of statistical power, numbers of subjects and events, and 
explorations within the EEG bands.  

In a study of non-SD performance on a CVT, a correlation 
was observed between visuomotor performance and EEG theta 
activity in the posterior channel (Pz), however, removing MSs 
from data reduced the correlation considerably [9]. Another 
study which looked at MS-related activities in non-SD subjects 
on a 2D CVT found an association between MSs and theta 
band originated from the bilateral frontal orbital cortex, 
besides an association with alpha-band originated from the 
bilateral anterior temporal gyri and hippocampi [10]. In a study 
that used a 1D CVT task, the spectral activity was increased in 
delta, theta, and alpha during MSs, but reduced in the beta and 
gamma bands [7].  

The current study aimed to improve our understanding of 
MSs by exploring the neural signature of MSs on a 2D CVT. 
Hopefully, this should get us a step closer to an accurate MS 
detection/prediction system which can prevent many fatal 
accidents on the road and in other transport sectors. 

II. METHOD 

A. Data 

This study examined EEG data collected during a previous 
study [2], where healthy participants performed a continuous 
2D CVT task for 50-min. Whole-head fMRI, 64-ch. EEG, eye-
video recording, and tracking performance were recorded 
simultaneously. Events of (1) a flat/disjointed tracking (≲ 15 
s), (2) a complete or partial eye closure (without blinks), and 
(3) clear behavioural signs of drowsiness/sleepiness were 
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classified as MSs [9]. If the length of a MS was more than 15 
s, it was considered a sleep event. 

B. Preprocessing and Denoising 

This analysis was done using functions from EEGLAB 
software [11], plus plug-ins for special operations. As fMRI 
was recorded simultaneously with EEG, we removed both the 
gradient and pulse artefacts using the fmrib plug-in [12]. The 
data was band-pass filtered from 1–70 Hz, and down-sampled 
from 10 kHz to 500 Hz. The non-EEG channels were removed 
from the data. Using the PrepPipeline plug-in [13], the line 
noise was removed, noisy channels were identified and 
interpolated for consistency, and the channels were re-
referenced to the average of all electrodes. The artefact 
subspace reconstruction (ASR) plug-in [14] was used to 
correct large artefacts and data discontinuities. Finally, 
wavelet-enhanced independent component analysis (wICA) 
was used to decompose the EEG signal and remove any large 
artefacts left based on a threshold  [15]. Another run of ICA 
with the ICLABEL plug-in was performed to identify and 
reject non-EEG components [16].  

C. Source-Localization and Reconstruction 

Source-localization was carried out using FieldTrip 
software [17]. Following pre-processing, a subject-based brain 
modelling was performed by solving the forward model 
followed by the inverse model. We used the structural (T1) 
image of each subject to create an accurate forward model. 
Each image was initially resliced and segmented into grey 
matter, white matter, cerebrospinal fluid (CSF), skull and 
scalp. Simbio plug-in [18] was used to create a hexahedral head 
model using the finite element method (FEM) technique, 
which is recommended when using the T1 of each subject [19, 
20]. Electrode positions were manually realigned to the head 
model. The head model and T1 of each subject were used to 
create the source model, which was then normalised to a 
source model template of 5 mm resolution. Only sources 
within the grey matter were analysed as suggested by [21]. The 
last step was to create the lead field from the head volume, 
source model, and the aligned electrodes of each subject. 

We accounted for two confounding variables by regressing 
their effects out from each MS trial of the EEG data: (1) 
tracking-target-speed-related variability, and (2) poor 
responsive tracking, defined using a threshold calculated based 
on the tracking error of the first 2 min of the session. The two 
confounds were resampled to match the number of EEG data 
points. The MSs were segmented out of the EEG data, and all 
segments had the same length of 11 s (5 s before and 5 s after 
the onset of the MS). These segments were then combined as 
trials for each subject and were used in the inverse modelling. 
As we were interested in the relative difference in activity 
between the average MSs and their average baselines for 
different EEG bands, each trial was divided into event data, 
with a time window of 2 s starting from the onset of MS, and 
baseline data, with a window of 2 s before the onset. 

The Fast-Fourier transform (FFT) was used to calculate the 
activity separately for each event and baseline from the same 
trial at each band of interest: delta (2–4 Hz), theta (4–8 Hz), 
alpha (8–14 Hz), beta (14–30 Hz), and gamma (30–45 Hz). 
Inverse modelling was done using the exact low-resolution 
brain electromagnetic tomography (eLORETA) [21] to 

estimate the values of the sources for each frequency within a 
band. Relative power was computed as (𝑃𝑒(𝑓)  −  𝑃𝑏(𝑓))/
𝑃𝑏(𝑓) where 𝑃𝑒(𝑓) and 𝑃𝑏(𝑓) correspond to the power at 
frequency 𝑓 during MS and baseline, respectively. Estimated 
relative powers were averaged for each participant.  

D. Group-Level Statistics 

Source statistics were applied to compare the percentage 
relative difference to the null hypothesis of zero. Statistical 
analyses were performed using permutation tests [22], and the 
results were corrected for multiple comparisons over sources 
and the five bands using a family-wise cluster correction [22] 
of p-value < 0.01 (two-tailed). 

III. RESULTS 

Of the 14 subjects who had more than 2 MSs, we excluded 
3 subjects due to data corruption. A final sample of 11 
participants was considered for analysis, who had a total of 984 
microsleeps with an average duration of 3.53 s. Our analysis 
showed a neural signature of MSs represented by an increase 
in activity in delta, theta, alpha, and beta EEG bands, where no 
significant change was found in the gamma band. No decrease 
in activity was found in any band.  

The maximum increases in activity for delta-band were 
found over the bi-lateral frontal pole and superior frontal gyrus 
regions, as shown in Fig. 1. 

 

Fig. 1.  Statistical maps (significant t-values) plotted on the top of a 

standardized brain surface for the group-level activity increase for the 

relative difference between average MSs and their average baselines 

for the delta EEG band. 

Maximum increases in theta-band activity were found over 
the bilateral superior frontal gyrus and the middle frontal gyrus 
regions, as shown in Fig. 2. 

 

Fig. 2.  Statistical maps (significant t-values) plotted on the top of a 

standardized brain surface for the group-level activity increase for the 

relative difference between average MSs and their average baselines 

for the theta EEG band. 

The maximum increases in alpha-band activity were found 
over the bilateral inferior frontal gyrus (pars opercularis and 
pars triangularis) regions, as shown in Fig. 3. 
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Fig. 3.  Statistical maps (significant t-values) plotted on the top of a 

standardized brain surface for the group-level activity increase for the 

relative difference between average MSs and their average baselines 

for the alpha EEG band. 

The maximum increases in beta-band activity were found 
over the right cuneal and bilateral precuneus cortices, as shown 
in Fig. 4. 

 

Fig. 4.  Statistical maps (significant t-values) plotted on the top of a 

standardized brain surface for the group-level activity increase for the 

relative difference between average MSs and their average baselines 

for the beta EEG band. 

IV. DISCUSSION 

In our 2D CVT study, average MSs were extracted and 
compared to their average baselines by calculating a relative 
difference after averaging over trials and frequencies of 
interest in the subject level. A group statistical analysis was 
performed to explore the neural signature associated with MSs 
in five EEG bands: delta, theta, alpha, beta, and gamma. We 
found an increase in delta, theta, alpha, and beta bands 
activities, while no significant change in activity was found in 
gamma. Furthermore, no significant decrease in activity was 
found in any band. Our results match previous findings from a 
1D CVT study, regarding the increase in EEG spectral power 
for MS compared to the baseline of tracking for delta, theta, 
and alpha bands [7]. Conversely, we found an increase in beta 
but no significant change in gamma. These differences may be 
due to inconsistencies of the neural signature of beta and 
gamma bands as comparable patterns were seen in EEG 
activity when flat spots occurred without an evident video 
sleep [7]. In another study, in which a 2D CVT was used, a 
small correlation between the visuomotor performance and the 
theta activity at the posterior region was found with MSs 
included. However, that correlation dropped when MSs were 
removed, indicating that MSs substantially contribute to 
performance fluctuations and EEG theta activity during an 
extended task [9]. Our results confirmed this by finding an 
association between MSs and an increase in theta activity. 

Finding a correlation between the MSs compared to 
baseline and the increase of theta activity confirms a previous 
result by Jonmohamadi et al. [10], who used a 2D CVT task to 
explore the EEG to identify MS-related change of activity and 
find the locations of the sources of such activity. They 
discovered that MSs are often associated with theta activity, 

which is most likely generated bilaterally from the frontal 
orbital cortex area. We found a similar pattern by way of an 
increase in theta activity in the frontal lobe. Our alpha-band 
results match their results of an association between MSs and 
an increase in alpha-band activity in the anterior temporal 
lobes and hippocampi, which corresponds to spindles of Stage-
2 sleep. 

In a flight simulator study of pilots, designed to maintain a 
constant/monotonous work environment, EEG spectral 
activity in the delta, theta, alpha, and beta bands was analysed 
during MSs [23]. Compared to baseline, delta activity reduced, 
and alpha activity increased across the scalp, but no changes 
were seen in the theta or beta bands. This contrasts with our 
results on a demanding and fatiguing CVT task, in which we 
found increased activity in the delta, theta, and beta bands. In 
a resting-state study, a reduction in activity across the scalp for 
delta, theta, alpha, and beta bands, from voluntary eyes-closure 
to eyes-opening conditions was found, reflecting the cortical 
processing of visual input [24]. This is in agreement with our 
findings on MSs, in which there is involuntarily eyes-closure. 
It was interesting however to see an increase in beta activity in 
association with MSs, given its positive correlation with 
resting wakefulness [25]. However, there is a negative 
correlation between beta activity and the total sleep time [25]. 
and also sleep is suggested to be characterized by a 
combination of both sleep-like and wake-like EEG patterns 
over multiple areas in the cortex [26]. 

Hertig-Godeschalk et al. [27] introduced MS as a stage 

within the wakefulness−sleep transition zone as part of their 

novel visual scoring criteria. Earlier research by De Gennaro 
et al. [28] investigated the wakefulness-to-sleep transition and 
found that the alpha-band spreads anteriorly. They also found 
increased EEG activity in the delta and theta bands, after sleep 
onset at the centro-frontal scalp locations. These results match 
our findings as we compared the MSs from onset to 2 s later 
versus the 2 s baseline prior to the onset. 

The previous analysis of the blood-oxygen-level-
dependent (BOLD) fMRI part of our study for MSs [2] was 
able to show activation in the frontoparietal and temporo-
occipital areas, which overlapped with regions from the 
source-reconstructed increased activities in the delta, theta, 
and alpha bands for MSs. However, in contrast, we found no 
significant decrease in EEG activity in the thalamus region. In 
the same paper, additional analysis was undertaken to 
investigate the correlation between BOLD activity when 
accounting for theta and alpha EEG activities as regressors 
using a moving window of 2.5 s. A positive correlation was 
shown between the regressor representing the post-central 
theta fluctuations and MSs, while there was a trend of negative 
correlation between MSs and the regressor representing the 
occipital alpha fluctuations. Given the higher temporal 
resolution of EEG, we expected EEG to provide a more 
accurate representation of changes in activity. We compared 
each band versus the baseline of 2 s before the onset of the 
event in a time-locked manner. We were able to show a similar 
positive correlation between theta activity and MSs at the post-
central area, even when theta was represented by a low 
temporal resolution (2.5-s) regressor, but, with the high 
temporal resolution, we also found a positive association 
between alpha activity and MSs in the occipital region. 

6295



  

V. CONCLUSION 

In this study, we reconstructed cortical activity from EEG 
using eLORETA to investigate the neural correlates of MSs. 
We used individual head models and FEM for higher accuracy 
in the source analysis. We had a relatively large number of 
events across all participants (N=984), although the number of 
participants was limited. Our analysis compared the activity 
during the first 2 seconds of a MS event to a baseline of 2 
seconds prior to that event. MSs have been shown to be highly 
associated with increased activity in the low-frequency bands 
(delta and theta) both with a 1D CVT [7] and our 2D CVT 
tasks. In addition, the alpha activity associated with MSs 
during a CVT has similarities with the sleep spindles of stage-
2 [10]. This is supported by EEG studies exploring the 
transition between wakefulness and sleep [27, 28]. 
Surprisingly, we found increased activity in the beta band, 
which correlates with resting wakefulness [25], during MSs. 
Unlike the monotonous task used in [23], MSs appear to be 
associated with increased activity in multiple EEG bands in 
CVT which is a demanding task. Also, having decreased 
activity in the different EEG bands in the resting-state, when 
shifting from eyes-open to eyes-closed, falls in line with our 
results of MSs, which suggests that both involuntary and 
voluntary eyes-closure may have a similar EEG activity. 
Finally, by leveraging from the high temporal-resolution of 
EEG, we found a positive correlation between EEG alpha 
activity at the lateral occipital and posterior parietal regions.  

We found increased activity in all four of the delta, theta, 
alpha, and beta bands. These results mostly align with the 
literature, with differences considered due to MS propensity 
being influenced by multiple factors, including fatigue [29], 
drowsiness [30], and type of task (1D versus 2D; continuous 
versus discrete; and demanding versus monotonous). In the 
future, the fusion of EEG and fMRI should be considered, as a 
combination of high temporal and high spatial resolutions to 
provide a more comprehensive insights into the mechanisms 
underlying the phenomena of MSs. 
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