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Abstract

Electroencephalography is a widely used clinical and research method to record
and monitor the brain’s electrical activity – the electroencephalogram (EEG).
Machine learning algorithms have been developed to extract information from
the EEG to help in the diagnosis of several disorders (e.g., epilepsy, Alzheimer’s
disease, and schizophrenia) and to identify various brain states. Despite the
elegant and generally easy-to-use nature of machine learning algorithms in
neuroscience, they can produce inaccurate and even false results when imple-
mented incorrectly. In this chapter, we outline the general methodology for
EEG-based machine learning, pattern recognition, and classification. First, a
description of feature extraction from various domains is presented. This is
followed by an overview of supervised and unsupervised feature-reduction
methods. We then focus on classification algorithms, performance evaluation,
and methods to prevent overfitting. Finally, we discuss two applications of
EEG-based machine learning: brain-computer interface (BCI) and detection and
prediction of microsleeps.

Keywords

EEG · Machine learning · Feature extraction · Dimensionality reduction ·
Cross-validation · Performance evaluation

Abbreviations

AdaBoost adaptive boosting
AUC-PR area under the curve of the precision recall
AUC-ROC area under the curve of the receiver operating characteristic
bagging bootstrap aggregating
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BCI brain-computer interface
CSP common spatial pattern
EEG electroencephalogram
FBCSP filter bank common spatial pattern
FFT fast Fourier transform
fMRI functional magnetic resonance imaging
FN false negative
fNIRS functional near-infrared spectroscopy
FP false positive
FSULR unsupervised learning with ranking based feature selection
GM geometric mean
HA Hjorth activity
HC Hjorth complexity
HM Hjorth mobility
ICA independent component analysis
IWBW intensity-weighted bandwidth
IWMF intensity-weighted mean frequency
kNN k-nearest neighbour
KPCA kernel principal component analysis
LDA linear discriminant analysis
LOSO leave one-subject out
PCA principal component analysis
PPCA probabilistic principal component analysis
PR precision recall
Pr precision
ROC receiver operating characteristic
SN sensitivity
SP specificity
SSVEP steady-state visual evoked potential
SVM support vector machine
t-SNE t-distributed stochastic neighbour embedding
TN true negative
TP true positive

1 Introduction

Electroencephalography is a noninvasive method to directly measure neural activity
from electrodes placed on the scalp [1]. Synchronous activity of a large population
of neurons generates an electric field that is strong enough to reach the scalp, which
is recorded as the electroencephalogram (EEG) with a high temporal resolution [2].
Directly recording neural activity is one of the advantages of EEG compared to other
neuroimaging methods, such as functional magnetic resonance imaging (fMRI)
and functional near-infrared spectroscopy (fNIRS), which measure biochemical
activity as a proxy for neural activity [3, 4]. Moreover, due to its high temporal
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resolution, EEG captures a wide range of neural oscillations. These rhythms have
been categorized into five standard bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (13–30 Hz), and gamma (>30 Hz) [5]. Studies have shown that
brain activity in each frequency band is associated with different cognitive functions
[5]. These advantages make EEG a viable and practical option to investigate
important questions in not only neural engineering and neuroscience but also clinical
applications and disease diagnosis.

EEG signals contain a substantial amount of information with respect to spatial,
temporal, and spectral aspects. This makes EEG a suitable method to investigate
various aspects of brain function and cognition. However, the richness of EEG [5]
comes at a cost, where data can be high dimensional and may have a low signal-
to-noise ratio, which poses a considerable challenge to process EEG and identify
patterns of interest. Machine learning has received considerable attention in the field
to address the inherent challenges of EEG.

EEG is usually contaminated with noise and artifacts, such as eye movement,
slow drift, and muscle artifact [6]. To increase the signal-to-noise ratio, a pre-
processing step is commonly included to minimize artifacts and reduce unwanted
noise. This step can include various procedures such as band-pass filtering [7],
artifact subspace reconstruction [8], independent component analysis [9], spatial
filters [10, 11], minimizing muscle artifact [12], and artifact rejection [13].
In preprocessing, however, one has to be cautious and visualize data to avoid
eliminating any meaningful and informative component of EEG.

In this chapter, our aim is to focus on machine learning in EEG, specifically
feature extraction, feature reduction, classification, and performance evaluation.
Lastly, we provide two applications of machine learning using EEG signals.

2 Machine Learning

Machine learning is a set of algorithms that enable us to automatically identify pat-
terns in the data and make predictions on newly observed measurements [14,15,16].
This is often the case in neural engineering and neuroscience experiments to (1)
contrast between conditions [17,18], (2) diagnose a disease [19,20], or (3) identify
electrophysiological changes associated with behavior [21, 22]. Despite different
applications, the machine learning procedure remains similar in most cases, as
shown in Fig. 1.

In general, machine learning has two phases: training and testing. In the training
phase, a set of examples (i.e., data with their corresponding labels) are available.
With a given machine learning algorithm, the example data are used to train a model
(i.e., tune its parameters) so that it can identify the relationship between input data
and the labels. In the testing phase, input data without labels go through the same
methodology as the training phase for preprocessing, feature extraction, and feature
reduction, and a trained model, which was estimated during training phase, predicts
the output (i.e., labels). The main objective during the training phase is to estimate a
model that has maximal predictive performance at the time of testing. It is important
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Fig. 1 A general overview of EEG-based machine learning. In the testing phase, preprocessing,
feature extraction, and feature-reduction steps should follow the same methodology as the training
phase. The classification step in the testing phase uses the optimized classifier in the training phase

to note that the term “predictive” in this context refers to predicting or estimating
the unknown label of an observation. This is different from temporal prediction of
an event in the future, such as prediction of future epileptic seizures or microsleep
events. For the rest of this chapter, we limit our focus to the binary-classification
case. However, similar steps with different performance metrics are used to train
and test a regression model.

3 Feature Extraction

Feature extraction refers to a set of methods to reduce the dimension of the input data
by measuring and extracting specific information. For EEG data, there are a wide
range of methods to extract features from one or a combination of time, frequency,
or spatial domains.

3.1 Time-Domain Features

Time-domain features are extracted from EEG signals without any transformation.
Zero crossing is a time-domain feature that indicates the number of times the signal
has crossed zero. This measure and the zero-crossing interval have been used for
epilepsy detection [23], emotion recognition [24], and sleep staging [25].

Hjorth parameters are a set of three time-domain features describing a single
channel of EEG [26]. These features are activity, mobility, and complexity. Hjorth
activity (HA) is the variance of an EEG signal (i.e., signal power) and represents
the width of the signal. Hjorth mobility (HM) estimates the mean frequency of
the signal. Hjorth complexity (HC) estimates the bandwidth of the EEG signal by
computing the mobility of the first derivative of EEG relative to the mobility of the
EEG itself. Mathematically, the Hjorth parameters are calculated as [26, 27]
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HA = σ 2
0 , (1)

HM = σ1

σ0
, (2)

HC = σ2σ0

σ 2
1

, (3)

where σ0 is the standard deviation of the signal and σ1 and σ2 are the standard
deviations of the first- and second-order derivatives of the signal. Hjorth parameters
have been used for sleep staging [28], emotion recognition [29], and epilepsy
detection [30].

Nonlinear energy, also known as mean Teager energy, is a feature of EEG that
has been widely used for epileptic seizure prediction [31]. The nonlinear energy
estimates instantaneous energy of a signal and, in particular, identifies transient
changes such as sleep spindles and seizure spikes [32]. It has also been used for
automatic sleep staging, where it has been ranked among the top features [25].
Let’s assume the time-domain signal is represented by x = {x1, x2, . . . , xN }, and
the nonlinear energy is calculated by

NLE = 1

N

N−1∑

n=2

x2
n − xn−1 × xn+1. (4)

Fractal dimension is a measure of self-similarity in different scales and is often
used to quantify the complexity of a signal or a process [33]. Due to computational
challenges of estimating fractal dimension of a complex signal, several methods
have been developed to approximate fractal dimension [33]. Petrosian fractal
dimension is the simplest approximation of fractal dimension [25]. Petrosian fractal
dimension feature simplifies the computation of fractal dimension by transforming
the signal to a binary representation and approximating the fractal dimension with
the number of sign changes:

PFD = log10(NEEG)

log10

(
NEEG

(NEEG+0.4NΔ)

) , (5)

where NEEG is the number of sample points of the EEG signal and NΔ is the number
of sign changes of the signal. Petrosian fractal dimension has been used to measure
depth of anesthesia [34], detect drowsiness level [35], and estimate sleep stage [36].

Katz fractal dimension is another method of estimating fractal dimension of a
signal [37]. This measure is more accurate than Petrosian fractal dimension but is
computationally more expensive. Katz fractal dimension is calculated as [38]

KFD = log (NEEG − 1)

log (NEEG − 1) + log
(

d
L

) , (6)
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where NEEG is the number of EEG-signal points, d is the diameter, and L is the
curve length. Assuming that x = {

x1, x2, . . . , xNEEG

}
is the sequence of EEG signal,

the diameter and curve length are

d = max
n

(|xn − xn−1|) , (7)

L =
N∑

n=2

|xn − xn−1| . (8)

Katz fractal dimension has been used to diagnose patients with Alzheimer’s disease
[39], diagnose schizophrenic patients [40], and estimate drowsiness level [35].

Mean curve (line) length is an approximation of Katz fractal dimension [25].
Letting x = {x1, x2, . . . , xN } be an EEG signal, the mean curve length is calculated
by

MCL = 1

N

N∑

n=1

|xn − xn−1| . (9)

Curve length has been used to predict epileptic seizure [41] and estimate different
stages of sleep [25].

Hurst exponent is a measure of long-range self-similarity within a time series
[42,43]. The Hurst exponent can take a value between 0 and 1, where a value of 0.5
corresponds to random data. To calculate the Hurst exponent, assume that the signal
is given by x = {x1, x2, . . . , xN }. Deviation of the first k data points from the mean
of the first n data points is given by

Wk =
k∑

t=1

xt − k

n

n∑

t=1

xt ,
1 ≤ k ≤ n

1 ≤ n ≤ N
. (10)

The range R(n) is defined as the maximum difference between the deviations of the
first n-points:

R(n) = max(0,W1, . . . ,Wn)

− min(0,W1, . . . , Wn), 1 ≤ n ≤ N. (11)

The Hurst exponent is then given by

H × n + CH =
log

(
R(n)
S(n)

)

log(n)
, 1 ≤ n ≤ N, (12)

where CH is a finite constant independent of n and S(n) is the empirical standard
deviation of the first n points. The Hurst exponent can be computed by fitting a
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line to the right-hand side of (12). The Hurst exponent has been used to identify
epileptiform EEG [44], recognize emotions [45], and estimate sleep stage [28].

3.2 Frequency-Domain Features

Frequency-domain features are extracted measures from the frequency representa-
tion of the EEG signals. The fast Fourier transform (FFT) is commonly used to
identify the frequency components of EEG signals, which is given by

xf =
N∑

n=1

xne
−i2πf (n−1)Ts , (13)

where f is the frequency, N is the total number of points in the signal, xn is the
nth point of the signal, and Ts is the sampling time [46, 6]. Frequency components
of a signal can be measured up to the Nyquist frequency (i.e., half of sampling
frequency Fs). In addition, for a signal of length N , it is possible to compute N

2 + 1
frequency components that are uniformly distributed from 0 to Nyquist frequency
(i.e., f = k×Fs

N
, k ∈ {0, 1, · · · , N

2 }). For instance, a 4-s EEG segment recorded
with a sampling frequency of 250 Hz has a frequency resolution of 125(

4×250
2

) = 1
4 =

0.25 Hz. From this example, it is clear that the frequency resolution depends on the
length of signal and is independent of the sampling frequency. An assumption of
the Fourier transform is that the signal is stationary, which means that the statistics
(e.g., mean and standard deviation) of signal do not change with time. However, the
EEG reflects the dynamics of brain function that is inherently nonstationary [47].
One way to get around this issue is by applying the FFT to a short segment of EEG
which is reasonably stationary. Notwithstanding, although analyzing shorter data
segments leads to stationary signals for FFT, it reduces the frequency resolution of
the results. Moreover, to minimize spectral leakage, a windowing function needs to
be applied to the signal, such as Hamming or Hanning window, before computing
the FFT [48, 49].

There are other signal processing methods to quantify frequency components
and to perform spectral analysis [48, 49], such as wavelet transform [50], Hilbert
transform [51], and matching pursuit [52,53]. These methods are commonly used to
identify time-frequency representation of data. For the rest of this section, we focus
on feature extraction from the frequency-domain representation of a signal.

Power spectral density estimates the distribution of power over frequency
components in a given signal. Welch’s method [54], also known as modified
periodogram, is one of the widely used methods to estimate power spectral
density [55]. Welch’s method (modified periodogram) computes the power spectral
density of a signal by averaging the periodogram of smaller overlapping windowed
segments and, as a result, has a lower variance compared to the periodogram of
the whole epoch [1]. Power spectral density has been used to detect and predict
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microsleeps [56, 22], identify hallucinations in Alzheimer’s disease [19], estimate
sleep stage [28], and predict drowsiness [57].

Spectral entropy identifies the complexity or regularity of the EEG [31]. To
calculate spectral entropy, the probability distribution of the signal is approximated
by its power spectral density. The spectral entropy is then calculated by

SEN = − 1

Nf

fu∑

f =fl

PSD(f ) log (PSD(f )) , (14)

where Nf is the number of frequency bins and fl and fu are the lower and
upper frequency limits, respectively. Spectral entropy has been used to classify
schizophrenic patients [58], detect epileptic seizures [59], and estimate stage of
sleep [25].

Intensity-weighted mean frequency (IWMF), also known as gravity frequency,
finds the weighted average frequency of a signal relative to its power spectral
density [60] via

IWMF =
∑

f f × PSD(f )
∑

f PSD(f )
. (15)

Intensity-weighted bandwidth (IWBW), also known as frequency variability, is
defined as variance of the frequency [60]. Using IWMF and spectral density, the
calculation of IWBW is

IWBW =
√√√√

∑
f PSD(f ) (IWMF − f )2

∑
f PSD(f )

. (16)

Both the IWMF and the IWBW have been used to detect drowsiness [60, 61] and
seizures [31].

3.3 Spatial-Domain Features

Common spatial pattern (CSP) is a supervised algorithm for feature extraction from
multichannel EEG signals from two conditions [62]. It is a data-driven method
that aims to find a decomposition of EEG signals where the distance between two
conditions in the new space is maximized. Let Xk = {Xk,1, Xk,2, · · · , Xk,Nk

} be
all EEG segments for condition k ∈ {1, 2}. The objective of CSP is to find a set
of J spatial filters W = {w1,w2, · · · ,wJ } that project EEG signals into a new
space with maximum distance between two conditions. For each spatial filter, the
optimization problem can be written as [63]
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max
wj

J (wj ) = w�
j �1wj

w�
j �2wj

, (17)

where �k∈{1,2} is the covariance matrix for kth condition,
∥∥wj

∥∥ = 1, and spatial
filters are orthogonal. The covariance matrices can be computed as

�k =
∑

n Xk,nX�
k,n

Nk

. (18)

Solving (17) is equivalent to solving the generalized eigenvalue problem. In
Matlab, this can be simply done by W = eig(�1, �1 + �2) [63] to find the
optimal spatial filters. These filters are then used to project EEG data into the new
space using multiplication of spatial filters by EEG data (WX). The variances of the
projected signals (or logarithmic transformed) are extracted as features.

Filter bank CSP (FBCSP) is an extension of classical CSP, where the input data
is first filtered into different frequency bands and a CSP is then found for the data
in each frequency band [64]. Although FBCSP has shown superior performance
compared to classical CSP [65], it is more likely to result in overfitting since it
generates a large number of features.

A drawback of CSP is its susceptibility to noise, which can cause overfitting.
Different methods have been developed to overcome this issue. One of these
methods is to penalize complex models by incorporating a regularization term
[66]. These methods attempt to optimize performance and generalizability of CSP
by reducing complexity. The Bayesian framework has also been investigated to
incorporate sparse priors to automatically select the optimal number of spatial
filters [67, 68]. Other methods implement feature selection techniques to select the
optimum number of filters iteratively [69].

4 Feature Reduction

Extracted features from EEG data usually have high dimensionality [70]. For
instance, one may filter EEG collected from 60 electrodes into 2-Hz sub-bands from
0 to 80 Hz and extract 3 features per electrode and sub-band. This leads to a total
of 3 × 60 × 40 = 7200 features, which is likely to be more than the number of
observations. In machine learning, this is known as the curse of dimensionality and
can result in overfitting [14, 15]. When a model overfits, it can accurately identify
the examples it has seen, but it performs poorly on new and previously unseen
observations.

Feature reduction aims to improve generalizability of the machine learning model
by reducing the number of features used in the predictive model [71, 72, 73].
Moreover, feature reduction may provide a better understanding of the underlying
neural process for scientific questions. There are two major categories of feature
reduction: supervised and unsupervised.
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4.1 Unsupervised

Unsupervised feature reduction refers to the techniques that reduce the number of
features without using the labels of training data [14]. In general, there are two
approaches to reduce the number of features: feature selection [74] and feature
transformation [14, 75]. In feature selection, a subset of the input features are
selected, whereas in feature transformation, the reduced features (i.e., meta-features)
are a lower-rank approximation of the input data [75, 76].

Several unsupervised feature-reduction methods have been developed [76,14,70,
72]. Mitra et al. [74] developed a method to select features to reduce redundancy.
Similarly, Singh et al. [76] developed an unsupervised learning with ranking-based
feature selection (FSULR) to eliminate redundant features. Feature transformation
methods such as independent component analysis (ICA), principal component
analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) have been
used to reduce features [77,70,78,79]. In this section, the focus is restricted to PCA,
which is a widely used technique to perform unsupervised feature reduction [80].

PCA is a linear feature-reduction method that decomposes correlated features
into uncorrelated principal components (latent variables or meta-features) [15].
Formally, let X ∈ RN×D be the feature matrix with N observations, and each
observation has D features. PCA aims to linearly project data, yielding

Z = WX�, (19)

where W ∈ RL×D is the loading matrix and Z is the matrix of latent variables
(meta-features). PCA assumes that the loading matrix W is orthogonal (i.e.,
WW� = I). To find the loading matrix, eigenvalue decomposition can be applied

to the covariance of the feature matrix � = X�X
N

. The meta-features are then
calculated as the projection of original features onto eigenvectors of the covariance
matrix, as shown in Fig. 2. To reduce the dimensionality of features, we keep
the leading eigenvectors corresponding to higher eigenvalues and discard the rest.
These components will explain most of the variance in the original feature matrix.
However, there is no consensus on how much of the variance should be explained
by the retained principal components. Some researchers use a fixed value (such as
95%) as a cutoff, while others choose a predefined number of components (such as
ten components). Another method to choose the optimum number of components is
to use cross-validation (see section “Cross-Validation”).

PCA is a powerful feature-reduction technique, especially when dealing with
high dimensional data. However, PCA is sensitive to the scale of data, which means
that features with higher variances can mislead PCA [15]. This can be resolved
by standardizing the feature matrix before applying PCA; that is, for each feature,
remove its mean and divide by its standard deviation. After performing PCA, the
meta-features (i.e., transformed features) will be used in the classification step.

Other variants of PCA have been developed to overcome shortcomings of PCA.
Kernel PCA (KPCA) has been developed to extend PCA for nonlinear feature
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Fig. 2 Using PCA on two correlated features to find uncorrelated meta-features. The red lines
correspond to the principal direction of the covariance matrix (direction of eigenvectors)

reduction [81]. Probabilistic PCA (PPCA) is a reformulation of PCA in the form
of a probabilistic generative model [82]. An advantage of PPCA compared to
PCA is that it explicitly models an additive Gaussian noise for the observations
[16]. Bayesian variants of PCA have also been developed to incorporate sparsity-
promoting priors (e.g., automatic relevance determination) to automatically identify
the optimum number of components [83, 84].

4.2 Supervised

Supervised feature-reduction techniques exploit outcome labels (either categorical
or continuous) when reducing the number of features. Feature selection encom-
passes the majority of supervised feature-reduction methods, in which a subset of
relevant feature are selected and redundant and irrelevant features are discarded
[71, 72, 73]. Feature selection methods can be divided into three categories: filter,
wrapper, and embedded methods.
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Filter methods use a rank function to score features based on their “relevancy”
to the outcome labels [85]. Filter methods are computationally efficient and reduce
propensity for overfitting. There are different rank functions to estimate relevancy
of features such as correlation and mutual information. The most relevant features
are then selected for the predictive model.

The correlation coefficient, which is often used to rank features, measures the
degree of linear association between two random variables. This takes a value
between −1 and 1 corresponding to complete negative and complete positive cor-
relation, respectively. A correlation of 0 represents no linear association. Formally,
let f i ∈ RN be the vector corresponding to feature i and y ∈ RN be the vector
of outcome labels (i.e., gold standard) for N observations. Pearson’s correlation
coefficient can be calculated as [85]

ri =
∑

n

(
fi,n − f̄i

)
(yn − ȳ)

√∑
n

(
fi,n − f̄i

)2
√∑

n (yn − ȳ)2
, (20)

where f̄i and ȳ are the average of feature i and outcome labels, respectively.
Pearson’s correlation is susceptible to outliers and may achieve poor results when
applied to noisy data. To alleviate this issue, Spearman correlation – a nonparametric
version of the Pearson’s correlation – can be used. Spearman correlation ranks the
data first and then computes the correlation coefficient for the ranked data. Ranking
the data eliminates the effect of an outlier without removing it from the data, and,
thereby, Spearman correlation is less susceptible to outliers [6].

Mutual information measures the dependency between two variables [86, 87]. A
value of 0 for mutual information indicates that the two variables are independent,
whereas a positive value represents the level of dependency between the two
variables. Formally, mutual information can be calculated as

I (f i , y) = H(y) − H(y|xi ), (21)

where f i and y correspond to the two variables (i.e., ith feature vector and outcome
labels), H(x) is the entropy of variable x, and H(x|y) is the conditional entropy of
x given y. The entropy of outcome label y is given by

H(y) = −
∑

n

p(yn) log(p(yn)), (22)

where p(x) is the probability mass function of discrete variable x. When x is
continuous, the summation in (22) is replaced with integration and p(x) becomes the
probability density function. The conditional entropy of feature i, given the outcome
labels, is calculated by
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H(y|f i ) = −
∑

y

∫

f

p(fi, y) log(p(y|fi)), (23)

where, using Bayes’ rule, the conditional probability of the outcome given feature i

is

p(y|fi) = p(fi |y)p(y)

p(fi)
. (24)

Given the probability function of feature i and outcome labels, we can compute
the mutual information of the two variables using (22)–(24). However, the probabil-
ity distributions of these variables are not known a priori and therefore are required
to be estimated from the data. One approach is to fit a Gaussian distribution to
the observations of feature i, which is equivalent to a normal distribution with a
mean and standard deviation estimated empirically from the data. This method is
computationally fast and efficient for features that are normally distributed, but it
fails to accurately model data that are not normally distributed or data that has a
multimodal distribution. In these cases, a Gaussian mixture model or kernel density
estimation can be used to estimate the probability distribution of data with higher
accuracy [86,88], but these models have higher computational complexity and take
longer to evaluate.

Wrapper methods make use of a classification or regression method to select
features iteratively [71, 72, 73]. These techniques find a subset of features based on
the performance of a machine learning algorithm. Wrapper methods are generally
divided into two categories: forward selection and backward elimination. In forward
selection, each feature is first used separately to train a classification (or regression)
model. The feature with the highest performance (or lowest error) is selected. Next, a
combination of the best feature and one other feature is used to train another model.
The combination of features that provides the highest performance is selected. This
process continues until a stopping criterion is met. This can be a preselected number
of features (e.g., ten features), a predefined threshold for the performance measure
of interest (e.g., 90% accuracy), or improvement of the performance over iterations
(e.g., 0.1% improvement). Backward elimination implements a similar idea but
starts with all of the features. At each iteration, one feature is eliminated and the
performance is evaluated. The feature with the lowest impact on performance is
then eliminated.

Embedded methods are implemented within the training phase, and the features
are selected during estimation of parameter values. For instance, regularizing
classification algorithms with the L1 norm has been widely used to shrink the
coefficient of irrelevant features to zero in the training phase [89, 90]. This
essentially removes the contribution of irrelevant and redundant features from the
final predictive model.
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5 Classification Algorithms

A classifier learns how to make predictions in the training phase and from the
training data, which contains features and their corresponding categorical labels.
After the training phase, the classifier can make predictions about new unseen data.
When the problem at hand has a continuous outcome, regression methods are used
to recognize patterns in the training data. A classification problem is binary when
the outcome label can take two unique values, such as diagnosis of Alzheimer’s
disease [91]. In a multi-class classification problem, the outcome label has more
than two states, such as sleep staging [92], emotion recognition [93], and BCI [94].
Although multi-class classifications have been used for numerous applications, we
focus on binary classification in this section.

5.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) aims to find a hyperplane that maximally
separates the features of different classes [15, 14]. LDA is a generative classifier
that assumes that the data of each class is normally distributed and that the data of
both classes have the same covariance matrix [14]. Let’s assume that Fk ∈ RNk×D

is the feature matrix for the kth class (i.e., k ∈ {1, 2}). The mean and covariance
matrix for LDA can be calculated as [14]

μk = 1

Nk

Nk∑

n=1

f n,k, (25)

� = 1∑
k Nk − 2

2∑

k=1

Nk∑

n=1

(
f n,k − μk

) (
f n,k − μk

)�
, (26)

where f n,k is a column vector corresponding to the features of the nth observation
of the kth class. Since we are considering a binary outcome, we can classify a new
observation by

d = f̂
�
�−1 (μ2 − μ1)

− 1

2
(μ2 + μ1)

� �−1 (μ2 − μ1)

+ log

(
N2

N1

)
, (27)

where Nk is the number of observations in class k ∈ {1, 2} and a negative value of
d classifies new observation f̂ to the first class and a positive value corresponds to
the second class [14]. This is the generative view of LDA.
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Another view of LDA is Fisher discriminant analysis which aims to maximize
between-class variance while minimizing within-class variance. This can be written
as the Rayleigh quotient, which can be solved by generalized eigenvalue decom-
position [14]. Both generative and discriminative views of LDA lead to identical
results.

5.2 Support Vector Machine

Support vector machine (SVM) is a linear classifier that finds a hyperplane between
the data of two classes [95,15]. SVM is a maximum margin classifier, which means
that the decision boundary is determined such that it maximizes the margin between
the decision hyperplane and its surrounding data points [96], as shown in Fig. 3.

Finding a decision boundary with maximum distance from data of both classes
reduces the chance of misclassification [95]. The closest data points to the decision
boundary are called support vectors. These support vectors have the highest
influence on the decision boundary.

Assume that f n ∈ RD is the feature vector for the nth observation and its
corresponding outcome label is yn ∈ {−1, 1}. For a classifier such as LDA that
does not maximize the margin, the optimum boundary is given by

yn

(
w�f n + b

)
= 1, (28)

Fig. 3 Decision boundary of
a linear SVM classifier (black
line) and its margin. The blue
dots and red squares
correspond to the data of two
classes
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where w is the weight vector and b is the bias term. Assuming that the data is linearly
separable, the optimum boundary for SVM is given by [16]

yn

(
w�f n + b

)
≥ 1. (29)

This leads to maximizing the margin during the training phase. However, a large
weight vector w can satisfy this constraint. Therefore, the objective function of SVM

is to minimize ‖w‖2

2 , subject to the constraints given by (29). This optimization can
be done using quadratic programming. The testing phase of SVM is similar to that
of LDA. Given a test data point f̂ , the SVM prediction is done by computing

ŷ = sign(w�f̂ + b), (30)

where ŷ is the predicted class and sign(x) is the sign function.
In most real-world applications, however, the data are not linearly separable. In

this case, the perfect decision boundary does not exist, and the classifier will make
at least one mistake. Therefore, the aim is to find a decision boundary with the
highest accuracy. This is done by adding slack variables, ξn ≥ 0, to account for
classification error of each observation. When an observation is correct and has a
high margin, its associated slack variable is zero. However, the value of a slack
variable increases when its associated observation falls within the margin or gets
misclassified. Incorporating slack variables in (31) gives

yn

(
w�f n + b

)
≥ 1 − ξn. (31)

Similar to the case of linearly separable data, an objective function is required. To
incorporate slack variables (error terms), the objective function to minimize is given
by

J (w) = ‖w‖2

2
+ C

N∑

n=1

ξn, (32)

where C > 0 is a regularization parameter which controls the balance between the
error terms and the margin. A large value for C finds a smaller margin to reduce
training error, whereas a small C attempts to find a larger margin with a higher
training error.

When the true decision boundary between data of the two classes is nonlinear,
finding a linear hyperplane may lead to poor classification performance. In this case,
the kernel trick can be used to map input data to a different space where the decision
boundary is linear [97, 98]. Then, linear classifiers can optimally find the decision
boundary in the new space. Two of the most commonly used kernels are radial basis
function [99] and polynomial [100]. However, kernel tricks substantially increase
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the computational complexity [101]. This becomes an issue when dealing with a
large dataset that has many observations and features.

5.3 k-Nearest Neighbor

The k-nearest neighbor (kNN) is a nonlinear classifier that makes minimal assump-
tions about the data [14]. For a given test observation, kNN finds the k observations
in the training data that have the lowest distance from the test observation. It then
uses the majority label of those training points as the predicted class for the test
observation. Closeness between data points is defined by a distance measure, where
Euclidean distance is a common choice [102].

The kNN classifier uses a simple method to predict the label of a new observation,
without explicitly modeling the training data. In practice, however, kNN can become
unstable, especially when dealing with noisy data such as EEG [102]. In this
case, increasing k would improve the generalization error. Moreover, kNN requires
computing the distance of a new observation from all training data, which leads to
high computational complexity.

5.4 Decision Tree

Decision tree is a simple and flexible classification method [103, 14] that has been
widely used [104]. A decision tree classifies an observation by a set of hierarchical
rules that form a tree structure. There are several algorithms to form a decision tree
based on training data, such as CART, ID3, C4.5, and C5.0 [105, 14, 15, 106, 107].
Decision tree performs feature selection during the training phase, allows multiple
use of a feature in different rules, and is easy to interpret [108, 14]. However,
decision tree is prone to overfitting and the tree size can overgrow [108, 14].

5.5 Ensemble Methods

Ensemble learning refers to making predictions using multiple classifiers [14,109].
It is desirable to achieve a classifier with maximal performance, but this might not
be achieved with a single classifier. The idea of ensemble learning is that a higher
performance can be achieved when multiple weak classifiers, which individually
perform better than a random classifier, are combined. The achieved performance
with ensemble learning is expected to be higher than the performance of each
individual classifier. The three commonly used ensemble methods are stacking,
boosting, and bootstrap aggregating (bagging).

Stacking, also known as stack generalization, is an ensemble method that
combines the output of multiple classifiers [14]. The base classifiers are first trained
independently. Base classifiers are also known as weak learners, weak classifiers,
or base learners. Stacking finds a weighted average of the outputs of multiple



EEG-Based Machine Learning: Theory and Applications 19

classifiers to maximize the classification performance, which can be viewed as a
type of model averaging. Stacking has shown a superior performance compared to
a single classifier [110].

Boosting is an iterative method that combines multiple weak classifiers to create
a strong and adaptive model [15]. At each iteration of the boosting method, data are
first weighted to highlight the error from the previous classifiers. The weighted data
are then used to train a new base learner, which aims to correct mistakes of previous
classifiers. The base learner can be any classification algorithm. Notwithstanding,
the most commonly used base learners are LDA, SVM, and decision tree [109, 40,
111].

Boosting methods have been widely used in the literature, and different variations
of boosting have been developed [112]. The most widely used boosting is adaptive
boosting (AdaBoost) [113]. Formally, let F = {f 1, · · · ,f N } be the feature matrix
for N observations, and let y = {y1, · · · , yN } be the corresponding outcome labels
(either 1 or -1). At the first iteration, the initial weight of each observation is set
to w1,n = 1

N
. Using the weight vector, the feature matrix, and the outcome labels,

a base classifier h1 is trained. Following this, the misclassification error of h1 is
calculated by

ε1 =
N∑

n=1

{
0 if yn = h1(f n)

1 if yn �= h1(f n)
, (33)

where h1(f n) is the prediction of classifier h1 for the observation f n. The next step
is to calculate the weight of this classifier, which is given by [112]

α1 = 1

2
ln

(
1 − ε1

ε1

)
. (34)

At this point, the first iteration is completed. For the consecutive iterations, the
weight vector wt is updated by

wt+1,n = wt,n exp
(−αtynht (f n)

)

Zt

, (35)

where Zt is the normalization factor. In (35), it can be seen that the classification
error from the current iteration has been taken into account when computing the
weight vector for the next iteration. The iterative process continues until a predefined
number of iterations T are completed (i.e., T base classifiers are trained). Making
predictions for an unseen observation f̂ is done by computing a weighted average
of classifier outputs, which is given by

ŷ = sign

(
T∑

t=1

αtht (f )

)
. (36)
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The prediction is a weighted average of the base learners according to their
classification accuracy.

A disadvantage of AdaBoost is its propensity to overfit to the training data [114].
In the presence of label noise (i.e., the gold standard contains incorrect labels),
AdaBoost highly overfits to the wrong labels since it makes multiple attempts to
classify all training data correctly [115]. However, this property of AdaBoost has
been exploited to identify and remove observations with label noise [116, 115].

Bootstrap aggregating (bagging) also uses a mixture of base classifiers to predict
an observation [117]. As opposed to boosting methods that train base learners
sequentially, bagging performs parallel training of all of the classifiers. Initially,
multiple subsets of the training data are created by bootstrapping. Each subset is
then used to train a base classifier. After the training phase, each classifier is used
to predict the label of a new unseen observation. The final prediction is done by
using majority voting of the base classifiers. It has been shown that, compared to
boosting, bagging is more robust when the data is noisy [114]. Moreover, bagging
is more robust against label noise compared to boosting [115].

A decision tree is often used as a base classifier for the bagging method. On
its own, decision tree is a simple method with relatively high flexibility that often
leads to overfitting. However, when a decision tree is used as the base classifier in
a bagging algorithm, it usually achieves high performances [15]. This combination
is known as random forest [118]. Random forests have been shown to achieve high
accuracy and have been widely used in the literature [119, 120].

5.6 Regularization

One of the big challenges in machine learning is to avoid overfitting, where the
machine learning model can correctly identify the outcome label of all (or most)
examples it has already seen but performs poorly on estimation of the outcome label
of new unseen observations. Therefore, the trained model generalizes poorly to new
observations [15]. Overfitting becomes more evident when the machine learning
algorithm is highly flexible and able to fit closely to noise in the training data [14].
An important approach to reduce the likelihood of overfitting is to perform feature
reduction (see section “Feature Reduction”).

A more explicit way to minimize overfitting is to use regularization terms.
The concept of regularizing a model rests on penalizing the complexity of the
model, thereby smoothing the decision boundary and allowing mistakes during
training phase. The most commonly used regularizations are l1 and l2 norms
[90, 121, 122, 123, 124, 125, 126]. For a vector w = {w1, · · · , wK }, the lp norm
is computed by [124]

lp = ‖w‖p =
(

K∑

k=1

|wk|p
) 1

p

. (37)
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Without a regularization term, the objective of the training phase is to minimize
the error between the actual and the estimated outcome labels. This is done by
minimizing a loss function L(ŷ, y), where y is the actual outcome labels and
ŷ = G(F,w) is the estimated outcome with a predictive model G that uses a weight
vector w to predict labels for feature matrix F . To incorporate regularization, the
objective function J to minimize during the training phase should be a combination
of the loss function and a regularization term:

J = L(ŷ, y) + λR(w), (38)

where R(w) is the regularization term and λ is a user-defined parameter to control
balance between the complexity and the training accuracy of the model. When
λ = 0, no regularization is applied, and the objective function given in (38)
simplifies to the loss function. With a λ > 0, the objective function J becomes
a compromise between training accuracy and smoothness of the decision boundary.
Larger values of λ assign higher weight to the smoothness of the decision boundary,
whereas smaller values put more emphasis on the correct identification of training
examples [124, 70].

Cross-validation methods are used to select the optimal value for λ [123, 126].
This is done by performing cross-validation for different values of λ and selecting
the value that corresponds to the highest predictive performance. Similar to the
discussion in the cross-validation section, selecting an optimal value for λ from the
whole dataset may lead to a biased estimate of the predictive performance. Nested
cross-validations can be used to alleviate this issue, which refers to performing
a cross-validation on the training data of another cross-validation. For instance, a
leave-one-subject-out (LOSO) cross-validation with ten subjects partitions the data
into nine subjects for the training phase and one subject for testing. To select the
most appropriate λ, a set of LOSO cross-validations are then carried out on the
nine subjects. After selecting λ, the first cross-validation uses data of the left-out
subject to estimate an unbiased performance measure. The estimated predictive
performance can then be used to compare different machine learning algorithms.

6 Cross-Validation

A machine learning algorithm, whether a classification or regression model, requires
an independent set of test data to evaluate its predictive performance and general-
ization error after the training phase. However, we do not always have access to an
independent test dataset. Therefore, the data at hand have to be exploited not only to
train a model but also to evaluate the performance and generalizability of the trained
model. This becomes even more important when the machine learning models are
highly flexible. For instance, a kNN classifier with k = 1 correctly classifies all the
training data, but the decision boundary is highly nonlinear and biased toward the
training data. This model may well perform very poorly at prediction of the correct
label of new unseen observations. On the other hand, when k is very large, the kNN
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classifier tends to favor the class with the highest number of training observations,
which may also fail to correctly predict the label of new observations, especially
for highly imbalanced datasets. In this situation, cross-validation can be used to
evaluate classification performance of the trained model for different parameters.
The parameters that achieve the highest predictive performance are then selected.

Cross-validation is a simple technique to evaluate the generalization error of
a model. The cross-validation partitions the training data into K nonoverlapping
partitions, where a subset of K − 1 partitions are used for training the model and
the other partition is used to test it. This is called a K-fold cross-validation [15, 14].
In K-fold cross-validation, the whole process of training and testing is repeated K

times, so that every partition has been used once as the test dataset. The overall
performance of the model is then estimated as the average of predictive performance
of the K models. Five- and ten-fold cross-validations are commonly used [14].
Leave-one-out cross-validation is also commonly used and is a special case when K

is equal to the number of training observations.
One has to be cautious when using a cross-validation to avoid biasing the

performance estimates, for instance, when feature-reduction methods are applied
to the training data. One may apply feature selection based on the whole training
dataset and apply the cross-validation to the selected features only. A cross-
validation to compute the predictive performance of this model (i.e., after feature
selection) will result in a biased estimate because the “test data” has been already
used for feature selection [14]. To perform unbiased cross-validation in this case,
we have to first partition the data into K partitions and leave one for testing. The
rest of K −1 partitions are then used to perform feature selection and, subsequently,
to train a classifier. We repeat this process K times to achieve an unbiased estimate
of the classification performance.

As mentioned earlier, an unbiased estimate of predictive performance requires
an independent test dataset. This is specifically important when dealing with EEG
data, which are likely to be temporally correlated. Li et al. [127] found a within-
subject correlation between the dynamics of EEG during a resting-wakefulness
condition and the P3 component of evoked related potentials while performing
a task. Other studies have exploited within-subject signatures of EEG to develop
EEG-based fingerprint and biometric system applications [128, 129]. Findings
of these studies suggest that subject-specific signatures of EEG are present in
the data, even from multiple sessions; thereby, within-subject EEG segments
from different time points may not be independent. As a result, while evaluating
performance of a subject-independent model, performing K-fold cross-validation
on the concatenated features from EEG of multiple subjects may result in a biased
estimate of performance, which does not reflect the true generalization error. This is
in line with the literature where subject-dependent performance of a model is often
substantially higher than subject-independent performance [130, 131]. To evaluate
an unbiased estimate of performance for a subject-independent model, we consider
it essential to partition subjects for cross-validation. For instance, a five-fold cross-
validation with ten subjects becomes an iterative process of using eight subjects for
training and the other two for testing the model, irrespective of events of interest
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within each subject. Moreover, a LOSO cross-validation would refer to using data
from one subject for evaluating a model that has been trained with data from the
remaining subjects.

7 Performance Evaluation

Quantitative measures are required when evaluating the performance of a machine
learning algorithm after the training phase. Several measures have been developed
to evaluate various aspects of a predictive model’s performance [132, 133]. In this
section, we provide an overview of commonly used performance measures.

The confusion matrix, also called a contingency table, is a matrix that contains
information regarding the number of correct and incorrect classifications for each
class [134]. In a binary-classification problem, there are two classes that are usually
identified as positive and negative; the positive class is the class of interest (e.g.,
epileptic seizures). A true positive is when a positive class is correctly predicted,
whereas a false positive (Type I error) is when a negative class has been wrongly
predicted as a positive class. The same concept for the negative class leads to a
true negative and a false negative (Type II error). The confusion matrix of a binary
problem, therefore, has four elements which are the total numbers of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN). These
provide an overview of predictive performance for the trained model.

Sensitivity (Sn), also known as the true positive rate or recall, is the proportion of
correctly identified observations in the positive class. Similarly, specificity (Sp), also
known as the true negative rate, is the proportion of correctly predicted instances in
the negative class. Precision (Pr), also known as the positive predictive value, is the
proportion of correctly identified positive instances relative to the total number of
positive predictions. These measures can be calculated as [132]

Sn = TP

TP + FN
, (39)

Sp = TN

TN + FP
, (40)

Pr = TP

TP + FP
. (41)

Sensitivity measures how accurately the model can predict the positive class,
without taking predictions of the negative class into account. Specificity, on the
other hand, is a measure of the predictive ability of a model for the negative
class. In contrast, both specificity and precision of a model are affected by false
positives. Therefore, although these measures are quantifying various aspects of the
performance of a predictive model, they do not provide the overall performance
individually. For instance, a perfect precision (i.e., Pr = 1) informs that the model
correctly predicted the label of all of the negative-class observations and, hence,
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no false positives. However, it does not provide any information regarding the
sensitivity of the model.

Accuracy is a widely used measure to estimate predictive performance of a
classification model. Accuracy measures the ratio between correctly predicted labels
and the total number of observations, as calculated by

Accuracy = TP + TN

TP + TN + FP + FN
. (42)

When the dataset is balanced (i.e., the number of negative and positive observations
is equal), an accuracy of 0.85 corresponds to correct predicting of the label of 85%
of data. However, the accuracy measure can be quite misleading when estimating
predictive performance of a class-imbalanced dataset [135, 136, 137]. For instance,
in a dataset with 85 observations from the negative class and 15 observations from
the positive class, a classifier that predicts everything as the negative class would
still indicate a high accuracy of 0.85.

F-measure is a measure that estimates predictive performance as the harmonic
mean of sensitivity and precision [134, 133]. It can take a value from 0 to 1, which
correspond to the worst and the best performances, respectively, and is calculated
by [133]

F-measure = (1 + β)2 × Sn × Pr

β2 × Sn + Pr
, (43)

where β is a user-defined parameter to adjust the relative importance of sensitivity
versus precision.

The geometric mean (GM) is a performance measure, based on sensitivity and
specificity [134, 135, 133, 138], which is calculated by

GM = √
Sn × Sp. (44)

The phi correlation coefficient, also known as Matthews correlation coefficient,
is another performance metric that has been widely used to evaluate performance on
imbalanced datasets [134, 139, 137]. It is calculated by

phi = TP × TN − FP × FN√
(TP+FP)(TN+FN)(TP+FN)(TN+FP)

. (45)

All of the aforementioned measures exploit predicted labels to estimate per-
formance of a predictive model at a specific threshold for the classifier’s output.
In contrast, the receiver operating characteristic (ROC) curve uses the output
of a classifier before thresholding and estimates the trade-off trajectory between
sensitivity and specificity at different thresholds [140]. The ROC curve is estimated
by using different thresholds to dichotomize the classifier’s output. For each
threshold, the sensitivity and false positive rate (i.e., 1 − Sp) are evaluated. Finally,
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Fig. 4 ROC curve of three hypothetical classifiers. The blue line corresponds to a random
classifier. The classifier corresponding to the green curve is better than the classifier corresponding
to the red line

a ROC curve is formed by plotting sensitivity versus the false positive rate (shown
in Fig. 4). The ROC curve of a random classifier is a straight line connecting the
sensitivity and the false positive rate of (0, 0) to their corresponding (1, 1) values
(the blue line in Fig. 4) [140]. On the other hand, the perfect classifier corresponds to
a sensitivity of 1 and a false positive rate of 0 on the ROC curve. The area under the
curve of ROC (AUC-ROC) is commonly used as a performance metric for classifiers
[140,133,138]. The AUC-ROC takes a value between 0 and 1, where 1 corresponds
to a perfect classifier, 0.5 corresponds to a random classifier, and 0 corresponds to a
perfectly inverted classifier.

The precision-recall (PR) curve is another method and is similar to ROC curve.
The PR curve uses the classifier’s output prior to thresholding [133]. The PR curve
plots the trade-off between sensitivity and precision at different thresholds (as shown
in Fig. 5). For a random classifier, the PR curve is a horizontal line at P

(P+N)
, where

P and N are the total number of the positive and the negative classes, respectively.
A classifier that performs better than random achieves a PR curve above that of a
random classifier. For example, a random classifier for a class-balanced dataset is
a horizontal line at 0.5 (shown as blue line in Fig. 5), whereas better-than-random
classifiers have PR curves above 0.5 (shown as red and green lines in Fig. 5). It
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Fig. 5 PR curve of three hypothetical classifiers. The blue line corresponds to a random classifier
when the data is class balanced. The classifier corresponding to the green curve has better
performance than the classifier corresponding to the red line

has been suggested that the PR curve provides a better assessment of a classifier’s
performance when the dataset is highly skewed (i.e., class imbalanced) [133, 141,
142]. The area under the curve of PR (AUC-PR) provides a single measure that can
be used as a performance metric.

It has been suggested that more than a single performance metric is required
to assess an imbalanced learning problem [143, 144, 133]. This is due to the
shortcomings and potential biases of individual performance metrics. For instance,
precision does not provide any information regarding the number of false negatives,
whereas sensitivity does not contain information on false positives. However, the F-
measure, GM, and phi metrics provide information about different combinations of
the contingency table. Both phi and F-measure offer insight on the functionality of a
classifier, whereas GM provides information about the balance between sensitivity
and specificity [143, 133, 135, 138]. In addition, sensitivity to the class-imbalance
distribution is another potential issue. Precision, phi, F-measure, and AUC-PR are
all sensitive to the imbalance ratio of the data [133, 142]. Therefore, we sug-
gest reporting multiple performance metrics when dealing with class-imbalanced
datasets.
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8 Applications

An immense amount of research has focused on machine learning in EEG-based
systems. There are numerous applications for EEG-based machine learning. An
important application is to use machine learning to identify and extract biomarkers
from EEG for neurological disorders, such as Alzheimer’s disease [145], Parkin-
son’s disease [146], epilepsy and epileptic seizures [44], and dementia [147].
Other applications of machine learning in EEG include brain-computer interface
(BCI) [148], sleep staging [25], drowsiness detection [60], estimation of depth of
anesthesia [149], and microsleep detection and prediction [110,150,56,21]. Despite
different applications, implementation of the machine learning procedure in these
EEG systems follows similar steps as described in this chapter. For the rest of this
section, we provide further details for two applications of machine learning in EEG.
These are brain-computer interface (BCI) and microsleep detection and prediction.

8.1 Brain-Computer Interface

A BCI system enables users to interact with their surrounding using brain activity
[151, 152]. BCI systems are of particular importance for people with severe
disabilities, where BCI systems empower them to control their prosthetics and/or
environment without using any muscles or peripheral nerves [153]. These systems
commonly use EEG to record electrical activity of the brain because EEG is low-
cost, has high temporal resolution, and has a low associated risk [114, 152].

One class of BCI systems focuses on motor imagery [152]. In this paradigm,
a participant mentally simulates performing a series of movements. The aim of
the BCI system is then to distinguish different types of movements using brain
activity. Several studies have investigated motor imagery BCI and have achieved
relatively acceptable performances (e.g., [154,155]). Using a similar concept, other
systems have been developed to control robotic arms and unmanned aerial vehicles
[148, 156]. In these systems, a diverse range of feature extraction methods have
been employed, including CSP [154, 157], coefficients of wavelet transform [158],
spectral features [159], convolutional neural networks [160], and autoencoder [161].
Additionally, a range of classifiers have been used to separate motor imagery tasks,
such as LDA [157], SVM [154], kNN [158], ensemble classifier [162], naive Bayes
[65], and deep neural networks [163].

P300 speller is another paradigm of BCI [152, 164]. In the P300 speller,
participants are presented with a table of characters where the intensity of one row
or column is randomly increased. Participants are instructed to focus on the letter
of interest, which randomly gets highlighted. This change in intensity produces a
reaction in brain activity of the participant which happens approximately 300 ms
after the letter is highlighted – i.e., P300. Using the P300 pattern, a BCI system can
identify the letter of interest. The P300 speller paradigm has been widely studied
in the literature and has achieved relatively good performances (e.g., [165, 166]).
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Several classifiers have been used to identify the letter of interest in a P300-
speller paradigm, such as LDA [167, 168], SVM [169, 168], deep neural networks
[170, 165], ensemble classifier [171, 172], and random forest [173].

There are other BCI paradigms such as steady-state visual evoked potential
(SSVEP), auditory, visual, and hybrid [152]. These paradigms have also been the
subject of many studies (e.g., [174,175,176,177,178]). There are numerous studies
investigating different BCI paradigms, and the number of publications is increasing.
The findings of these studies show a promising future to improve quality of life for
those who suffer from severe neurological and musculoskeletal disorders.

8.2 Microsleep Detection and Prediction in Time

Microsleeps are brief (<15 s) episodes of unintentional sleep-related loss of con-
sciousness [179, 180]. A microsleep happens without warning and is usually
accompanied by behavioral cues, such as head nodding, droopy eyes, and slow eye
closure [180]. Most people have experienced microsleeps while reading a book or
attending a lecture. However, microsleeps can lead to serious injuries and fatalities
if they occur during certain tasks such as driving. Furthermore, many normally
rested healthy individuals have been shown to experience frequent microsleeps
while performing an extended monotonous task [180,181,182]. Therefore, detection
and prediction of microsleeps is critical for occupations that require an extended
unimpaired visuomotor performance, such as driving. Ultimately, prediction and
prior warning of microsleeps can prevent accidents and save lives.

Several studies have investigated detection of microsleeps from EEG signals
[183, 22, 110, 184]. In these studies, participants performed a continuous tracking
task to simulate a driving task. Microsleeps were then defined from tracking
performance and facial video. For each state of microsleep, a corresponding window
of EEG was used to extract features. Using these features, various machine learning
algorithms were then applied to detect microsleeps.

The prediction of imminent microsleeps has also been the subject of several
studies [21,150,185,186,56,187,188]. In these studies, selection of the EEG window
corresponding to a microsleep state was done in a manner so that the EEG window
preceded its corresponding microsleep state by a certain amount of time [150].

In terms of performance, microsleep detection and prediction systems have
achieved relatively high AUC-ROC values (e.g., 0.95 [188, 21]). However, the
precision of these systems is relatively low (e.g., 0.36 [188] and 0.42 [21]
for microsleep prediction 0.25 s ahead). One of the challenges associated with
microsleep systems is that microsleep data has an inherently high class imbalance.
Additionally, the class-imbalance ratio varies across individuals. This introduces
complexity for training the system and evaluating its performance.



EEG-Based Machine Learning: Theory and Applications 29

9 Conclusion

An immense amount of research has focused on EEG and its applications in
medicine, neuroscience, rehabilitation, and other fields. Integration of the EEG and
machine learning fields has provided a framework to develop accurate EEG-based
predictive systems. Such advances have resulted in EEG-based BCI systems that
can substantially improve the quality of life for those suffering from severe neural
and neuromuscular disorders.

In this chapter, we have provided an overview of machine learning algorithms
for EEG-based systems. We divided the process into EEG data acquisition, pre-
processing, feature extraction, feature reduction, classification, and performance
evaluation. For each step, a brief summary was provided and potential challenges
were discussed. However, the field of machine learning is vast, and therefore this
chapter makes no attempt to review all of the existing literature. Instead, we have
provided an overview of different steps that can be combined to develop an EEG-
based predictive system.

We consider that machine learning will play an increasingly important role
in EEG-based systems and their applications. In particular, deep neural networks
will become an increasingly popular choice to develop EEG-based systems. These
methods provide a framework to benefit from both model-based and data-driven
approaches, which requires minimal processing for EEG data.
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