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Abstract
Objective. Brief episodes of sleep can intrude into the awake human brain due to lack of sleep or
fatigue—compromising the safety of critical daily tasks (i.e. driving). These intrusions can also
introduce artefactual activity within functional magnetic resonance imaging (fMRI) experiments,
prompting the need for an objective and effective method of removing them. Approach.We have
developed a method to track sleep-like events in awake humans via rolling window detection of
intrusions (RoWDI) of fMRI signal template. These events can then be used in voxel-wise
event-related analysis of fMRI data. To test this approach, we generated a template of fMRI activity
associated with transition to sleep via simultaneous fMRI and electroencephalogram (EEG)
(N = 10). RoWDI was then used to identify sleep-like events in 20 individuals performing a
cognitive task during fMRI after a night of partial sleep deprivation. This approach was further
validated in an independent fMRI dataset (N = 56).Main results. Our method (RoWDI) was able
to infer frequent sleep-like events during the cognitive task performed after sleep deprivation. The
sleep-like events were associated with on average of 20% reduction in pupil size and prolonged
response time. The blood-oxygen-level-dependent activity during the sleep-like events covered
thalami-cortical regions, which although spatially distinct, co-existed with, task-related activity.
These key findings were validated in the independent dataset. Significance. RoWDI can reliably
detect spontaneous sleep-like events in the human brain. Thus, it may also be used as a tool to
delineate and account for neural activity associated with wake-sleep transitions in both
resting-state and task-related fMRI studies.

1. Introduction

Brief episodes of sleep can intrude into wakefulness
when the homeostatic sleep drive is elevated due
to sleep loss, mental fatigue, or drowsiness [1–5].
Recent evidence suggests that sleep-like intrusions are
also common in cognitive neuroimaging experiments
using functional magnetic resonance imaging (fMRI)
and forms a major source of artefactual activity and

connectivity during both task-based and resting-state
fMRI paradigms [6]. fMRI is particularly useful for
characterising the dynamic properties of the human
brain network [7]. However, intrusions of sleep can
represent an important confound for which there
is currently no identification or removal technique
available [8]. A recent resurgence of the debate sur-
rounding fMRI reliability has highlighted the import-
ance of removing spurious signal intrusions that may
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be driving subsequent activity and functional con-
nectivity findings [9].

Peripheral recordings such as EEG monitoring
can be used to detect intrusions of sleep episodes
[10]. Pupillometric recordings have also been used
extensively in neuroimaging studies as a marker of
changes in arousal [11–14]. Increased theta waves
(4–7 Hz theta) that replace higher-frequency alpha
waves (>8 Hz) on EEG recordings are considered
to be due microsleeps (brief stage-1 sleep) associ-
ated with extreme sleepiness [15, 16]. In individu-
als performing cognitive tasks, sleep intrusions can
also lead to response lapses and performance errors
[16]. Slow eye-lid closures can also indicate transition
to sleep whilst awake [1, 17, 18]. However, most of
these peripheral recordings are cumbersome to col-
lect during fMRI scanning and require post-hoc sub-
jective rating of the data. Thus, methods to automat-
ically track intrusions of sleep-like activity are highly
desirable.

fMRI studies have shown that the sleep-like state
can transiently alter blood-oxygen-level-dependent
(BOLD) fMRI signal [6, 19–21]. Striking patterns
of BOLD signal co-activation deactivation have been
associated with spontaneous slow-eye-closures, and
microsleeps, which can frequently occurwhendrowsy
[1, 17, 18, 22]. The fMRI amplitude fluctuations
in specific brain networks can therefore be used
to track moment-to-moment variations of alertness
states in mammals [19, 20, 23]. Such large-scale co-
activation patterns can also intrude into resting-state
BOLD fMRI data, reflecting momentary reductions
in arousal during the awake resting state and task per-
formance [20, 23].

Here, we introduce an fMRI-based framework to
infer intrusions of sleep-like activity in the awake
humans performing a cognitive task. Simultaneous
fMRI and EEG were used to derive a spatial map
of activity associated with transition to early sleep.
A rolling window detection of intrusions technique
(RoWDI) was then implemented to infer the intru-
sions of the sleep-like fMRI activitymap in awake, but
sleep-deprived, humans performing a cognitive task.
The key findings were also validated using an inde-
pendent fMRI dataset.

2. Methods

2.1. Data acquisition
In this study we used data from three studies to
develop, test, and validate our method. The first
study acquired simultaneous fMRI and EEG data,
which was necessary to generate spatial maps of fMRI
activity associated with increased EEG theta activ-
ity (4–7 Hz). The second study acquired fMRI data
from partially sleep-deprived participants, who were
more likely to experience sleep-like episodes—a con-
dition necessary for detecting sleep-like events using

our method. The third study was for validation and
used an openly available fMRI data acquired from
sleep-deprived individuals. The data acquisition for
these studies is described below.

2.1.1. Simultaneous fMRI+ EEG study
Simultaneous fMRI and EEG recordings were
obtained from 12 healthy participants (6 female; age:
19–27; right-handed) during a 40 min daytime nap
session inside a 3T MRI scanner (Siemens Skyra).
The 40 min scan was divided into four runs of 10 min
each with ∼10–15 s of pause between the scans. Of
these, ten participants completed the full simultan-
eous fMRI and EEG session. To facilitate stage 1 sleep
within the MRI environment, the experiment was
performed following a substantial lunch and the par-
ticipants were instructed to keep their eyes closed and
sleep.

fMRI data were acquired using a gradient-
echo echo planar imaging (EPI) acquisition
that covered most of the brain (slice thick-
ness = 3.3 × 3.3 × 3.3 mm, repetition time
(TR) = 2.5 s, TE = 40 ms, Flip angle (FA) = 90◦,
total scan time = 40 min, number of slices = 38).
T1-weighted anatomical images were acquired using
sagittal scanning 3D MPRAGE sequence (Echo
time (TE) = 2.07 ms; TR = 2.3 s; field of view:
256 × 256 mm; slice thickness: 1 mm; FA = 9;
TI = 900, 176 slices). Simultaneous EEG data were
acquired using a 64-channel MR-compatible EEG
system (BrainProducts, Germany) as per best prac-
tice [24].

2.1.2. fMRI and pupillometric study
In a second study, fMRI and eye-video data were
acquired from 20 healthy right-handed adults (10
females) aged between 20 and 37 years (M = 24.9,
SD = 4.2). The participants were partially sleep-
deprived (4 h time in bed) and performed a two-
choice logical decision-making task during fMRI
scanning. In this task, the participants were presen-
ted with a set of cards on a screen such that if the two
cards are the same for any feature (colour, number,
symbol, or shading) and one is not, then the three
cards are not a set, otherwise they are a set. The parti-
cipants responded (‘yes’) or right (‘no’) on whether
cards were a set using an MRI-compatible button
box. Experimental stimuli were presented on a screen
for 5.0 s, followed by a fixation cross for 2.5–10 s
(M= 4.0, jittered). Each participant completed three
runs of 6 min duration. Each run consisted of 40
experimental stimuli and 40 fixation crosses (total tri-
als= 120 in 3 runs). Response time (RT)was recorded
for each trial.

MRI data were acquired using a 3T scanner. fMRI
data were obtained using EPI sequence (TR = 2.5 s;
number of repetitions = 293; TE = 35 ms; field of
view = 220 × 220 mm; number of slices = 37; slice
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thickness = 4.5 mm; matrix = 64 × 64). Structural
MRI scans (1 mm isotropic) were also acquired.

Eye-video data were captured whilst participants
completed the task inside the MRI. Right-eye move-
ment was recorded on a Visible Eye™ system (Avotec
Inc., Stuart, FL)mounted on the head-coil of theMRI
scanner. Custom-built video recording software and
a video-capture card was used to record eye-videos
onto a computer at 25 frames s−1 (350× 280 px).

2.1.3. Validation data
An independent dataset from the Stockholm Sleep
Brain Study was used for validation purpose. The
fMRI data from N = 56 partially sleep-deprived par-
ticipants who participated in a 8 min scanning ses-
sion in which the participants were asked to rate their
sleepiness every 2 min with the Karolinska Sleepi-
ness Scale was used. The dataset is available via Open-
Neuro database (ds000201). The experimental pro-
tocol for the study is published elsewhere [25].

2.2. Data processing
2.2.1. Processing of EEG data
The EEG data from the first study were first processed
and analysed using Brain Vision Analyser and Mat-
lab R2018a, (Mathworks, MA, USA) to remove the
gradient and ballistocardiogram artefacts (see supple-
mentary materials (available online at stacks.iop.org/
JNE/18/056063/mmedia)). Denoised EEG data were
analysed using a moving window of 2.5 s, yielding a
spectrogram for each electrode via Welch’s periodo-
gram method. We generated a time-frequency vec-
tor of power in theta (4–7 Hz, i.e. similar to non
rapid eyemovement (NREM) sleep stage 1) and alpha
(8–13 Hz, relaxed wakefulness) from the EEG data.
Average power spectral densities (PSDs) in the theta
(4–7 Hz) and alpha (8–13 Hz) bands were estim-
ated for nine occipito-parietal EEG electrodes (O1,
O2, OZ, P1, P2, PZ, PO3, PO4, POZ), at each MRI
TR (figure 1(A)). The PSD distribution at these elec-
trodes was within the theta-alpha band (4–13 Hz)
(figures 1(B) and (C)). These electrodes were chosen
because of the evidence showing relative increase in
posterior theta power during sleep onset [26].

2.2.2. Processing of fMRI data
The fMRI data from all three studies were pre-
processed using FSL (FMRIB’s Software Library,
www.fmrib.ox.acuk/fsl), Advanced Normalisation
Tools (ANTs) (http://stnava.github.io/ANTs/), and
custom Linux Shell and Matlab scripts (Matlab
7.6.0, R2018a, Mathworks, MA, USA). Data pre-
processing steps (supplementary material) included
(a) motion correction, (b) slice-time correction, (c)
spatial smoothing (6 mm Gaussian kernel), and
(d) high-pass filtering with a cut-off of 256 s. The
fMRI data were normalized to the 2 × 2 × 2 mm3

Figure 1. (A) EEG data from electrodes located at the
occipito-parietal areas were used to identify fluctuations in
alpha (8–13 Hz) and theta (4–7 Hz) power spectral density.
(B) A plot showing that the average power spectral density
at these electrodes was within the theta-alpha band
(4–13 Hz). Shaded areas denote standard error of mean
(SEM). (C) Examples of intrusions of alpha and theta
activity in resting-EEG.

Montreal Neurological Institute template using lin-
ear and non-linear registration available in ANTs (see
supplementary materials).

2.2.3. Generation of fMRI activity map associated with
EEG theta
In the first study, the EEG alpha and theta time series
were used as regressors in a general linear model ana-
lysis of the fMRI data (supplementary materials). For
each individual subject, EEG alpha, EEG theta, large
motion outliers, and six motion parameter regressors
were used in a linear regression model, which was fit-
ted to the data in a voxel-wise manner. The regres-
sion model was estimated at the first level for each
participant, generating parameter estimates maps of
activity for each subject. A group-level one-sample
t-test was performed using non-parametric statist-
ics (FSL randomize) with 5000 permutations. The
main-effects of alpha and theta on fMRI activity were
considered significant at p < 0.05 (family-wise-error
corrected using cluster thresholding at z > 2.3). The
spatial map of fMRI activity associated with EEG
theta were used as template in the implementation of
RoWDI.

2.2.4. Processing of the eye-video data
The eye-videos were processed using the starburst
algorithm to detect pupil from the dark-pupil
infrared illuminated eye videos [27]. The algorithm
determines the best-fitting ellipse using consensus
set and optimizes the ellipse parameters using model
based techniques [27]. The starburst algorithm was
able to detect pupil when eyes open fully and par-
tially open. The pupil size was set to 0 when it could
not be defected due to eye-closure. Relative change
in pupil size is a good indicator of changes in arousal
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Figure 2. Graphical overview of the method implemented for detecting inferred sleep intrusions from fMRI data. An fMRI
activity template of sleep-like activity was generated using fMRI+ EEG and was parcellated for 82 regions as per the
Desikan-Killiany atlas. This process generated a vector of 82× 1 in size corresponding to the EEG-theta related BOLD signal in 82
regions. (i)–(ii) To apply RoWDI, BOLD time-courses from 82 regions (as per DK atlas) are extracted from a pre-processed fMRI
data. (iii) For each brain region time-course, a rolling-window general linear model was run with a typical impulse
haemodynamic response function as a predictor, which is run for each TR. (iv) The beta-values of the fit between impulse
response and fMRI signal for each region generates 82× 1 vector at each time point, which is correlated against the vector of
fMRI template. Any consequent time-points where the correlation was significant (p < 0.05, corrected) and positive (i.e. r > 0)
were considered to be attributed to inferred sleep-like events.

[11–14] hence we estimated the time-course of pupil
size at the onset of inferred sleepiness by calculating
baseline corrected time-locked pupil size. An example
of pupil size data for a participant is provided in
the supplementary figure 1. Percentage of 0 values
in each subject is available in the supplementary
table 3.

2.3. RoWDI
Previous studies have demonstrated that lowered
arousal and early sleep is associated with an archetyp-
ical spatial pattern of fMRI activity [28–30]. Hence,
we postulated that by monitoring intrusions of the
fMRI maps associated with increased EEG-theta, we
may be able to infer sleep-like intrusions in the fMRI
data without the need for simultaneous EEG record-
ings. Thus, we implemented a method to track EEG-
theta fMRI activity patterns in any fMRI dataset. A
graphical overview of the implementation of RoWDI
is provided in figure 2.

First, we used the template of fMRI activity
associated with EEG theta obtained from the first
study and generated an average theta-related fMRI
activity vector in 82 brain regions mapped using
the cortical and sub-cortical parcellations from the
Desikan-Killiany atlas. A rolling window general lin-
ear regression model was then employed to identify
any transient fMRI activity in a pre-processed fMRI
data.

The transient event-related fMRI activity was
modelled as a typical haemodynamic response func-
tion with span of 32.5 s. At each time-point, this
model was fit to the data using a general linear model.
By using a rolling-window regression, we identified
parameter estimates of the fit between the transi-
ent fMRI model and the denoised fMRI data in
each of the 82 regions, resulting in 82 × 1 vectors
of parameter estimates at each time point. These
parameter estimates were then correlated (Pear-
son’s correlation) with the 82 × 1 vector of fMRI
activity associated with EEG-theta activity, which
provided an estimate of how well the transient activ-
ity at each time-point represents sleep-like activ-
ity. Any time-points where the correlation was sig-
nificantly high (p < 0.05, corrected) and positive
(i.e. r > 0) were inferred to be due to sleep-like
intrusions. Consequent significant time-points of
longer than one TR were considered to be a single
event.

2.4. Voxelwise analysis of fMRI data
The sleep-like events identified using RoWDI were
used in multi-level voxel-wise generalized linear
model analysis of fMRI data (from the second and val-
idation data) to identify spatial distribution of brain
activity due to task and sleep-like onsets. To analyse
the data from the second study, a first-level general
linear model was implemented. This model included
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predictors for (a) a task-related regressor (120 tri-
als across 3 runs) of modelled epochs of task-related
activity, with the height of the response modulated by
RT, (b) inferred sleep intrusions modelled as impulse
activity convolved with a double-gamma haemody-
namic response function, (c) response errors model-
ling the time points when subjects failed to respond
during the task, (d) six motion parameters, and (e)
large motion outliers. For each subject, the main
effects of task and sleep like intrusions were estimated
using first-level contrasts representing average activ-
ity. For second-level group analysis, a non-parametric
approach was used to estimate group-level signific-
ance of the first-level parameter estimates. A group-
level t-test was performed using non-parametric stat-
istics (FSL Randomize) and 5000 permutations. The
main-effect of tasks was considered significant at
p < 0.05 (voxel-level family-wise-error corrected).
The main-effect of inferred sleep intrusions was con-
sidered significant at p < 0.05 (cluster corrected, z-
threshold > 4).

For the validation data, the fMRI data was ana-
lysed in a similar manner as described above. A
detailed description is provided in supplementary
material.

3. Results

3.1. A map of fMRI activity associated with
transition to sleep
The fMRI map/template of positive association
(p < 0.01) between power in theta band of EEG
and fMRI signal is shown in figure 3. After cluster-
based correction (Z > 2.3), significant association
was observed in the bilateral precuneus, super-
ior parietal lobule, precentral gyrus, postcentral
gyrus, and superior frontal gyrus (supplementary
table S1).

3.2. Frequent sleep-like intrusions in awake brain
When the fMRI template of EEG-theta was used,
RoWDI detected frequent intrusions of these activ-
ity maps in the individuals performing the decision
making task after sleep deprivation (10–27; M = 17,
SD = 4.7). The location of these events in time is
provided in figure 4.

The average pupillometric profile of these sleep-
like events inferred from fMRI data is shown in
figure 5(A). There was, on average, a 20% reduc-
tion in pupil size during the sleep-like events, sug-
gesting that these events were indeed associated with
reduction in arousal. Furthermore, the decision tri-
als which coincided with inferred sleep intrusions
had longer average RT compared to the other trials
(t(18) = 2.21, p = 0.04). There was also a positive
correlation between total duration of sleep-like intru-
sions and average reaction time (r = 0.53, p = 0.02)
(figure 5(B)).

Figure 3. fMRI activity pattern associated with increased
theta in EEG (p < 0.01). A positive association between
EEG theta and fMRI signal is shown in red. The colour
range represents t-statistics. The group-level fMRI activity
(t-statistics) was overlaid on a standard brain surface.

Figure 4. The location, in time, of sleep-like events detected
using RoWDI in the partial sleep deprivation session.

3.3. fMRI activity associated with sleep-like events
and task trials
General linear model analysis of the sleep-like
events and decision-making trials revealed signific-
ant and distinct fMRI activity (p < 0.05, corrected).
Task-related activity was observed in the bilateral
prefrontal (inferior/middle), motor (precentral/-
postcentral), parietal (superior), anterior and pos-
terior cingulate and bilateral insula cortically, and
the bilateral thalamus and striatum subcortically.
Whereas, inferred sleep intrusions were associated
with increased activity in the bilateral visual areas
(occipital pole, cuneus, lingual gyri), auditory areas
(superior temporal gyri, Heschl’s gyri), primary and
secondary somatosensory areas (postcentral gyri,
parietal operculum, superior parietal lobule, and
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Figure 5. The pupillometric and behavioural characteristics
associated with the inferred sleep intrusions detected from
fMRI data. (A) The plots of changes in pupil area from
baseline during inferred sleep intrusions. Shaded error bars
represent SEM. On average, there was a 20% reduction in
pupil size during sleep-like events inferred from fMRI data.
(B) Pearson’s correlation between total amount of inferred
sleep intrusions (duration) and average reaction time
(mean RT) during the task.

insular cortex), the primary motor areas (precent-
ral gyri), supplementary motor areas, default-mode
areas (including the bilateral precuneus, angular
gyri), and limbic areas (encompassing the bilat-
eral parahippocampi) (figure 6 and supplementary
table 2).

Decreased activity during sleep-like events was
observed in subcortical areas including the bilateral
thalamus, caudate, and putamen, and cortical areas
such as the rostral anterior cingulate gyrus (basal
forebrain), rostral middle-frontal gyrus, and lateral
inferior parietal areas.

3.4. Validation of RoWDI
The RoWDI approach identified frequent intrusions
of sleep-like events in the partially sleep-deprived par-
ticipants from an independent fMRI dataset. Import-
antly, when these events were used in the voxel-wise
fMRI analysis, a pattern of co-activation and de-
activation was observed, which replicated the pattern
observed during sleep-like intrusion in the decision-
making task (supplementary figure 2). Data pro-
cessing and analysis for the validation is provided in
supplementary materials.

Figure 6.Whole-brain fMRI activity patterns associated
with the decision-making task and inferred sleep events.
The pattern of task-related activation (red, p < 0.05,
FWE-corrected), inferred sleep intrusions related activation
(red, p < 0.05, cluster-corrected), and inferred sleep
intrusions related deactivation (blue, p < 0.05,
cluster-corrected) observed during the sleep-deprived
session. The red-yellow colour represents positive
t-statistics and blue-green colour represents negative
t-statistics.

4. Discussion

We have developed a novel method to detect intru-
sions of sleep-like events using fMRI data in awake
humans. Our results can be summarized into three
main findings: (a) RoWDI can reliably detect sleep-
like intrusions in awake humans using fMRI data
alone, (b) these sleep-like intrusions are associated
with pupillometric markers of reduced arousal and
slowed RTs, and (c) they are associated with a tran-
sient pattern of activation and de-activation in brain
networks distinct from co-existing task-related brain
regions.

Simultaneous fMRI + EEG recordings were used
to derive a spatial map of BOLD fMRI activity asso-
ciated with an increase in EEG activity in the theta
band—a hallmark of EEG associated with transition
to sleep. Importantly, the fMRI activity map asso-
ciated with EEG theta covered occipto-parietal cor-
tices, consistent with previous studies showing sim-
ilar changes in BOLD fMRI during transition to Stage
1 sleep. When relaxed with eyes-closed, waxing and
waning of wakefulness can occur due to a drift into
either the drowsy or alert state [6, 29–31]. The trans-
ition towards a more alert/attentive state is associ-
ated with increased fronto-parietal activity [31]. In
contrast, transition to sleep-like states manifests as
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increased occipito-parietal activity [31]. By model-
ling EEG theta-related activity in each individual, we
were able to isolate and replicate regionally-specific
increased activity during increased EEG theta activ-
ity, a pattern of activity typically associatedwith lower
arousal and early sleep in humans [6, 29–31] and
other mammals [19].

Application of the RoWDI method, which used
the fMRI activity map of EEG theta as a template,
detected frequent sleep-like events in the awake and
cognitively-active humans exposed to partial sleep
loss. Importantly, these events were associated with
lowered arousal as confirmed by the analysis of pupil-
lometric and behavioural response data. On aver-
age, these sleep-like events, inferred from fMRI alone,
were associated with a 20% reduction in pupil size
and prolonged reaction times. Sleep-like intrusions
are common phenomena during vigilance tasks per-
formed after sleep deprivation [1, 2, 32–34]. Pre-
vious studies have used fMRI activity [19, 20, 23]
to track the tonic level of alertness in monkeys
and humans during resting-state using templates of
lowered arousal. In contrast to the previous studies,
our approach can detect individual episodes of sleep-
like intrusions.

The voxel-wise analysis, using both the sleep-like
events detected using RoWDI and task trials in a
single model, revealed distinct brain networks act-
ive during sleep-like intrusions and task perform-
ance. During sleep-like intrusions, increased activ-
ity was observed in the somatosensory and limbic
areas of the brain, whereas decreased activity was
observed in the thalamus and the ventral prefrontal
cortices. An fMRI pattern strikingly similar to ours
has previously been reported to occur during lowered
arousal associated with wake-sleep transitions [19]
and during microsleeps [17], further confirming that
RoWDI is able to infer sleep-like intrusions in fMRI
data. Other neuroimaging studies have corroborated
these findings by showing decreased activity in the
thalamus during microsleeps [1] and spontaneous
slowed eye-closures during drowsiness [18]. The find-
ings are also comparable with previous neuroima-
ging studies which used pupil diameter as a marker
of arousal [11–14, 35]. We found that sleep-like
state detected using RoWDI was associated with
reduced pupil size. Although such changes in pupil
size may also occur due to droopy eyes associated
with sleepiness, they are also linked to fluctuations
in arousal mediated by changes in brain-stem activ-
ity [11–14, 35]. Importantly, some of the fMRI activ-
ity during sleep-like events, observed in the somato-
sensory brain regions, cingulate, and thalamus also
matches what has been reported to be correlated with
changes pupil size [14, 35]. Such cortico-thalamic
activity during a hypoactive behavioural state has
been attributed to rich endogenous mental activ-
ity that can occur at the wake-sleep transition in
humans [17].

Notably, despite the frequent inferred sleep intru-
sions in the brain, we found that the task-related
brain networks were robustly activated. That is, the
task-activated brain regions expected to be involved
in attention and working memory (frontal and pari-
etal regions), motor (left primary motor), decision-
making (Anterior Cingulate Cortex, insula), and
alertness/arousal (bilateral thalamus) processes were
active despite sleep-like intrusions. Although there
was some overlap between sleep-related activation
and task-related pattern, particularly in the associ-
ation cortex, the pattern of deactivation was only
observed in sleep-like intrusions. Taken together,
these findings suggest that distinct sleep-like brain
states can intrude in awake and cognitively active
human brain.

Some limitations need to be considered while
interpreting our findings. Firstly, our analysis was
limited to detecting fMRI activity associated with
increased activity in EEG theta. Recent studies have
reported that intrusions of local slow-wave sleep
can occur in awake humans [36]. The use of
slow wave sleep activity as regressors may reveal
a different level of sleep intrusions in the awake
brain, which will be investigated in future stud-
ies. Secondly, our pupil detection algorithm relied
on automatic post-processing of eye-video record-
ings. Thus, when eyes were closed, the pupil size
was reported as zero. Therefore, our pupillomet-
ric measures likely reflect changes in pupil size
associated with drowsiness and sleep onset. We
could only measure pupil size when eyes were fully
open, which is what was required to perform the
task.

In conclusion, this is the first study to describe a
method to track sleep-like intrusions in fMRI data via
an RoWDI approach. The RoWDI was able to detect
sleep-like events in fMRI data acquired during cog-
nitive task performed after partial sleep deprivation,
without the need for simultaneous recording of EEG.
The RoWDI approach will be useful for removing any
artefactual fMRI activations associatedwith sleep-like
intrusions during resting-state or task-related fMRI
paradigms.
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