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Oculomotor assessment is an essential element of the neurological clinical examination and is particularly
important when evaluating patients with movements disorders. Most of the brain is involved in oculomotor control,
and thus many neurological conditions present with oculomotor abnormalities. Each of the different classes of eye
movements and their features can provide important information that can facilitate differential diagnosis. This
educational review presents a clinical approach to eye movement abnormalities that are commonly seen in
parkinsonism, ataxia, dystonia, myoclonus, tremor, and chorea. In parkinsonism, subtle signs such as prominent
square wave jerks, impaired vertical optokinetic nystagmus, and/or the “round the houses” sign suggest early
progressive supranuclear gaze palsy before vertical gaze is restricted. In ataxia, nystagmus is common, but other
findings such as oculomotor apraxia, supranuclear gaze palsy, impaired fixation, or saccadic pursuit can contribute
to diagnoses such as ataxia with oculomotor apraxia, Niemann-Pick type C, or ataxia telangiectasia. Opsoclonus
myoclonus and oculopalatal myoclonus present with characteristic phenomenology and are usually easy to
identify. The oculomotor exam is usually unremarkable in isolated dystonia, but oculogyric crisis is a medical
emergency and should be recognized and treated in a timely manner. Gaze impersistence in a patient with chorea
suggests Huntington’s disease, but in a patient with dystonia or tremor, Wilson’s disease is more likely. Finally,
functional eye movements can reinforce the clinical impression of a functional movement disorder.

Extraocular movement assessment is an essential element of the
neurological clinical examination as eye movement abnormalities
can be of localizing and diagnostic value. During the past few
decades, advances in our understanding of the anatomical struc-
tures and neuronal networks that control eye movements have
provided valuable insights into the underlying neural mechanisms
of eye movement—insights that have also been translated into
the neural control of limb movements through shared patho-
physiological mechanisms of disease. Consequently, the examina-
tion of eye movements is valuable in the evaluation of patients
with movement disorders. Particularly, neurodegenerative condi-
tions often present with abnormal eye movements with variable
semiology.1 As the diagnosis of the majority of these disorders is
based on clinical observation, knowledge of their different eye
movement abnormalities is essential.

In this educational review, we provide a brief physiological
background on the role of the central nervous system (CNS) in

the control of eye movements and summarize these clinical find-
ings across common movement disorders.

Methods
This a nonsystematic educational review of articles extracted
from PubMed with several search terms, such as “oculomotor,”
“saccades,” “pursuit,” “nystagmus,” “parkinsonism,” “ataxia,”
“dystonia,” “myoclonus,” and “tremor.” Selection of the articles
was based on their educational value.

Physiology and Anatomy
Eye movements are mainly divided in 2 classes: those that stabi-
lize the image on the fovea—namely, fixation, smooth pursuit,
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and the vestibulocular and optokinetic reflexes—and those
that shift the focus of the fovea toward another area/image of
interest, namely, saccades.1,2 The first group are predomi-
nantly automatic or reflexive, whereas saccades are usually
active components of perception, action, and cognition that
support a variety of behavioral functions. Smooth pursuit
requires a visible moving target, whereas saccades can be per-
formed with or without visible targets. Saccades are further
divided into subcategories; for example, visually guided sac-
cades shift the eyes toward a visual target (suddenly appearing
or preexisting),3 memory-guided saccades move the eye to a
position that used to be occupied by a target, predictive sac-
cades are generated in anticipation of or in search of the
appearance of a target at a particular location, and antisaccades
move the eye to a mirror location in the opposite direction to
a suddenly appearing target. All of those categories of eye
movements can be tested at the bedside.

Phenomenology
Saccades
During examination of visually guided saccades, the examiner
provides 2 targets (eg, the index fingers of the examiner’s 2 hands)
within the visual field of the patient and requests the patient to
alternate fixation from 1 target to the other. The nature of the
elicited saccade depends on the nature of target and the instruc-
tions for the task. For example, if the target is suddenly pres-
ented, such as wiggling a finger, reflexive saccades are assessed/
elicited. Alternatively, if the examiner provides a cue to refixate
to stationary targets (eg, auditory, by calling the name of the tar-
get) then command voluntary saccades are tested, or if the

patient is requested to repetitively refixate between the 2 con-
stantly visible targets in their own time, without cues, then self-
paced saccades are elicited. Memory-guided saccades are tested
by requesting the subject to perform a saccadic movement
toward a memorized target in the visual field (the examiner ini-
tially presents 2 targets: 1 fixation target and 1 memorized tar-
get). Then the memorized target disappears and the patient is
asked to move the eyes to the location of the memorized target).
The technique for testing saccades should be chosen appropri-
ately each time; for example, in Parkinson’s disease (PD), self-
paced or memory-guided saccades are usually more affected than
reflexive saccades, which can be normal (Table 1).4 The evalua-
tion includes the assessment of saccadic latency (how long it takes
for the eyes to start moving following presentation of a cue or
target), saccadic velocity (the speed of the eye movement), and
saccadic accuracy (whether the eye overshoots or undershoots
the target). A mild undershoot followed by a single small correc-
tive saccade to the target may be normal, whereas sustained
hypermetria that does not disappear after a few repetitions is
always abnormal.5

Oculomotor Apraxia
Leigh and Zee describe acquired ocular motor apraxia as a loss of
voluntary control of saccades, pursuit, and vergence, with preser-
vation of reflex movements, especially slow and quick phases of
the vestibulo-ocular reflex.6,7 The term oculomotor apraxia should
be used when there is evidence of loss of cerebral control of
gaze. In a subgroup of patients, the abnormality is characterized
by a spasm of fixation where the eyes cannot move away from a
continuously present target but can move when that target disap-
pears. In oculomotor apraxia, the saccadic latency is increased,
but multiple factors can affect saccadic latency, such as the

TABLE 1 Clinical pearls

Oculomotor Findings Clinical Exam

• In PD, the self-paced or memory-guided saccades are more
likely to be abnormal compared WITH reflexive saccades.

• Chose self-paced or memory-guided saccades over reflexive
saccades when testing saccades in suspected PD.

• In early stages of vertical supranuclear gaze paresis/palsy,
before prominent gaze restriction, the disproportionally
slowed vertical saccadic velocity (compared with
horizontal) presents with the “round the houses” sign.

• Look for curvature in the trajectory of vertical or oblique
saccades.

• OKN in PSP is more abnormal with upward visual stimuli,
whereas OKN in PD is more abnormal with downward
visual stimuli.

• Test OKN in both vertical directions in patients with
parkinsonian syndromes.

• Oculomotor apraxia can be identified during spontaneous
gaze shifts if the head moves first and the eyes follow.

• Observe spontaneous gaze shift during history taking.

• Convergence (functional) spasm is associated with miosis in
contrast to CN VI lesion.

• Look for myosis when abduction is restricted and there is
suspicion of functional etiology.

• Voluntary (functional) eye oscillations cannot be
maintained for more than 25 seconds.

• Test abnormal eye movements for more than 25 seconds.

Abbreviations: PD, Parkinson’s disease; OKN, optokinetic nystagmus; PSP, progressive supranuclear palsy; CN VI, Cranial Nerve VI.
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salience of the target, the specific instructions to the subject,
attention, and the subject’s age.2,8,9 Therefore, when tested at
the bedside, these factors should be taken into account, and
increased latency should be reproducible in a large proportion of
saccades to be clinically relevant. Disruption of the descending
cortical inputs from the frontal and parietal regions to the supe-
rior colliculus and then to the brainstem and cerebellum is usu-
ally the primary cause of increased saccadic latency in acquired
oculomotor apraxia. In patients with prominent oculomotor
apraxia, compensatory maneuvers are engaged (such as a head
thrust or blink) to assist with breakage of fixation that allows ini-
tiation of the saccadic eye movement. If a patient moves the
head first and then the eyes during spontaneous gaze, this is usu-
ally attributed to oculomotor apraxia, as normally the eyes move
first and the head follows.

Fixation Eye Movements
Fixation can be tested at the bedside by providing a stationary
target (eg, the examiner’s finger). The examiner evaluates the
ocular alignment in different positions and looks for abnormal
eye movements such as saccadic intrusions or gaze-evoked nys-
tagmus. There are several classes of normal fixation-related eye
movements, but square wave jerks (SWJs) have been the most
studied (Fig. 1). SWJs are normal with a frequency of less than
9 per minute and an amplitude of less than 5 degrees (usually less
than 2 degrees).10–13 They comprise a small horizontal saccade
away from fixation followed by a corrective saccade back to fixa-
tion after an intersaccadic interval of about 200 milliseconds.10

Presence of the intersaccadic interval, the lack of a slow phase
(both movements to and from the target are saccadic), and the
fact that the eyes do not cross the midline are characteristics that
differentiate SWJs from other eye movements such as nystagmus
or flutter (busts of horizontal bidirectional back-to-back saccades
without an intersaccadic interval).

Another abnormality of fixation is gaze distractibility or
impersistence, which is the inability to maintain fixation by
suppressing reflexive saccades to stimuli that appear in the visual
field.14 It is characteristic of Huntington’s disease but can also be
seen in other conditions such as Wilson’s disease.15

Pursuit Eye Movements
During the assessment of pursuit movements, the eyes follow a
smoothly moving target. The examiner assesses how well the
eyes match the movement of the target smoothly without the
need for corrective movements. When the ocular velocity is
lower than the target velocity (reduced pursuit gain), the eyes fall
behind, and “catch-up” saccades are necessary to maintain the
eyes on the target.

Optokinetic Nystagmus
Optokinetic nystagmus (OKN) contributes to stabilization of the
images on the fovea during head rotations or during tracking of
a moving field. It is a normal examination finding, and its
absence or a lateralized deficit is abnormal. For testing at the
bedside, a rotating drum or a moving tape with stripes or even a
bedside heavily illustrated magazine is usually adequate. The slow
phase of the OKN is a smooth pursuit movement, and the fast
phase is a restorative saccade in the anticompensatory direction—
the direction of the inferred head motion—bringing the eyes
back to the original position.16 Depending on the instructions,
different types of OKN can be tested. Typically, at the bedside,
the “stare” OKN is tested by asking the patient to observe the
stripes (or pictures) as they pass in front of him/her. Note that
OKN gain (ratio of fast phase velocity to target velocity) depends
on many factors including attention, the luminance contrast of
the targets, and age of the patient.17–19

OKN can be particularly useful in identifying subtle impair-
ment of the saccadic or pursuit movements, for example, when
asymmetry between left and right horizontal OKN is identified.
Vertical OKN has normally lower gain than the horizontal
OKN,2 but marked asymmetry between the horizontal and ver-
tical OKN can be suggestive of vertical eye movement abnor-
mality. For example, in early progressive supranuclear palsy
(PSP), the vertical OKN lacks a quick phase and the eyes tend to
drift toward the direction of the presented stimuli.20 In particu-
lar, downward saccades are affected first, therefore OKN with
upward moving stimuli is mostly affected at the earliest stages of
PSP. In contrast, in PD, the gain of OKN induced by

FIG. 1. Qualitative representation of eye movements during fixation.
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downward-moving stimuli is reduced compared with the OKN
with upward-moving stimuli.21

Nystagmus
The presence of nystagmus during oculomotor examination is
usually abnormal. Nystagmus is classified as either jerk nystagmus
or pendular nystagmus. Jerk nystagmus has a slow phase and a
fast phase. The slow phase, which takes the eye away from fixa-
tion, is the abnormality, with the fast phase being a restorative
saccade back toward the intended fixation point. The direction
of the nystagmus is traditionally determined by the direction of
the fast phase. Pendular nystagmus consists of just slow phases,
and the amplitude of the 2 phases is approximately equal. In the
movement disorder clinic, pendular nystagmus is seen in Whip-
ple disease or oculopalatal myoclonus, whereas jerk nystagmus
can be seen in cerebellar syndromes (Table 2), and many
brainstem and peripheral lesions.

Vestibular Eye Movements
The vestibular system controls eye movements mainly through
the vestibulo-ocular reflex (VOR). VOR is tested at the bedside
by evaluating for a corrective saccade after a passive rapid move-
ment of the head during fixation (head impulse test). Another
way is by evaluating nystagmus after head shaking (passive rota-
tional oscillatory shaking of the head while in a 30-degee neck
flexion position, at 2–3 Hz frequency and 10-degee amplitude,
for 10–20 seconds with eyes closed). Dynamic visual acuity is
tested by comparing visual acuity while the head is stationary to
visual acuity measured during head rotations of approximately
10-degee amplitude and 2 Hz frequency. Impaired VOR leads
to a significant drop of visual acuity during head rotations (1 line
loss can be normal, 2–3 lines lost can be seen in unilateral vestib-
ular loss, and 4 or more is typically seen with bilateral vestibular
loss). During slow head movements (<1 Hz) with eyes opened,
the VOR and optokinetic reflex both stabilize the eyes. How-
ever, in cerebellar ataxia with neuropathy and vestibular areflexia
syndrome (CANVAS), VORs, optokinetic reflexes, and smooth

TABLE 2 Cerebellar syndromes, clinical syndromes, and exam

Localization Syndrome Exam Findings

Flocculus/paraflocculus Eye fixation impairment Gaze-evoked nystagmus, rebound nystagmus and downbeat
nystagmus, postsaccadic drift, saccadic pursuit

Nodulus/ventral uvula Vestibulo-ocular response
impairment

Loss of tilt suppression of postrotational nystagmus (after rapid
shaking or rotation), periodic alternating nystagmus

Dorsal vermis/posterior
fastigial nucleus

Saccadic eye movement
impairment

Saccadic hypometria (bilateral vermis), saccadic hypermetria
(bilateral fastigial nucleus), impairment in the initiation of
pursuit

TABLE 3 Patterns of eye movement abnormalities in parkinsonian disorders; some features are shared, whereas others are specific to
particular disorders

Oculomotor abnormalities PD MSA PSP CBS

Progressive gaze limitation +++

Saccadic hypometria + ++ +++ ++

Slow saccades +++

Saccadic apraxia ++

Impaired SP +++ ++ ++

Impaired OKN ++ +++ ++

Increased SWJs + ++ +++ +

Impaired VORS ++ +

Gaze-evoked nystagmus +++ +

pDBN and ccHSN +++

+, mild; ++, moderate; +++, severe.
Abbreviations: PD, Parkinson’s disease; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; CBS, corticobasal syndrome; SP, smooth pursuit; OKN, opto-
kinetic nystagmus; SWJs, square wave jerks; VORS, vestibulo-ocular reflex suppression (modified from Anderson and MacAskill1); pDBN, positional downbeat nystagmus;
ccHSN, cross-coupled head-shaking nystagmus.
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pursuit are deficient; therefore, multiple corrective saccades are
evident during low-frequency head movements (of approxi-
mately 0.5 Hz) while the eyes are fixated to a stationary tar-
get.22,23 Suppression of the VOR can be tested by evaluating
fixation to a head-fixed target (usually the patient’s own thumb
with the arm extended) during head (and simultaneous arm)
rotation. Abnormalities of the vestibulo-ocular reflex can cause
disequilibrium and oscillopsia. Intact VOR in a patient with gaze
palsy points to a supranuclear origin of the gaze palsy.

Eye Movements in Parkinsonism
Oculomotor examination can be helpful in differentiating par-
kinsonian syndromes (Table 3). In the initial stages of PD, there
are no major eye abnormalities on clinical exam in contrast with
other parkinsonian syndromes that present with early oculomo-
tor deficits.

Saccades are affected in PD and ascribed to abnormal output
of the substantia nigra pars reticulata projections to the superior
colliculus.24 Typically, the initial oculomotor abnormality in PD
is hypometria of voluntary saccadic eye movement, more in the
vertical than the horizontal plane.25,26 One clinical correlate of
this abnormality is that hypometric saccades during visual scan-
ning leads to a smaller scanned area, which then leads to an
increased risk of falls in patients with PD, especially during
turns.1,27,28 Self-paced saccades are usually more affected than
reflexive saccades, which appear to be relatively normal, at least
for targets close to the center of the visual field.29–32 Similar to
limb bradykinesia, saccadic bradykinesia with a decrement in sac-
cadic velocity and amplitude over time has also recently been
described.33

If vertical saccadic velocity and amplitude are impaired at the
early stages of a parkinsonian syndrome, classical presentation of
PSP known as Richardson syndrome (PSP-RS) should be con-
sidered.34–37 Normal aging causes restriction of vertical gaze,
especially upward,38 but in PSP-RS the impairment is more
prominent in the downward direction. The earliest sign of PSP-
RS, before gaze restriction occurs, is decreased vertical saccadic
velocity. At that stage of the disease, the disproportional slowing
of the vertical component compared with the horizontal compo-
nent causes a curved trajectory during oblique or vertical sac-
cades, classically described as the “round the houses” sign.39 Later
on, there is limitation of voluntary gaze first vertically and then
horizontally. Eventually, patients with advanced disease develop
complete ophthalmoplegia.36 OKN testing can help identify
early subtle saccadic abnormalities. In PSP-RS, the fast phase
(saccadic phase) of OKN is impaired so that the eyes drift in the
direction of the slow phase (pursuit phase). Importantly, other
parkinsonian syndromes can cause supranuclear palsy but not as
early as PSP-RS. For example, in corticobasal syndrome with
PSP pathology (CBS-PSP) vertical supranuclear gaze palsy is pre-
sent in 20% of patients early in the disease and up to 50% over-
all.40 In CBS with corticobasal degeneration pathology, vertical
supranuclear gaze palsy has been reported between 18% and 59%
of late-stage cases, and it is less common than CBS-PSP in early

stages.41–46 For a broader differential diagnosis of supranuclear
gaze palsy, see Table 4.

Markedly increased saccadic latency can differentiate CBS
from other parkinsonian syndromes such as idiopathic PD, multi-
ple system atrophy (MSA), and PSP.29 This abnormality in CBS
also correlates with limb apraxia scores.29 Notably, the saccadic
velocity is not greatly impaired in CBS, and once saccades are
launched, the velocity is usually normal. In contrast, in PD the
saccadic latency is generally preserved, at least in the early stages
of the disease. However, patients with PD and dementia exhibit
prolonged latency compared with those with normal cognition
and controls, suggesting that saccadic latency may correlate with
cognitive status in PD.47,48

TABLE 4 Differential diagnosis of supranuclear gaze palsy

• Vascular

• Posterior thalamo-subthalamic paramedian artery occlusion

• Artery of Percheron occlusion

• Neurodegenerative

• Progressive supranuclear palsy

• Corticobasal degeneration

• Multiple system atrophy

• Parkinson’s disease

• Neurodegeneration with brain iron accumulation

• Amyotrophic lateral sclerosis

• Metabolic/genetic

• Niemann-Pick type C

• Gaucher (usually horizontal)

• Spinocerebellar ataxias (1, 2, 3, 6)

• Abetalipoproteinemia

• Tay-Sachs disease

• Maple syrup urine disease

• Wilson’s disease

• Glutaric aciduria type 1

• Neoplastic

• Pineal gland tumors

• Paraneoplastic, autoimmune, inflammatory

• Anti-Ma2 encephalitis

• Anti-glutamic acid decarboxylase antibody

• Anti-glycine receptor antibody

• Anti-IgLON5 antibody

• Infectious

• Prion disease

• Whipple disease
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Abnormal fixation is usually nonspecific but can be helpful in
differentiating parkinsonian syndromes. SWJs are more frequent
in all parkinsonian syndromes, with PSP at the most impaired
end of the spectrum (increased SWJ frequency and amplitude49)
and PD at the less impaired end.50,51 MSA can also present with
more frequent and sometimes large amplitude SWJs (macro-
SWJs).29,52

Smooth pursuit eye movements are generally preserved in
early-stage PD, but abnormal saccadic intrusions appear as the
disease progresses. There is evidence that the abnormal saccades
during pursuit are not truly “catch up” saccades (as a result of
decreased pursuit velocity) but, rather, anticipatory saccades that
take the eyes ahead of the moving target, probably reflecting def-
icits in saccadic inhibition.32 In PSP, vertical pursuit eye move-
ments are impaired early in the disease, and because of
simultaneous impairment of the saccadic system, no catch up sac-
cades can be initiated to compensate for the deficit.53 Notably,
the low-frequency pursuit movements are initially preserved and
only the high-frequency movements fail.53

Subtle cerebellar signs, such as presence of nystagmus or sac-
cadic dysmetria, can differentiate MSA from other parkinsonian
syndromes. In a series of 25 MSA cases, downbeat nystagmus
with Dix-Hallpike positioning (positional nystagmus) was found
in 10 cases, even in patients with no other cerebellar signs on
examination.54,55 Because downbeat nystagmus (positional or
induced by head shaking) is uncommon in PD, this sign can be
useful in differentiating MSA and PD.54,56 In MSA, the saccadic
hypometria is mild–moderate, and it is not associated with low
velocity (velocity is usually normal).29,54

Finally, convergence insufficiency is common in PD, espe-
cially in patients with cognitive impairment (https://collections.
lib.utah.edu/ark:/87278/s6p29vr1).57–59 It can cause blurred near
vision, which can significantly impact the quality of life. Conver-
gence training is a treatment option.60

Eye Movements in Some
Ataxia Syndromes
Ataxia Telangiectasia
Ataxia telangiectasia is a multisystem autosomal recessive disorder
attributed to mutation of the ATM gene.61,62 The neurological
manifestations in ataxia telangiectasia include a cerebellar syn-
drome (ataxia, impaired coordination, speech disturbance, gait
impairment). Other movement disorders such as dystonia, cho-
rea, tremor, and myoclonus can also occur later in the disease.63

An eye exam is particularly important for recognition of telangi-
ectasias on the sclera and for the characteristic eye movement
abnormalities, which are mainly impaired fixation caused by
pathologic torsional and downbeat nystagmus and impaired sac-
cades caused by increased latency and dysmetria. In addition,
pursuit movements are saccadic, and OKN is abnormal as a result
of eye deviation toward the direction of the slow compo-
nent.64,65 The presence of nystagmus and prominent saccadic

intrusions lead to impaired visual fixation, which is hypothesized
to be the cause of poor quality of vision in ataxia telangiectasia.66

Ataxia with Oculomotor Apraxia
There are multiple types of ataxia with oculomotor apraxia, but
type I and type II are the most common.67–69 Both types are
autosomal recessive conditions attributed to mutations in the
APTX and SETX genes, respectively,67–69 and onset is earlier in
type I (early childhood) compared with type II (teenage years).
As the name reveals, oculomotor apraxia is the most prominent
oculomotor disorder as reflected in prolonged saccadic laten-
cies.70 However, this feature is present only in 50% to 60% of
the patients.67–69 Other oculomotor abnormalities include sac-
cadic pursuit and dysmetric saccades (hypometric and hypermet-
ric) as well as increased antisaccade error rates.70 Cerebellar ataxia
is the most common movement disorder in these patients, but
other hyperkinetic and hypokinetic movement disorders can
occur. Severe peripheral neuropathy and characteristic blood
abnormalities can aid diagnosis.68–72

Niemann-Pick Type C
Niemann-Pick type C (NPC) is a lysosomal storage disorder
with autosomal recessive pattern of inheritance. The symptoms
vary and can include psychiatric symptoms, cognitive decline,
dysarthria, dysphagia, gelastic cataplexy, hypotonia, seizures, and
movement disorders.73–75 Most common movement disorders
are ataxia and dystonia, but myoclonus, chorea, and tremor can
also be present.76,77 Supranuclear gaze palsy, especially in the
vertical plane, is the most characteristic abnormality in NPC.78

In particular, downward saccades are affected first (controlled
unilaterally) followed by upward saccades (controlled bilaterally).
Supranuclear gaze palsy carries high clinical significance for the
diagnosis of NPC as it occurs early in the disease79 and can lead
to disease-specific treatment.80,81

Spinocerebellar Ataxia
Overall the oculomotor abnormalities in spinocerebellar ataxia
(SCA) reflect cerebellar pathology with or without involvement
of other brain regions and can be useful for differentiating the
different genotypes.1 In SCA 2, the most significant oculomotor
sign is reduced saccadic velocity, which correlates with the num-
ber of CAG repeats and is thought to be attributed to brainstem
involvement.82–85 SCA 2 also presents frequently with supra-
nuclear gaze palsy.86 SCA 3 can present with vertical supra-
nuclear ophthalmoplegia with normal horizontal saccades at least
at the initial stages of the disease.86,87 Furthermore, bulging eyes
are characteristic of SCA 3.88,89 Besides nystagmus, SCA 6 can
present with impaired smooth pursuit even in the pres-
ymptomatic stage.90 Gaze-evoked and rebound nystagmus are
present in many SCA subtypes, but they appear to be particularly
common in SCA 3 and SCA 6, with positioning downbeat nys-
tagmus being a specific feature of SCA 6 (https://collections.lib.
utah.edu/ark:/87278/s6vx45m7 and https://collections.lib.utah.
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edu/ark:/87278/s60k7jb4).91–95 In SCA 7, the retinal manifesta-
tions can be preceded by oculomotor abnormalities mainly
affecting saccadic accuracy and velocity.96–98

Eye Movements in
Myoclonus
Opsoclonus Myoclonus
Opsoclonus was initially described by Orzechowski in 192799

and later Kinsbourne, who introduced the term “dancing
eyes.”100 Opsoclonus is classically described as conjugate, invol-
untary, rapid, nonrhythmic, and chaotic movements of the eyes
(https://collections.lib.utah.edu/ark:/87278/s6cw0k1c).101 It
comprises back-to-back multidirectional saccades without an
intersaccadic interval. Typically it presents in childhood with
acute or subacute onset, and it is commonly associated with
encephalitis or posterior fossa tumors, mostly neuroblas-
toma.102,103 In adults, it is associated with paraneoplastic syn-
dromes.104,105 The pathophysiology is presumed to be immune
mediated, although the exact mechanism is unclear.106,107 It is
thought that opsoclonus is attributed to instability in the fine bal-
ance between the omnipause and burst neurons in the brainstem
that normally generate the saccadic eye movements.108

Opsoclonus can be associated with limb myoclonus. As it settles,
opsoclonus may metamorphose into ocular flutter (bursts of hori-
zontal bidirectional back-to-back saccades without an inter-
saccadic interval), and opsoclonus and ocular flutter can co-occur
in many instances.

Oculopalatal Myoclonus
Guillain and Mollaret first described the syndrome of palatal
myoclonus, and they pointed out that it can be caused by lesions
along the dentato-rubro-olivary pathway (Guillain-Mollaret tri-
angle).109 Palatal myoclonus is usually rhythmical; therefore, the
term palatal tremor is sometimes used. There are 2 forms of palatal
myoclonus. The first form is essential palatal myoclonus, which
is usually isolated with no associated symptoms except for an ear-
clicking sound and has recently been identified to commonly
have functional etiology.110 The other form is symptomatic pala-
tal myoclonus, which is secondary to a lesion in the Guillain-
Mollaret triangle, and it can affect the oculomotor system and
other body parts such as the diaphragm. The symptoms of symp-
tomatic palatal myoclonus can occur weeks to months after the
lesion.111 When palatal myoclonus is associated with abnormal
eye movements, the most common abnormality is pendular nys-
tagmus. Usually the nystagmus presents in the vertical plane, but
a horizontal or rotational component might be present.112,113

Convergent–divergent nystagmus has also been reported.114

Typically, the palatal and ocular movements have the same fre-
quency and phase.115 The amplitude of the abnormal eye move-
ments has been reported as large as 8 degrees.116 The most
accepted pathophysiologic mechanism of symptomatic palatal

myoclonus is that a CNS lesion along the dentato-rubro-olivary
pathway causes denervation of the olivary nucleus. Once released
from cerebellar inhibitory input, the olivary nucleus enlarges and
develops sustained synchronized oscillations, which are fed back
to the cerebellum for further modulation and eventually cause
the abnormal movements.

Whipple Disease
Whipple disease is caused by an infection with Tropheryma whip-
plei and mainly causes gastrointestinal or other systemic symp-
toms. It can affect the CNS, and its neurological manifestations
are variable. Insidious neuropsychiatric and cognitive symptoms
are most commonly present with the second most common neu-
rological finding being the oculomotor disturbance.117–119 In
particular, oculomasticatory myorhythmia is thought to be a
pathognomonic sign for Whipple disease.117,118 It is characterized
by oscillatory convergent–divergent movements of the eyes with
a frequency of approximately 1 Hz accompanied by synchronous
oscillatory contractions of the muscles of mastication (https://
collections.lib.utah.edu/ark:/87278/s6tq8z4m).120 When these
movements spread further to the face or the extremities, the term
oculofacial-skeletal myorhythmia is more appropriate.121,122 Supra-
nuclear ophthalmoplegia mimicking PSP can also occur.119 Usu-
ally a hyperkinetic movement disorder such as myoclonus,
chorea, or dystonia is also part of the clinical picture.123,124

Prion Disease
Prions are abnormal misfolded proteins that can cause transmissi-
ble and genetic neurodegenerative diseases.125 In humans, prions
can cause Creutzfeldt-Jakob disease (CJD) and its variant, as well
as Gerstmann-Sträussler-Scheinker syndrome, fatal familial
insomnia (FFI), and Kuru. Early ocular motor findings have been
reported in patients with CJD.126 Centripetal nystagmus (during
eccentric gaze: fast phase toward primary gaze and slow phase
toward eccentric position),127 breakdown of saccades, and gaze
deviation are the most prominent features.126,128,129 Vertical
supranuclear ophthalmoplegia in CJD can resemble PSP.128,130

Although not commonly reported, ocular dipping can also be a
characteristic ocular abnormality.131,132 Disordered fixation with
saccadic intrusions in the setting of severe insomnia can be a use-
ful early diagnostic clue of FFI.133 Gerstmann-Sträussler-
Scheinker disease also presents with abnormal eye movements in
the early stages such as pathologic nystagmus, impaired visual
tracking, impaired VOR, and gaze-evoked nystagmus. At the
late stages of the disease, almost all patients have a variety of ocu-
lar movement abnormalities.134

Eye Movements in Dystonia
Isolated Dystonia
Bedside examination of oculomotor function in isolated cervical
dystonia is usually normal. However, there is evidence of
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asymmetric vestibulo-ocular reflexes and other subtle abnormali-
ties when tested in the laboratory.135,136 Similarly, the eye
movements in patients with blepharospasm are largely normal
when tested at the bedside,132 but more detailed testing in the
laboratory has revealed impairment of saccadic initiation with
longer saccadic latencies, although peak velocities and accuracy
are normal.138 In addition, SWJs and macro-SWJs, as well as ver-
tical and horizontal involuntary deviations and convergence
spasms, have been described in blepharospasm.139

Oculogyric Crisis
Oculogyric crisis (OGC) is a rare disorder characterized by dys-
tonic conjugate eye deviation.140–142 The etiology is usually
attributed to medication adverse effects. The most common
medication class associated with OGC is neuroleptics, although
other classes have also been associated (for a comprehensive list
of medications related to OGC see Barow et al140). Although
OGC is typically described as a dystonic movement, it is not typ-
ically seen in primary dystonia, and rarely can be associated with
blepharospasm.139 It can be seen in other movement disorders,
mainly parkinsonism (especially postencephalitic and disorders of
dopamine synthesis), but also focal brain lesions (eg, striatal
necrosis), immune encephalitides, and some pediatric genetic dis-
orders (eg, CACNA1A mutations).

Stiff Person Syndrome
Stiff person syndrome (SPS) is characterized by progressive fluctu-
ating muscle spasms usually affecting the axial muscles of the lower
back and abdomen.63 Antibodies directed against glutamic acid
decarboxylase, anti-amphiphysin, anti-glycine receptor, anti-
DPPX, and other antibodies, have been associated with
SPS.143,144 The pathophysiology is thought to be related to
impairment of inhibitory GABAergic spinal networks,145 but there
is also evidence of cortical146 and brainstem147 involvement. Ocu-
lomotor impairment is not always part of the clinical picture, but
there are reports that SPS can present with a variety of eye move-
ment abnormalities such as strabismus causing diplopia attributed
to horizontal gaze limitation, deficient gain of pursuit movements,
increased saccadic latency, and gaze-evoked nystagmus.148,149 In
addition, “stiff eyes” can be part of the SPS phenomenology and
represent restriction of the range of extraocular movements in the
vertical or horizontal plane, leading to erroneous consideration of
PSP.150,151 Fatiguability of saccadic latency, velocity, and accuracy
in SPS can differentiate it from PSP. The pathophysiology of “stiff
eyes” is unclear, but intravenous immunoglobulin (IVIG) can be
helpful therapeutically.150,152

Eye Movements in Tremor
Wilson’s Disease
Wilson’s disease is an autosomal recessive condition attributed to
mutation in the ATP7B gene leading to excessive accumulation

of copper in the liver and the brain. In a series of 34 patients,
impairment of vertical pursuit was found in 85% of the patients
and of horizontal pursuit in 41% of the patients. The next most
common abnormality was impaired vertical OKN in 41% of the
cohort.153 Supranuclear upgaze palsy and reduced saccadic veloc-
ity have also been reported.154 Gaze distractibility or imper-
sistence, similar to Huntington’s disease, has been described by
Wilson himself15 and more recently by Lennox and Jones.155

Antisaccades can have increased error rate and latency.156 The
link between the ocular abnormalities and the pathology in Wil-
son’s disease remains unclear. The eye exam is also important for
the identification of Kayser-Fleischer rings.

Eye Movements in Chorea
Huntington’s Disease
Huntington’s disease is caused by an autosomal dominant CAG
trinucleotide repeat expansion in chromosome 4. It manifests
with chorea and other involuntary movements, gait disturbance,
incoordination, and psychiatric and cognitive problems. The ear-
liest oculomotor finding is prolonged voluntary saccadic latency
attributed to oculomotor apraxia, requiring occasional blink or
head thrust for saccadic initiation.14,157,158 In addition, fixation is
impaired because of a failure to inhibit saccades toward stimuli
within the visual field.14 Eccentric gaze holding is also impaired
as the eyes tend to be brought back to the primary gaze by an
inappropriate saccade.14 Slow saccades can be seen early in the
disease, especially in those with a high CAG repeat number, but
usually after other generalized motor impairments.159 Otherwise,
saccades can be hypometric in both the vertical and horizontal
planes.158 Smooth pursuit movements can also be affected by
reduced gain, but usually later in the disease.160 Oculomotor
exam is of high yield in Huntington’s disease and can be proven
essential when hyperkinetic movement disorder with early psy-
chiatric or cognitive findings is encountered.

Functional Eye Movements
Functional eye movement disorders can present in isolation or in
the setting of other functional syndromes.161,162 Convergence
spasm is likely the most common functional oculomotor disor-
der163 and presents with persistence of convergence despite the
absence or removal of a near fixation target. It can be confused
with cranial nerve VI palsy, but it can be differentiated by
observing normal abduction and the associated miosis during
accommodation, which are not present with a sixth nerve
palsy.162,164–166 Functional limitation of gaze can be accompa-
nied by eyelid fluttering on attempted eye movements, and
patients commonly have effortful facial expressions.162 Voluntary
saccadic oscillations such as voluntary (or functional) nystagmus
usually cannot be maintained for more than 25 seconds, a helpful
feature in differentiating functional from nonfunctional
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movements.167,168 In addition, other functional movement disor-
ders such as functional opsoclonus, OGC, and ocular flutter have
been described.169 The oculomotor abnormalities encountered
in functional eye movement disorders are distractible and vari-
able, similar to functional movements affecting other body parts.

Conclusions
Eye movement abnormalities are highly varied in movement dis-
orders and affect many different mechanisms. A systematic
approach to the examination is recommended to avoid missing
crucial observations. Fixation should be assessed for at least
15 seconds to assess for SWJs. Horizontal and vertical pursuit and
saccades should always be examined. OKN can be a useful sup-
plement but needs careful interpretation if attention is a concern.
Abnormal VOR points to vestibular or cerebellar abnormalities
or both (such as in CANVAS).
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