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Highlights 
Loss of motivation (apathy) significantly 
affects the lives of many people living 
with Parkinson’s disease (PD), and neu-
ral evidence links it to systems crucial 
for goal-directed behaviour. 

Decision-making neuroscience, informed 
by work across species, provides a 
mechanistic framework within which to 
examine how rewards and costs of ac-
tions underpin goal-directed behaviour. 

Decision-making experiments in people 
with PD demonstrate distinct behavioural 
signatures of apathy, whilst also advanc-
Neurobehavioural disturbances such as loss of motivation have profound effects 
on the lives of many people living with Parkinson’s disease (PD), as well as other 
brain disorders. The field of decision-making neuroscience, underpinned by a 
plethora of work across species, provides an important framework within 
which to investigate apathy in clinical populations. Here we review how changes 
in a number of different processes underlying value-based decision making may 
lead to the common phenotype of apathy in PD. The application of computa-
tional models to probe both behaviour and neurophysiology show promise in elu-
cidating these cognitive processes crucial for motivated behaviour. However, 
observations from the clinical management of PD demand an expanded view 
of this relationship, which we aim to delineate. Ultimately, effective treatment 
of apathy may depend on identifying the pattern in which decision making and 
related mechanisms have been disrupted in individuals living with PD. 
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ing understanding of the role of neuro-
modulators like dopamine. 

Specific cognitive processes, including 
executive functions, may modulate the 
relationship between apathy, neuromod-
ulators, and decision making. 

Applying more complex models of deci-
sions to the behaviour and neurophysi-
ology of people living with PD are 
exciting research avenues that promise 
to deepen understanding of this impor-
tant clinical area.
Applying decision neuroscience to motivational disruption in PD 
PD is the second most common neurodegenerative disorder worldwide. It has traditionally been 
considered a disorder of movement, but a plethora of other (so-called ‘non-motor’) features char-
acterise this condition [1]. Prominent amongst these are neurobehavioural disturbances, of which 
apathy (see Glossary), a pathological loss of motivation that manifests as reduced goal-directed 
behaviour, stands out in terms of its common occurrence and impact on quality of life and mor-
tality [2–4]. Other changes in (motivated) behaviour such as impulsivity also occur, particularly in 
relationship to dopaminergic therapies that form the backbone of PD management [5,6]. Motiva-
tional problems can be notoriously difficult to treat effectively, which in part can be attributed to 
limitations in understanding of the mechanisms driving their emergence. However, advances in 
understanding of normal motivated behaviour, led by the research domain of decision-making 
neuroscience, have provided a framework within which these clinical problems can be investi-
gated [7–9]. In turn, the unique situation that PD presents has provided an important model to 
better understand normal motivated behaviour, from drug manipulations to recording human 
neural activity in the form of local field potentials during motivated tasks [10,11]. 

In this review, we discuss recent progress in understanding disordered motivation in PD – chiefly 
apathy – within a framework of disrupted value-based decision making. We underscore core 
issues arising from the clinical management of apathy in PD that are not well explained by current 
conceptualisations. We further highlight how these same issues overlap with evolving – and often 
controversial – areas of decision-making neuroscience, including evidence accumulation in deci-
sion making, the importance of decision context, and the role of dopaminergic and other 
neuromodulatory signals as both primary mediators of goal-directed behaviour and secondary
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Glossary 
Apathy: broadly defined as an 
observable reduction in goal-directed 
behaviour compared with the previous 
level of functioning. Apathy has been 
considered to have behavioural, 
cognitive, social, and emotional 
dimensions. 
Dopamine dysregulation syndrome: 
the overuse of dopaminergic medication 
beyond the necessity of controlling 
motor symptoms. Some patients may 
experience withdrawal symptoms similar 
to those observed in addiction, 
requesting further increases in their drug 
regimen, even when motor control 
remains satisfactory. 
Drift diffusion model: a  single-
process decision-making model 
whereby evidence is assumed to 
accumulate towards a decision bound in 
a noisy manner. Latent parameters 
include drift rate (rate of evidence 
accumulation towards a decision 
bound), threshold (distance between 
two decision bounds), non-decision time 
(information encoding and motor 
processes), and bias (starting point of 
evidence accumulation) .
Impulse control and related 
behavioural disorders (ICBDs): 
failure to resist impulses to perform 
certain behaviours, which are repeatedly 
influencers via impact on key executive functions. Based on these discussions, we outline an up-
dated model of motivational disruption in PD that synthesises these ideas, and which we hope will 
drive ongoing research into this fundamental problem of human behaviour.

What are the disorders of motivation that occur in PD? 
We start by briefly describing the main disruptions to motivated behaviour that occur in PD 
(Figure 1). Apathy is broadly defined as a pathological loss of motivation that manifests as re-
duced goal-directed behaviours. Apathy has long been understood as a feature of PD, but full ap-
preciation for its prevalence and impact has emerged relatively recently, both in the clinical and 
scientific spheres [2,3,12,13]. Apathy can occur at any disease stage and in some patients pre-
cedes the development of the motor symptoms that typically lead to a PD diagnosis [3,14–16]. 
Estimates of prevalence have varied widely, in part because of variation in assessment tools 
and subpopulations that are studied, but a figure of around 30–40% seems to be representative 
of most current estimates [2,13]. Apathy is a strong determinant of quality of life, to the point that, 
in individuals experiencing it, interventions that demonstrably improve the motor symptoms of PD 
but have little effect on apathy fail to improve quality of life [15,17,18]. Furthermore, the occur-
rence of apathy at any stage of PD is associated with higher mortality [3]. Although it can occur 
in the absence of any of the following factors, at a group level apathy in PD is associated with cog-
nitive impairment and dementia, higher levels of depressive symptoms, increasing motor symp-
toms, and increasing age. It is also more common in males [2,3,13]. As we discuss later, the 
association between apathy and cognitive impairment in some, but not all, studies seems espe-
cially related to executive dysfunction [3,13,19]. Apathy can also emerge or remit following deep-
brain stimulation (DBS) to the subthalamic nucleus, with the exact placement of electrodes in the 
context of an individual’s brain connectivity likely driving this complex relationship [20–22]. It is 
worth mentioning that the nosological relationship between PD and dementia with Lewy bodies 
is undergoing substantial debate, with prominent proposals to formally unite these conditions 
based on their shared underlying pathological substrates [23,24]. Apathy is also a prominent
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Figure 1. Apathy and impulsivity
are common syndromes of disrupted
behaviour seen in people with
Parkinson’s disease (PD), and are
distinct from, but overlap with, othe
neurobehavioural and neuropsychiatric
conditions. (A) For apathy, this includes
n particular anhedonia, depression, and
fatigue. For impulsivity, associated conditions
can include the specific impulse contro
and behavioural disorders of impulse
control disorder, punding, and dopamine
dysregulation syndrome. However, some o
these conditions occur in the context o
dopaminergic treatment and may be more
directly linked to compulsivity, differentiating
them mechanistically from impulsivity per se
(B) Apathy and depression can sometimes
be confused in the setting of a PD patien
with reduced behavioural output. Although
these two conditions have overlapping
features, particularly in the domain o
anhedonia, they are clearly distinc

syndromes. Specifically, apathy can occur across the spectrum of depressive symptoms, although at a group level, apathy in PD
is associated with higher levels (left panel). Apathy and impulsivity are correlated in PD and many other neurological disorders (righ
panel). 

executed and have a negative effect on 
an individual’s functioning. Impulse 
control disorder behaviours include 
compulsive shopping, binge eating, 
pathological gambling, compulsive 
hobbyism, and hypersexuality. Because 
impulse control disorders are not related 
directly to disease progression but 
indirectly, via dopamine (particularly D3 
receptor agonist) prescribing practices, 
they can occur at any time in the disease 
course. Punding is a stereotyped 
behaviour characterised by excessive 
non goal-oriented, repetitive activities 
such as sorting things, tidying, taking 
objects apart, or collecting objects. 
Impulsivity: broadly defined as the 
tendency to act rashly without 
forethought, impulsivity is a 
multidimensional construct. Motor 
impulsivity refers to both premature 
actions and reduced ability to stop an 
already initiated action, whilst decisional 
impulsivity refers to choice preferences 
for risk, and for smaller, immediate rather 
than larger, delayed reward. Reflection 
impulsivity refers to making a decision 
prior to sufficient gathering of 
information.
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Value-based decision making: a 
framework within which to understand 
motivated behaviour. It includes the 
cognitive processes needed to identify 
and evaluate potential options for 
behaviour, select and persist with 
actions to a chosen goal, and learn from 
the outcomes of these actions, whilst 
also monitoring for alternative better 
courses of action. This enables adaptive 
behaviour in the context of a changing 
environment. 
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feature of dementia with Lewy bodies and its occurrence is associated with similar associations to 
those seen in PD, while both conditions show evidence for a treatment effect of cholinesterase 
inhibitors on apathy [25–27].

Perhaps counterintuitively, evidence points to the co-occurrence of impulsivity with apathy, both 
in PD and in other conditions [28–33]. This tendency to act rashly, without appropriate fore-
thought, is increased in people with PD relative to the general population [34]. Within the umbrella 
of impulsive behaviour, impulse control and related behavioural disorders (ICBDs) have 
been a high-profile side effect of, in particular, dopamine agonists with high D3 receptor affinity 
[5,35,36]. ICBDs encompass compulsive shopping, eating and gambling, hypersexuality, dopa-
mine dysregulation syndrome and punding [36]. Whilst ICBDs clearly represent disruptions of 
motivated behaviour, in this review we will not focus on this interesting group of disorders, given 
that their aetiology is probably more related to changes in habitual brain systems that give rise to 
compulsive behaviours, in a similar way to addictive disorders [36,37]. 

Value-based decision making as a framework for understanding disorders 
of motivation 
Over the past two decades, frameworks for understanding normal goal-directed behaviour have 
been increasingly applied to the study of clinical disorders of motivation, including apathy 
[9,38,39]. The mechanisms underlying goal-directed behaviour in humans are complex, but a 
central element is the relationship between actions and their outcomes. Work in people with 
PD to understand apathy has mainly focused on decision-making approaches that probe this re-
lationship, and particularly how loss of motivation may be associated with changes in sensitivity to 
rewarding outcomes and/or the costs of the actions required to obtain them [8,40]. Value-based 
decision making can be conceptualised as occurring across multiple phases. These include 
generation of potential options for behaviour, choice between options, perseverance with the 
chosen option to the goal, and learning about the value of choices to update future behaviour 
[8,38]. A large body of evidence spanning rodent, non-human primate, and human neuroscientific 
investigation has demonstrated these processes are dissociable but interlinked components of 
goal-directed behaviour, and are instantiated neurally in similar brain regions [41,42]. Importantly 
changes in these regions, which include the ventral striatum, thalamus, anterior cingulate cortex, 
medial and lateral orbitofrontal cortex, and supplementary motor areas are also associated with 
apathy in PD, and can even predict its future development (Figure 2)  [39,43,44]. 

Reductions in dopaminergic function are a core feature of PD. Although classically described 
within nigrostriatal pathways, it is clear there are also variable changes within mesolimbic dopa-
minergic systems. In healthy individuals, the mesolimbic dopaminergic neuromodulatory system 
is central to the different phases of value-based decision making [42,45–49], and there is clear 
evidence linking disruption of this system to apathy in PD [40,50–53]. There is therefore a strong 
anatomical and pathological backdrop to suggest that motivational deficits in PD could be due to 
disruption of value-based decision-making processes, and that changes in dopaminergic signal-
ling may have a key influence on this. In the next section, we review empirical evidence from stud-
ies conducted in people with PD that have tested this broad hypothesis, probing decision-making 
mechanisms and motivation. 

As a side note, in both the decision making and clinical literature alternative terms to value-based 
decision making are also used. In fact, much of the investigation of apathy mechanisms in PD has 
used the terminology of disrupted effort-based decision making. In trying to add clarity to the ter-
minology, we note, first, that neural signals associated with reward, cost (effort or time) and value 
(i.e., reward discounted by cost) can be clearly dissociated in human and non-human studies
Trends in Neurosciences, Month 2025, Vol. xx, No. xx 3
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Figure 2. The anatomical and 
neuromodulatory correlates of 
value-based decision making show 
substantial overlap with the correlates 
of apathy in Parkinson’s  disease  (PD).  
(A) Substantial work in rodents, non-
human primates, and humans has 
highlighted key brain regions underpinning 
value-based decision making. These 
include the medial frontal cortex, as well 
as subcortical areas, including the ventral 
striatum (VS), anterior cingulate cortex 
(ACC), and ventromedial prefrontal cortex 
(vmPFC), supported by dopaminergic, 
cholinergic, noradrenergic, and serotonergic 
neuromodulatory systems. In the 
schematic, the relative weighting of 
regions towards valuation (of reward and 
effort) and behavioural response is implied 
by the gold–green colour gradient. 
Disruption (functional or structural) of 
these same areas is associated with PD 
apathy (depicted by pink stars) across 
imaging studies (see main text for more 
details). (B) Left panel: PD apathy and 
dopamine show distinct effects on effort-
based choice. When weighing up rewards 
against the effort costs to obtain them, 
PD apathy is associated with reduced 
incentivisation by low-reward offers, while 
dopamine increases acceptance of offers 
requiring high effort for higher rewards 
for both apathetic and non-apathetic 
patients. Right panel: Apathetic behaviour 
may also result from disrupted linking 
between possible actions (here button 
presses) and their outcomes (e.g., a 
reward). In such experiments, the 
probability of each button (when pressed) 
leading to reward varies across the task, 
and participants must keep track of 
these likelihoods (or action–outcome 
representations) in order to perform well. 

Computational models can be used to estimate the precision of these representations in individuals, based on their choices. 
(C) Reward has primitive energising effects in the brainstem. Pupillary dilation in response to reward, which may index 
noradrenergic function, is blunted in PD and further in PD apathy (left), while vigour (motor speeding with reward) may rely 
on nigrostriatal dopamine release. Abbreviations: DRN, dorsal raphe nucleus; LC, locus coeruleus; NBM, nucleus basalis of 
Meynert; pMCC, posterior mid-cingulate cortex; SMA, supplementary motor area; VTA, ventral tegmental area. (A) Adapted 
from [8], (B) from results in [11]  (left)  an  d [85]  (right)  .
[41,54–57]. Secondly, historically the term value-based decision making has tended to refer to 
situations where reward is devalued by uncertainty or time, or where value must be learnt. How-
ever, in the more recent literature, the term is often used in a broader meaning that also encom-
passes effort-based decisions (where the value of an action includes an effort cost). 

Distinct apathy- and dopamine-related effects on decisions in PD 
A clear pattern of altered choice behaviour, associated with apathy, has been demonstrated by 
experiments in which people with PD make decisions about whether or not to incur costs to ob-
tain rewards. Individuals with apathy are less willing to exert physical effort for low rewards but,
4 Trends in Neurosciences, Month 2025, Vol. xx, No. xx
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once reward levels are high enough, even as required effort levels increase, people with PD 
apathy are just as likely to accept offers as their no-apathy counterparts (Figure 2)  [11]. Such 
altered responding is often described as reward insensitivity and is also reflected in physiological 
responses of PD patients with apathy to rewards [58]. The general pattern of these findings 
extends to cognitive (rather than just physical) effort [59], and to more ‘real-world’ effort exertion 
situations [60]. Importantly with these experiments, performance of no-apathy people with PD, at 
least on choice and when ON dopaminergic medications, does not differ from healthy controls, 
suggesting that changes in decision making are indeed specific to apathy, rather than being 
more generally disease related. 

The natural next question, in the context of PD pathophysiology and the importance of dopami-
nergic signals for normal motivated behaviour, is whether the apathy pattern of choice behaviour 
is related to altered dopamine signalling. Two relatively large studies in patients with apathy have 
addressed this question via a counterbalanced ON–OFF dopamine medication design [11,59]. 
Somewhat surprisingly, although dopamine state clearly influenced the decisions of people 
with PD, it did so irrespective of their motivational status. People with PD, both with and without 
apathy, ON their medications were more likely to accept offers of medium/high reward that re-
quired high physical or cognitive effort (Figure 2). These results – the mobilisation of higher effort 
levels for higher rewards – are also consistent with the effects of dopamine on choice behaviour in 
no-apathy PD patients [61,62]. 

Therefore, although both apathy and dopamine manipulations change effort-based decisions in 
people with PD, they each affect different aspects of the reward/effort decision space – which 
presumably correspond to different situations in daily life – and do not seem to interact with 
each other in this context. One potential caveat to interpretation of these ON–OFF studies is 
that dopaminergic treatment in PD is generally titrated to motor symptoms and therefore may 
not ameliorate potential deficits in the mesolimbic pathways that are closely tied to motivated be-
haviour. An experimental design that included ‘OFF’, ‘ON’, and ‘Supra-ON’ states could theoret-
ically resolve this question. 

Despite these important differences in effort-based choice, there remains significant evidence 
within other components of value-based decision making linking dopaminergic functioning to ap-
athy in PD. More broadly, it has been suggested that the motor deficits of PD are closely related to 
reduced motivation [62,63]. Accordingly, dopamine increases motor energisation and reward re-
sponsiveness in healthy people, and in PD it increases motivation for action-contingent rewards 
[64,65]. This dopaminergic energisation (‘vigour’) is coupled with increased autonomic arousal in 
response to rewards, which is blunted in apathy [58] and is also selective to situations where ac-
tions are required to attain rewards [66]. Finally, to add to these findings, a recent study in early, 
untreated people with PD (albeit without high levels of apathy), found that reduced reward 
incentivisation (indexed by choice of force exerted to gain rewards at different levels) was linked 
to both changes in motivation and levels of striatal dopaminergic binding [50]. 

Overall, the work discussed in this section suggests a complex relationship between apathy, do-
pamine, and decisions to exert effort for reward in PD. A possible way to explain the patterns of 
findings discussed earlier is that dopaminergic disruption is more directly related to motivational 
disturbance before an apathy phenotype is established, driving changes in motivation that lead 
to apathy via shifts in a combination of effort-based choice, vigour, and learning. By contrast, 
once apathy is established, the effects of dopamine manipulations on effort-based choice may 
dissociate from those of apathy. The stage of PD at which apathy develops may also be important 
in terms of the relative contribution of dopaminergic systems. Finally, there is also the important
Trends in Neurosciences, Month 2025, Vol. xx, No. xx 5
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possibility that dopamine and apathy are linked in PD via mechanisms not probed by effort-based 
decision-making tasks, such as executive functions, which we discuss later in this review. 

Probing the physiological mechanisms underlying altered decision patterns in 
PD apathy 
While this behavioural work discussed in the previous section has yielded insights into the nature 
of cost–benefit disruption in PD apathy, an open question remains regarding the physiological un-
derpinnings of these changes (Figure 3). The use of computational analysis techniques (dis-
cussed in the next section) may give access to latent cognitive processes that animal work has 
demonstrated underpin both perceptual and value-based decisions, providing the next step in 
understanding how a change in dopamine (for example) leads to the observed changes in deci-
sion making described in the previous section [67–69]. However, crucial to advancing under-
standing is the ability to relate these models – and more basic analyses of behaviour – to 
neuronal activity. Studies in humans have provided some insights in that regard. Studies using 
surface electroencephalography (EEG), for instance, have shown that PD apathy is associated 
with altered spectral power at the time of reward cues and during incentivised movement 
[70,71]. Further, the use of DBS as a treatment for motor symptoms of PD has provided an im-
portant new avenue for exploring neural changes in PD via intracranial recordings during decision 
making [10,72–75]. Although currently limited by the targets of these systems (which in PD is 
most often the subthalamic nucleus, but in some cases also the globus pallidus and other 
brain regions), these studies have revealed neural signals associated with the value of options 
during decision-making tasks, and changes in these signals when reward and effort requirements 
are manipulated. As a potential caveat to this line of research, it should be noted DBS itself has in 
some studies been associated with the development of apathy [20]. Better understanding of this 
association and the reasons for it represents an important goal for future work. Possibly the
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Figure 3. Recording local field
potentials (LFPs) via implanted deep-
brain stimulation (DBS) units can offer
insights into the neurophysiology o
motivational disruption. (A) Implanted
DBS units are used to treat moto
symptoms in a subgroup of people with
Parkinson’s disease (PD). (B) These can
be used to record LFPs as patients
perform decision-making tasks – here
a demonstration of changes in LFP
power in response to varying effor
requirements. (C) Models of choice
behaviour can be used to enhance
the utility of LFP recordings to inform
questions about motivational disruption
One example is the drift diffusion model
which conceptualises the cognitive
processes underlying value-based
decisions as an accumulation of evidence
towards a bound, which when reached
corresponds to a decision to act. Key
parameters include the rate of this
accumulation, drift rate (v), the threshold o
bound (a), bias towards one response (z)
and non-decision-related time (t). Here
both increasing reward and increasing

effort are shown as increasing the drift rate (v) towards the accept threshold (reward) or reject threshold (effort). (B) Adapted from
[10], (C) from [69].
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greatest utility from approaches incorporating DBS for deeper physiological understanding of ap-
athy will come from studies in people whose apathy predates DBS insertion, or else develops at a 
future timepoint distant from the procedure.

Decision-making models for studying disrupted motivation in PD 
Models of decision making can take different forms, and are used to identify and quantify latent 
cognitive processes that may align with the neural processes underlying value-based decisions 
[67]. Sequential sampling models – a class of models that includes the drift diffusion model – 
share the same core principle that evidence accumulates towards a bound that, when crossed, 
corresponds to a decision being made [76]. By contrast, reinforcement learning models capture a 
simplified decision process but allow expected decision values (reward and costs) to update 
within subjects across an experiment, reflecting the learning process. Combinations of these ap-
proaches exist as well; for example, the reinforcement learning drift diffusion model [77]. Depend-
ing on the specifics of the behavioural task at hand, some models may be better aligned with the 
experimental context. As an example, some of the tasks that have been applied in neurological 
populations (e.g., the Apple Gathering Task; Figure 2) minimise learning requirements, and aim 
to examine primarily the choice phase of decision making. This type of task renders sequential 
sampling models more suitable. Conversely, reinforcement learning or combination models 
would be more suited for tasks examining specifically learning processes, as are sometimes 
used to study dysregulated motivation in PD. Use of computational models allows fine-grained 
analysis of experimental manipulations. For example, in the case of the drift diffusion model, cho-
linergic contributions to apathy may affect the rate of evidence accumulation (drift rate) or its var-
iability. Given the connections between cholinergic signalling and attention, this reflects the idea 
that attention may guide or bias the accumulation of value signals as a decision evolves 
[78,79]. Dopamine may modulate the cost for controlling decision noise, leading to improved 
speed and accuracy when individuals are motivated [80]. While these models remain to be ap-
plied to PD apathy, it should be noted that more generally in PD, both dopamine (ON vs. OFF) 
and subthalamic nucleus DBS stimulation affect drift rate and threshold (respectively) [81]. 
Work in other disorders also suggests the potential utility of these approaches, with changes in 
drift rate at different levels of reward and effort varying as a function of motivational status in 
both Huntington’s disease and cerebral small vessel disease [68,69]. 

A range of other computational models relevant to motivation exist, each with strengths and lim-
itations. For example, the growing urgency to reach a decision as time elapses, independent of 
evidence accumulation, can be captured by the urgency-gating variation of the drift diffusion 
model [82]. Models can also index attention and curiosity using the attentional drift diffusion 
model, acceptance of the status quo using single-bound models, cognitive effort using models 
with a cost of control, and fatigue using cumulative cost models [7,67,78,80]. Overall, leveraging 
decision-making models in conjunction with the neurophysiological manipulations provided by 
clinical advances in the treatment of PD provides an allée to advance understanding of the 
brain mechanisms giving rise to motivational disruption in PD (Figure 3C). 

Beyond choice: multiple mechanisms contributing to motivational disruption? 
Inspection of any raw effort-based choice dataset shows significant variation in responses be-
tween individuals with apathy, suggesting that more than one mechanism might be important 
for the final observed phenotype of reduced goal-directed behaviour. To date, less work has ex-
amined other components of value-based decision making in the context of pathological loss of 
motivation in PD, and further defining apathy associated disruptions in these is an important pri-
ority for the field. This is particularly so given that apathy in PD, as with other neurodegenerative 
conditions, develops slowly, and subtle shifts in learning processes or environment evaluation in a
Trends in Neurosciences, Month 2025, Vol. xx, No. xx 7
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person with initially normal motivation could, across time, lead to the reduced reward 
incentivisation associated with a clinically apathetic state. Indeed, a study utilising EEG to mea-
sure an event-related potential associated with learning demonstrated a blunted response in 
PD apathy to outcomes of choices [83]. Furthermore, a recent study utilising a probabilistic 
bandit-style decision-making task and fMRI in a sizeable PD population, many with clinical apa-
thy, provided some evidence that representation of the association between actions and their 
outcomes is disrupted in those who have lost motivation [84]. This fits with recent work that 
has used Bayesian methods to examine how beliefs about action/outcome relationships might 
be altered in apathy, and demonstrated an influence of noradrenergic modulation on this 
weighting in PD apathy [85,86]. Outcomes or goals usually require perseverance across time to 
reach them. A robust literature associates such perseverance with dopamine signalling [46,47]. 
This overlaps with another class of decisions often referred to as foraging, after the behaviours 
they are classically important for [87]. Here the problem is often not whether to choose one of a 
limited set of options, but rather whether to persist with a current behaviour or switch to a poten-
tially more rewarding one. For these types of decisions, an estimate of the background environ-
mental reward rate is a crucial signal of the relative value of options and the opportunity cost of the 
chosen behaviour [87]. As with associating actions and their outcomes, a breakdown in repre-
sentation of this reward signal could disrupt goal-directed behaviour [88]. Looking ahead, it will 
be important to understand how processes such as action–outcome representation and back-
ground reward rate estimation relate to each other, and also whether changes in these processes 
are important at specific stages of apathy development. 

In sum, the clinical phenotype of apathy in PD has multiple potential underlying neurobiological 
contributors, which will differ in importance between patients. Because perturbations of different 
biological components may be best treated by differing pharmacological or non-pharmacological 
approaches, selecting the best treatment for an individual person with apathy will depend on ro-
bust ways to assess the mechanistic underpinning of a person’s loss of motivation. One general 
limitation of studies investigating apathy mechanisms in PD (and elsewhere) has been the use of 
group-level analysis strategies that effectively average across individual differences. While un-
doubtedly this approach has led to important mechanistic insights, and is appropriate in the set-
ting of relatively low numbers of participants, a crucial next step will be to apply decision-making 
tasks to larger groups of people with PD with a range of motivational states, ideally longitudinally. 
Utilising online resources/testing is one way of reaching a wider spectrum of people. Collecting 
sufficiently large datasets should allow comprehensive dissection of the PD apathy phenotype, 
which may then be used as a springboard to inform treatment stratification for clinical trials 
(see Outstanding questions). Indeed, such a general approach has recently been applied to bet-
ter understand which cognitive processes respond to particular psychotherapy interventions 
used for treatment of mental health disorders [89]. In this recent study, the specific mechanistic 
effects of cognitive and behavioural therapy interventions were investigated using computational 
analyses of decision-making tasks administered to individuals via online platforms. 

Important observations from the clinic 
Theoretical frameworks and empirical findings from healthy human and from preclinical animal 
model studies do not always translate directly into real-world patient settings. In this section we 
highlight the gaps in existing knowledge, revealed through the study and management of people 
with PD, and where current frameworks require revisiting. 

Apathy and impulsivity co-occur in humans 
Historically, especially in animal work, a reduction or absence of action has been denoted as ap-
athy, whereas premature action has been construed as impulsivity [90,91]. That is, the two exist
8 Trends in Neurosciences, Month 2025, Vol. xx, No. xx
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at opposite ends of a behavioural spectrum – often suggested to be mediated by dopaminergic 
tone. However, in PD and other disorders, apathy and impulsivity are in fact strongly associated, 
frequently coexisting in individual patients, which suggests a closer aetiological link [29–33,92]. 
Notably, decision context – which is harder to manipulate in animal work – may determine 
whether disruptions to value-based decision-making mechanisms manifest as an impulsive ac-
tion or lack of action. For example, lack of persistence during an effortful task may seem impulsive 
when other tasks are available to switch to (premature switching), but may seem apathetic when 
no other tasks are available in the immediate environment. Similarly, within a foraging context, im-
paired ability to estimate environmental reward availability could lead to a decision maker relying 
on salient ‘foreground’ features rather than the background in which these are embedded, again 
potentially manifesting in impulsive or apathetic behaviours. 

More broadly, it is important to note that observable traits in non-humans, such as reduced or 
early lever pressing, may not accurately reflect the constructs of apathy or impulsivity seen in 
humans – but merely show superficial resemblance (e.g., as discussed in [93]). Indeed, there 
are many possible ways to measure ‘apathy’ in humans, each with benefits and drawbacks, 
and defining precise measures for apathy represents a major research challenge (Figure 4). Fur-
thermore, anatomical differences between species are particularly prominent in some key regions 
for goal-directed behaviour (e.g., prefrontal and anterior cingulate cortex), with inconsistent no-
menclature and challenges in defining homologous brain regions rendering translation of findings 
between species challenging [94,95]. Overall, human decision-making experiments that concur-
rently examine both apathy and impulsivity are an important gap in the literature. The view that ap-
athy and impulsivity occupy opposite ends of a behavioural spectrum joined by a dopaminergic 
axis – whilst appealing – is not fully consistent with empirical data. Neuromodulatory systems be-
yond dopamine also play crucial roles in motivated behaviour, and in the following section we turn 
to these other systems relevant to understanding altered motivation in PD. 
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Figure 4. Different methods for 
measuring motivational disruption in 
humans. Methodological approaches for 
studying motivation disruption include: 
questionnaire-derived measures of a 
person’s motivation; performance on 
behavioural tasks; objective measures of 
activity and physiological changes to 
eward; imaging techniques assessing the 
structural, functional, or neuromodulatory 
correlates of apathy’s presence; and 
electrophysiological recordings during 
decision making or at rest. These vary 
n both the dimension of measurement 
behavioural outputs or brain mechanisms) 
and time to change (temporal resolution). 
As such, it is not always clear that they 
are tapping the same constructs, which is a 
challenge for apathy research. Furthermore 
he neural signalling of immediate cost and 
benefit may not translate to longer-term 
measures of neurodegeneration. These 
differences between behavioural and neural 

measures, and between timescales, may account for some conflicts in the literature, and further work is needed to connect the 
dots between these disparate measures. Abbreviations: EEG, electroencephalography; LFP, local field potential; PET, positron 
emission tomography; RT, reaction time.
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Pharmacological treatments for apathy in PD suggest multiple neurotransmitter systems 
contribute to amotivation 
As it has become clear that dopamine’s contribution to motivational disruption is more nuanced 
than initially thought, several other neurotransmitters have been studied as modulators of motiva-
tion, including acetylcholine, noradrenaline, and serotonin. Limited evidence and significant vari-
ability in response between patients means there are currently no FDA-approved treatments for 
apathy in PD, but nevertheless medications can sometimes substantially improve motivation [96]. 

Although reductions in apathy in PD can be observed with dopaminergic medications [97], includ-
ing dopamine agonists, perhaps most intriguing is that significant benefits can also be seen with 
cholinesterase inhibitors, which act to increase synaptic acetylcholine levels [25,26,98–100]. This 
may align with the finding in animals that acetylcholine is critical for motivation [101]. One potential 
mechanism for this is that acetylcholine release in the striatum facilitates dopamine release via nic-
otinic receptors driven by corticostriatal glutamatergic input [102], which is in turn inhibited by do-
pamine via D2 receptors [103]. This may generate local 2-Hz waves [104,105] that effectively 
decouple axonal dopamine release from firing at the soma [106]. Emerging work in healthy humans 
supports this, with cholinergic antagonists decreasing vigour while increasing willingness to exert 
effort [107,108]. This could fit with a distinction that has been made in substance and mood disor-
ders, between ‘activational’ motivation, which describes energisation of action, and ‘directional’ 
motivation, which describes effects on decision making [42]. 

However, it would be overly simplistic to suggest that dopamine and acetylcholine are the only 
neuromodulatory systems related to apathy and decision making in PD (Figure 5). Noradrenergic 
systems are crucial for supporting effort production and energisation of behaviour, and facilitate 
expectation of outcomes [86,109]. Their disruption has been associated with PD apathy, whilst 
methylphenidate (which has noradrenergic as well as dopaminergic actions) improved apathy 
in a small sample of individuals with PD [110,111]. There is also a relationship between apathy 
and serotonergic changes, possibly mediated via decision-making mechanisms [112–115]. Im-
portantly, the baseline state of any given neuromodulatory system associated with apathy
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neuromodulators in motivated
behaviour. An important direction in
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centred on four core neurotransmitte
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Outstanding questions 
Can mechanistically different subgroups 
of PD apathy be identified using 
decision-making tasks applied (possibly 
online) to larger groups of patients than 
most studies to date? 

Which computational models of 
decision-making tasks best capture 
the latent cognitive constructs 
pertaining to motivation, and which 
ones are altered in individuals with moti-
vational loss? 

Can computational outputs derived 
from decision-making tasks be used 
to individualise treatment selection, 
and as endpoints in clinical trials of 
PD behavioural treatments? 

Neural recordings from PD patients 
treated with DBS have rarely been ob-
tained from those with apathy. What 
neurophysiological signatures charac-
terise patients with normal motivation 
versus those with apathy? 

What is the relationship between 
apathy and anhedonia and is this 
mediated by metacognitive processes 
such as insight into loss of motivation? 

Although apathy and impulsivity describe 
seemingly opposite behaviours, the two 
co-occur. What is the mechanistic and 
computational framework that describes 
this observation? 

Impulsive traits are broad and manifest 
across many behavioural contexts, but 
impulse control disorders tend to be 
isolated/selective. Why does this 
discrepancy, in the setting of a 
general neurochemical disturbance, 
occur? 

Central to human motivational 
symptoms are their subjective and 
cognitive components. Animal 
decision-making studies contribute 
significant physiological and pharma-
cological knowledge, but how does 
animal behaviour (e.g., in lever-
pressing tasks) map onto human 
symptoms? 

An under-recognised confounder of 
patient decision-making tasks is that 
patients with apathy may be worse at 
task switching, inhibition, planning, 
and working memory. What influence 
does executive function have on
presence seems crucial for the degree of response to subsequent drug manipulation 
[86,113,116]. Clinically, this emphasises the importance of considering each person’s  behav-
ioural phenotype and neurochemical profile when selecting medications that act on these sys-
tems [115]. Along these lines, studies have begun to use medications with multiple actions; 
preliminary evidence from a small open-label study in people with PD who have depression sug-
gests that the combined serotonin-dopamine-noradrenaline agent vortioxetine improved apathy 
[117]. Cognitive behavioural therapy may also be a viable option either by itself or coupled with 
pharmacological treatments [118]. Other psychological therapies such as positive affective ther-
apy are also emerging as methods to target motivation and reward sensitivity [119], and mindful-
ness, exercise, music, and transcranial magnetic stimulation have all been proposed (reviewed in 
[120]). Overall the clinical experience of treating apathy in PD emphasises the complexity of both 
the disease and the normal process of goal-directed behaviour it is affecting, and underlines the 
need for better understanding of each.

Executive dysfunction as a link between dopamine and amotivation 
Traditionally apathy has been conceptualised as a neuropsychiatric symptom, lying outside the 
scope of clinical neuropsychological testing. Until recently, cognitive assessments in PD have typ-
ically focused on memory, executive and visuospatial function, and language rather than ‘hot’ or 
affective symptoms or reward processing. More generally, though, cognitive neuroscience treats 
reward as a central aspect of cognition; for example, in learning and goal-directed behaviour, and 
in studying goal representation and computation. As such apathy, defined more broadly as a def-
icit in goal-directed behaviour, involves more than just value-based decision deficits. Directing ac-
tion towards goals involves planning ahead – which is also disrupted in PD [121,122]. Indeed, 
several dimensions of executive function, such as attention, working memory, planning, and cre-
ativity are crucially modulated by dopamine and altered in people with PD [123–125]. Dopamine 
also plays a role in stabilising working memory in PD [126,127] and facilitates cognitive effort 
[128], although in healthy people these relationships are less clear [129]. Overall, though, execu-
tive dysfunction is a core feature of PD strongly linked to changes in dopamine signalling 
[130–132]. Considered together, these observations suggest that dopamine might mediate ap-
athy via its effects on executive function, independent of any association with reward sensitivity. 
This view is supported by correlation between apathy and both cognitive decline and executive 
dysfunction [3,13,19]. Executive function may also be important in patients’ being unaware of 
their own apathy [133,134]. More broadly, these links between motivational disturbance, specific 
cognitive functions and dopamine suggest that a broader view of value-based decision making 
and apathy is required. This expanded framework should include the cognitive processes re-
quired to both prepare for and support decision making, as well as successfully enact goal-
directed behaviour (Figure 6, Key figure). 

Concluding remarks 
Disrupted motivation is one of the most significant contributors to impaired quality of life in PD. 
Human goal-directed behaviour is a complex, multifaceted entity, and the disruption of any of 
multiple different components that underpin it can lead to the final observable phenotype of apa-
thy. Furthermore, despite significant advances, current understanding of core neuroscientific is-
sues such as how the brain makes a value-based decision, or how different neuromodulatory 
systems interact to support cognitive processes crucial for goal-directed behaviour, remains in-
complete. However, translating current theories of one crucial aspect underpinning normal goal 
directed behaviour – value-based decision making – to the clinical sphere has led to significant 
progress in understanding the motivational problems encountered by many people with PD. Al-
ready, this provides a schema within which to discuss these problems with affected people and 
their families in the clinic, and the importance of this should not be underestimated. 
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Key figure 

Conceptual relationships between critical factors overlapping between 
apathy, impulsivity, and decision making 
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Figure 6. Each factor has a distinct computational framing, summarised in the simplified equations under the terms. R = 
reward, E =  effort,  t =  time,  V = estimated value of an option or state (potential reward discounted by costs), V0 = 
environmental value, δV = update in value, αV = attentional gain amplifying value during decision process, V(t+n) = future 
reward. Neuromodulators make distinct contributions to each cognitive process. Abbreviations: 5HT, serotonin; ACh, 
acetylcholine; DA, dopamine; NA, noradre naline.
Looking ahead, identifying which specific mechanism(s) have been impaired in an individual with apa-
thy is an important but significant challenge on the path to effective treatments. The application of com-
putational models to decision-making tasks, collected in large numbers of people with PD across the 
spectrum of motivation, and combined where appropriate with physiological recordings, may offer the 
nuanced understanding of behavioural change that is needed to better design and direct therapies. 
The importance of motivation for overall quality of life means these approaches will also provide impor-
tant behavioural indices that could serve as endpoints in clinical trials aimed at modifying progression of 
PD. Integrating measures of cognitive functions such as attention and working memory into decision-
making tasks is also crucial to the aforementioned goal, and to better understand the interaction of 
neuromodulators such as dopamine, acetylcholine, and noradrenaline with apathy and decision mak-
ing. At the same time, it is important to better delineate the relationship between apathy and impulsivity, 
and how the overlap between the two relates to neural representations of decision context. And, as an 
overarching challenge, mapping the knowledge derived from decision-making studies in animals to the 
subjective and objective elements that comprise human motivational symptoms remains a crucial goal. 
These are not straightforward questions to answer, but the importance of the problem of apathy for 
people with PD, combined with the additional insights into normal behaviour this field of research re-
veals, should be more than sufficient motivation for scientists and clinicians to tackle these crucial 
questions over the coming years.
12 Trends in Neurosciences, Month 2025, Vol. xx, No. xx
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